Sporadic isogenies to orthogonal groups

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/ [This document is http://www.math.umn.edu/~garrett/m/v/sporadic_isogenies.pdf]

1. Over \mathbb{C}
2. Over \mathbb{R}
3. Appendix: isomorphism classes of quadratic forms over \mathbb{C} and \mathbb{R}

We will describe well-known 2-to-1 homomorphisms

$$
\left\{\begin{array}{clc}
S L_{2}(\mathbb{C}) & \longrightarrow & S O(3, \mathbb{C}) \\
S L_{2}(\mathbb{C}) \times S L_{2}(\mathbb{C}) & \longrightarrow & S O(4, \mathbb{C}) \\
S p_{2}(\mathbb{C}) & \longrightarrow & S O(5, \mathbb{C}) \\
S L_{4}(\mathbb{C}) & \longrightarrow & S O(6, \mathbb{C})
\end{array}\right.
$$

and well-known 2-to-1 homomorphisms to real special orthogonal groups $S O(p, q)$ with signatures (p, q) :

$$
\begin{aligned}
& S O(p, q)=\left\{g \in S L_{p+q}(\mathbb{R}): g^{\top} Q g=Q\right\} \\
& \left\{\begin{array}{clc}
& & \left(\text { where } Q=\left(\begin{array}{cc}
1_{p} & 0 \\
0 & -1_{q}
\end{array}\right)\right) \\
S U(2) & \longrightarrow & S O(3) \\
S L_{2}(\mathbb{R}) & \longrightarrow & S O(2,1) \\
S U(2) \times S U(2) & \longrightarrow & S O(4) \\
S L_{2}(\mathbb{C}) & \longrightarrow & S O(3,1) \\
S L_{2}(\mathbb{R}) \times S L_{2}(\mathbb{R}) & \longrightarrow & S O(2,2) \\
S p^{*}(2,0) & \longrightarrow & S O(5) \\
S p^{*}(1,1) & \longrightarrow & S O(4,1) \\
S p_{2}(\mathbb{R}) & \longrightarrow & S O(3,2) \\
S U(4) & \longrightarrow & S O(6) \\
S L_{2}(\mathbb{H}) \\
S U(2,2) & \longrightarrow & S O(5,1) \\
S L_{4}(\mathbb{R}) & \longrightarrow S O(4,2)
\end{array}\right. \\
& \left\{\begin{array}{lll}
& \longrightarrow(3,3)
\end{array}\right.
\end{aligned}
$$

Thus, these are small examples of spin groups, two-fold covers of special orthogonal groups.
All these constructions are standard, in principle well-known, but often obscured or left as exercises in larger, systematic treatments of Lie theory or quadratic forms or Clifford algebras or Spin groups. [1]

[^0]
1. Over \mathbb{C}

[1.1] $S L_{2}(\mathbb{C}) \rightarrow S O(3, \mathbb{C}) \quad$ The space V of 2-by-2 complex matrices with trace 0 , has symmetric bilinear form $\langle x, y\rangle=\operatorname{tr}(x y)$. The action of $S L_{2}(\mathbb{C})$ on V by $g \cdot x=g x g^{-1}$ preserves \langle,$\rangle :$

$$
\langle g \cdot x, g \cdot y\rangle=\operatorname{tr}\left(g x g^{-1} \cdot g y g^{-1}\right)=\operatorname{tr}\left(g \cdot x y \cdot g^{-1}\right)=\operatorname{tr}(x y)=\langle x, y\rangle
$$

An orthogonal basis is

$$
\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

with \langle,$\rangle values 2,2,-2$, demonstrating non-degeneracy. Thus, $S L_{2}(\mathbb{C})$ maps to a copy of $S O(3, \mathbb{C})$. The kernel is just $\{ \pm 1\}$.
[1.2] $S L_{2}(\mathbb{C}) \times S L_{2}(\mathbb{C}) \rightarrow S O(4, \mathbb{C})$ Let $V=M_{2}(\mathbb{C})$ be 2-by-2 complex matrices, with $(g, h) \in$ $S L_{2}(\mathbb{C}) \times S L_{2}(\mathbb{C})$ acting by $(g, h) \cdot x=g x h^{-1}$. Give V the bilinear form

$$
\langle x, y\rangle=\operatorname{tr}\left(x \cdot w y^{\top} w^{-1}\right) \quad\left(\text { where } w=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\right)
$$

It is symmetric because trace is invariant under transpose, and because $w^{-1}=-w$. For $g \in S L_{2}(\mathbb{C})$, $g^{-1}=w g^{\top} w^{-1}$, and the pairing is invariant under the group action:

$$
\begin{aligned}
& \operatorname{tr}\left(g x h^{-1} \cdot w\left(g y h^{-1}\right)^{\top} w^{-1}\right)=\operatorname{tr}\left(g x h^{-1} \cdot w\left(h^{-1}\right)^{\top} w^{-1} \cdot w y^{\top} w^{-1} \cdot w g^{\top} w^{-1}\right) \\
& =\operatorname{tr}\left(g x h^{-1} \cdot h \cdot w y^{\top} w^{-1} \cdot g^{-1}\right)=\operatorname{tr}\left(g \cdot x w y^{\top} w^{-1} \cdot g^{-1}\right)=\operatorname{tr}\left(x w y^{\top} w^{-1}\right)
\end{aligned}
$$

Computing

$$
\left\langle\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\right\rangle=\operatorname{tr}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{rr}
d^{\prime} & -b^{\prime} \\
-c^{\prime} & a^{\prime}
\end{array}\right)\right)=\operatorname{tr}\left(\begin{array}{cc}
a d^{\prime}-b c^{\prime} & * \\
* & d a^{\prime}-c b^{\prime}
\end{array}\right)=a d^{\prime}-b c^{\prime}-c b^{\prime}+d a^{\prime}
$$

an orthogonal basis is readily found: for example, ${ }^{[2]}$

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \quad\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

with \langle,$\rangle values 2,-2,2,-2$, demonstrating non-degeneracy. Thus, $S L_{2}(\mathbb{C}) \times S L_{2}(\mathbb{C})$ maps to a copy of $S O(4, \mathbb{C})$.
$[1.3] S p_{2}(\mathbb{C}) \rightarrow S O(5, \mathbb{C}) \quad$ The symplectic group ${ }^{[3]}$ is

$$
S p_{2}(\mathbb{C})=\left\{g \in G L_{4}(\mathbb{C}): g^{\top} J g=J\right\} \quad\left(\text { with } J=\left(\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\right.
$$

[2] One can also observe from this expression that the bilinear form is a sum of two hyperbolic planes, thus giving signature $(2,2)$ without further computation.
[3] In some conventions, the subscript is made to be the size, so what we call $S p_{2}$ here might be called $S p_{4}$ elsewhere.

Write $g^{\sigma}=J g^{\top} J^{-1}$, so the condition can be rewritten as $g^{\sigma} g=1_{2}$. The \mathbb{C}-vectorspace V will be a subspace of the space $M_{4}(\mathbb{C})$ of 4 -by- 4 complex matrices. Let $\langle x, y\rangle=\operatorname{tr}(x y)$ on $M_{4}(\mathbb{C})$. Let $S p_{2}(\mathbb{C})$ act on $M_{4}(\mathbb{C})$ by $g \cdot x=g x g^{\sigma}$. This action respects \langle,$\rangle :$

$$
\langle g \cdot x, g \cdot y\rangle=\operatorname{tr}\left(g x g^{\sigma} \cdot g y g^{\sigma}\right)=\operatorname{tr}\left(g \cdot x y \cdot g^{-1}\right)=\operatorname{tr}(x y)=\langle x, y\rangle
$$

Since $1_{4}=g^{\sigma} g=g \cdot 1_{4} \cdot g^{\sigma}$, the action has fixed-point 1_{4}, and the subspace

$$
V=\left\{x \in M_{4}(\mathbb{C}): x^{\sigma}=x \text { and }\left\langle x, 1_{4}\right\rangle=0\right\}
$$

is stable under the action. In 2-by-2 blocks, the condition $x^{\sigma}=x$ is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\top}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a^{\top} & c^{\top} \\
b^{\top} & d^{\top}
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
d^{\top} & -b^{\top} \\
-c^{\top} & a^{\top}
\end{array}\right)
$$

Thus, $d=a^{\top}$ and b, c are skew-symmetric. The condition $\left\langle x, 1_{4}\right\rangle=0$ requires $\operatorname{tr}(a)=0$. Thus, $\operatorname{dim}_{\mathbb{C}} V=5$. To check that \langle,$\rangle is non-degenerate on V$, identify an orthogonal basis, such as

$$
\left(\begin{array}{rrrr}
1 & 0 & & \\
0 & -1 & & \\
& & 1 & 0 \\
& & 0 & -1
\end{array}\right)\left(\begin{array}{rrrr}
0 & 1 & & \\
1 & 0 & & \\
& & 0 & 1 \\
& & 1 & 0
\end{array}\right) \quad\left(\begin{array}{rrrr}
0 & 1 & & \\
-1 & 0 & & \\
& & 0 & -1 \\
& & 1 & 0
\end{array}\right)\left(\begin{array}{rrr}
& & 0 \\
& & 1 \\
0 & 1 & \\
-1 & 0 & \\
& &
\end{array}\right)\left(\begin{array}{rrrr}
& & & 0 \\
& & -1 & 0 \\
0 & -1 & & \\
1 & 0 & &
\end{array}\right)
$$

where empty positions are 0 .
[1.4] $S L_{4}(\mathbb{C}) \rightarrow S O(6, \mathbb{C})$ Let $S L_{4}(\mathbb{C})$ act in the natural way on the six-dimensional vectorspace $V=\bigwedge^{2} \mathbb{C}^{4}$, namely, $g \cdot(v \wedge w)=g v \wedge g w$. Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the standard basis of \mathbb{C}^{4}, and define ${ }^{[4]}\langle$,$\rangle on$ V by

$$
x \wedge y=\langle x, y\rangle \cdot e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4} \quad\left(\text { with } x, y \in \wedge^{2} \mathbb{C}^{4}\right)
$$

This form is symmetric because an even number of transpositions reverses the arguments:

$$
\begin{aligned}
& (x \wedge y) \wedge(z \wedge w)=-x \wedge z \wedge y \wedge w=x \wedge z \wedge w \wedge y=-z \wedge x \wedge w \wedge y \\
& \quad=-z \wedge x \wedge w \wedge y=(z \wedge w) \wedge(x \wedge y) \quad\left(\text { for } x, y, z, y \in \mathbb{C}^{4}\right)
\end{aligned}
$$

The form is invariant under the action because

$$
\begin{gathered}
\langle g \cdot(x \wedge y), g \cdot(z \wedge w)\rangle \cdot e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}=g x \wedge g y \wedge g z \wedge g w=\operatorname{det} g \cdot x \wedge y \wedge z \wedge w \\
=\operatorname{det} g \cdot\langle x \wedge y, z \wedge w\rangle \cdot e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}
\end{gathered}
$$

To check non-degeneracy, observe

$$
\left\langle e_{1} \wedge e_{2}, e_{3} \wedge e_{4}\right\rangle=1 \quad\left\langle e_{1} \wedge e_{3}, e_{2} \wedge e_{4}\right\rangle=-1 \quad\left\langle e_{1} \wedge e_{4}, e_{2} \wedge e_{3}\right\rangle=1
$$

while $\left\langle e_{i} \wedge e_{j}, e_{k} \wedge e_{\ell}\right\rangle=0$ when $\{i, j\} \cap\{k, \ell\} \neq \phi$. Thus, an orthogonal basis is

$$
\left(e_{1} \wedge e_{2}\right) \pm\left(e_{3} \wedge e_{4}\right) \quad\left(e_{1} \wedge e_{3}\right) \pm\left(e_{2} \wedge e_{4}\right) \quad\left(e_{1} \wedge e_{4}\right) \pm\left(e_{2} \wedge e_{3}\right)
$$

with \langle,$\rangle values \pm 2, \mp 2, \pm 2$.

[^1]
2. Over \mathbb{R}

Each homomorphism of complex groups gives rise to several homomorphisms of real groups.
[2.1] $S U(2) \rightarrow S O(3) \quad$ The standard special unitary group $S U(2)$ is

$$
S U(2)=\left\{g \in S L_{2}(\mathbb{C}): g^{*} g=1_{2}\right\} \quad \text { (where } g^{*} \text { is } g \text {-conjugate-transpose) }
$$

The space V of 2 -by- 2 skew-hermitian complex matrices with trace 0 has symmetric real-valued real-bilinear form $\langle x, y\rangle=\operatorname{Re}(\operatorname{tr}(x y))$. An orthogonal basis is

$$
\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right) \quad\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

Each has value -2 for \langle,$\rangle , so the signature of \langle$,$\rangle on V$ is $(0,3)$. The action of $S U(2)$ on V by $g \cdot x=g x g^{*}$ preserves \langle,$\rangle , because$

$$
\operatorname{tr}\left(g x g^{*} \cdot g y g^{*}\right)=\operatorname{tr}\left(g \cdot x y \cdot g^{-1}\right)=\operatorname{tr}(x y)
$$

Thus, $S U(2)$ maps to a copy of $S O(3)$. The kernel is just $\{ \pm 1\}$.
[2.2] $S L_{2}(\mathbb{R}) \rightarrow S O(2,1)$ The space V of 2 -by-2 real matrices with trace 0 , with symmetric bilinear form $\langle x, y\rangle=\operatorname{tr}(x y)$, has orthogonal basis

$$
\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

The values of \langle,$\rangle are respectively 2,2,-2$, giving signature $(2,1)$. The action of $S L_{2}(\mathbb{R})$ on V by $g \cdot x=g x g^{-1}$ preserves \langle,$\rangle :$

$$
\langle g \cdot x, g \cdot y\rangle=\operatorname{tr}\left(g x g^{-1} \cdot g y g^{-1}\right)=\operatorname{tr}\left(g \cdot x y \cdot g^{-1}\right)=\operatorname{tr}(x y)=\langle x, y\rangle
$$

Thus, $S L_{2}(\mathbb{R})$ maps to a copy of $S O(2,1)$. The kernel is just $\{ \pm 1\}$.
[2.3] $S U(2) \times S U(2) \rightarrow S O(4) \quad$ Let ${ }^{[5]}$

$$
\begin{gathered}
V=\left\{\text { complex 2-by-2 matrices } x: x^{*}=w x^{\top} w^{-1}\right\} \quad\left(\text { with } w=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\right) \\
=\left\{2 \text {-by- } 2 \text { complex matrices of the form }\left(\begin{array}{rr}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right) \text { with } \alpha, \beta \in \mathbb{C}\right\}
\end{gathered}
$$

Let $(g, h) \in S U(2) \times S U(2)$ act by $(g, h) \cdot x=g x h^{*}$. Give V the bilinear form

$$
\langle x, y\rangle=\operatorname{Re}\left(\operatorname{tr}\left(x y^{*}\right)\right)
$$

[5] It is not a coincidence that the vectorspace is a standard model of the Hamiltonian quaternions:

$$
a+b i+c j+d k \longrightarrow\left(\begin{array}{ll}
a+b i & c+d i \\
c-d i & a-b i
\end{array}\right)
$$

Paul Garrett: Sporadic isogenies to orthogonal groups (May 7, 2015)

For $g \in S U(2) \subset S L_{2}(\mathbb{R}), g^{-1}=w g^{\top} w^{-1}$, giving the stabilization of V by the group action:

$$
w\left(g x h^{*}\right)^{\top} w^{-1}=w\left(h^{*}\right)^{\top} w^{-1} \cdot w x^{\top} w^{-1} \cdot w g^{\top} w^{-1}=\left(h^{*}\right)^{-1} x^{*} g^{-1}=h x^{*} g^{*}=\left(g x h^{*}\right)^{*}
$$

The pairing is invariant under the group action:

$$
\begin{aligned}
& \operatorname{tr}\left(g x h^{-1} \cdot w\left(g y h^{-1}\right)^{\top} w^{-1}\right)=\operatorname{tr}\left(g x h^{-1} \cdot w\left(h^{-1}\right)^{\top} w^{-1} \cdot w y^{\top} w^{-1} \cdot w g^{\top} w^{-1}\right) \\
& =\operatorname{tr}\left(g x h^{-1} \cdot h \cdot w y^{\top} w^{-1} \cdot g^{-1}\right)=\operatorname{tr}\left(g \cdot x w y^{\top} w^{-1} \cdot g^{-1}\right)=\operatorname{tr}\left(x w y^{\top} w^{-1}\right)
\end{aligned}
$$

Computing

$$
\left\langle\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right),\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)\right\rangle=\operatorname{tr}\left(\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)\left(\begin{array}{cc}
\bar{\alpha} & -\beta \\
\bar{\beta} & \alpha
\end{array}\right)\right)=\operatorname{tr}\left(\begin{array}{cc}
\alpha \bar{\alpha}+\beta \bar{\beta} & * \\
* & \alpha \bar{\alpha}+\beta \bar{\beta}
\end{array}\right)
$$

an orthogonal basis is readily found: for example,

$$
\left(\begin{array}{rr}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right) \quad\left(\begin{array}{rr}
0 & i \\
i & 0
\end{array}\right) \quad\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

with \langle,$\rangle values 2,2,2,2$.
[2.4] $S L_{2}(\mathbb{C}) \rightarrow S O(3,1) \quad$ With

$$
\begin{aligned}
V= & \left\{\text { complex 2-by-2 matrices } x: x^{*}=w x w^{-1}\right\} \quad\left(\text { with } w=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\right) \\
& =\left\{2 \text {-by-2 complex matrices of the form }\left(\begin{array}{cc}
\alpha & i b \\
i c & \bar{\alpha}
\end{array}\right) \text { with } \alpha \in \mathbb{C}, b, c \in \mathbb{R}\right\}
\end{aligned}
$$

use the \mathbb{R}-bilinear \mathbb{R}-valued form $\langle x, y\rangle=\operatorname{Re}(\operatorname{tr}(x \bar{y}))$, where the overline denotes entry-wise complex conjugation. An orthogonal basis is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right) \quad\left(\begin{array}{rr}
0 & i \\
i & 0
\end{array}\right) \quad\left(\begin{array}{rr}
0 & i \\
-i & 0
\end{array}\right)
$$

with \langle,$\rangle values 2,2,2,-2$. Thus, the signature of \langle,$\rangle is 3,1$. The action $g \cdot x=g x \bar{g}^{-1}$ preserves the bilinear form $\langle x, y\rangle=\operatorname{Re}(\operatorname{tr}(x \bar{y}))$ on the larger \mathbb{R}-vectorspace of all complex 2 -by- 2 matrices, since

$$
\operatorname{tr}\left(g x \bar{g}^{-1} \cdot \overline{g y \bar{g}^{-1}}\right)=\operatorname{tr}\left(g x \bar{g}^{-1} \cdot \overline{g y} g^{-1}\right)=\operatorname{tr}\left(g \cdot x \bar{y} \cdot g^{-1}\right)=\operatorname{tr}(x \bar{y})
$$

To check that $S L_{2}(\mathbb{C})$ stabilizes V, recall that $g^{-1}=w g^{\top} w^{-1}$ for $g \in S L_{2}(\mathbb{C})$. For $y \in V$, by design,

$$
\begin{gathered}
\left(g y \bar{g}^{-1}\right)^{*}=\left(\bar{g}^{-1}\right)^{*} y^{*} g^{*}=\left(g^{\top}\right)^{-1} \cdot w y w^{-1} \cdot \bar{g}^{\top}=w\left(g^{\top}\right)^{\top} w^{-1} \cdot w y w^{-1} \cdot w \bar{g}^{-1} w^{-1} \\
=w g w^{-1} \cdot w y w^{-1} \cdot w\left(\bar{g}^{-1}\right) w^{-1}=w\left(g y \bar{g}^{-1}\right) w^{-1}
\end{gathered}
$$

so $S L_{2}(\mathbb{C})$ stabilizes V, and maps to a copy of $S O(3,1)$. The kernel is just $\{ \pm 1\}$.
[2.5] $S L_{2}(\mathbb{R}) \times S L_{2}(\mathbb{R}) \rightarrow S O(2,2) \quad$ Let V be 2-by-2 real matrices, with $(g, h) \in S L_{2}(\mathbb{R}) \times S L_{2}(\mathbb{R})$ acting by $(g, h) \cdot x=g x h^{-1}$. Give V the bilinear form

$$
\langle x, y\rangle=\operatorname{tr}\left(x \cdot w y^{\top} w^{-1}\right) \quad\left(\text { where } w=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\right)
$$

Paul Garrett: Sporadic isogenies to orthogonal groups (May 7, 2015)

It is symmetric because trace is invariant under transpose, and because $w^{-1}=-w$. For $g \in S L_{2}(\mathbb{R})$, $g^{-1}=w g^{\top} w^{-1}$, and the pairing is invariant under the group action:

$$
\begin{aligned}
& \operatorname{tr}\left(g x h^{-1} \cdot w\left(g y h^{-1}\right)^{\top} w^{-1}\right)=\operatorname{tr}\left(g x h^{-1} \cdot w\left(h^{-1}\right)^{\top} w^{-1} \cdot w y^{\top} w^{-1} \cdot w g^{\top} w^{-1}\right) \\
& =\operatorname{tr}\left(g x h^{-1} \cdot h \cdot w y^{\top} w^{-1} \cdot g^{-1}\right)=\operatorname{tr}\left(g \cdot x w y^{\top} w^{-1} \cdot g^{-1}\right)=\operatorname{tr}\left(x w y^{\top} w^{-1}\right)
\end{aligned}
$$

Computing
$\left\langle\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)\right\rangle=\operatorname{tr}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}d^{\prime} & -b^{\prime} \\ -c^{\prime} & a^{\prime}\end{array}\right)\right)=\operatorname{tr}\left(\begin{array}{cc}a d^{\prime}-b c^{\prime} & * \\ * & d a^{\prime}-c b^{\prime}\end{array}\right)=a d^{\prime}-b c^{\prime}-c b^{\prime}+d a^{\prime}$ an orthogonal basis is readily found: for example, ${ }^{[6]}$

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \quad\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

with \langle,$\rangle values 2,-2,2,-2$, giving the desired signature.
[2.6] $S p^{*}(2,0) \rightarrow S O(5) \quad$ Let \mathbb{H} be the Hamiltonian quaternions. One model of $G=S p_{2}^{*}=S p^{*}(2,0)$ is

$$
S p^{*}(2,0)=\left\{g \in G L_{2}(\mathbb{H}): g^{*} g=1_{2}\right\}
$$

where $g^{*}=\bar{g}^{\top}$ with entry-wise quaternion conjugation. The \mathbb{R}-vectorspace V will be a subspace of the space $M_{2}(\mathbb{H})$ of 2-by- 2 matrices with entries in \mathbb{H}. Let λ be the reduced trace

$$
\lambda\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\frac{1}{2} \cdot(\alpha+\bar{\alpha}+\delta+\bar{\delta})
$$

and on $M_{2}(\mathbb{H})$ let $\langle x, y\rangle=\lambda(x y)$. Let G act on $M_{2}(\mathbb{H})$ by $g \cdot x=g x g^{*}$. This action respects \langle,$\rangle :$

$$
\langle g \cdot x, g \cdot y\rangle=\lambda\left(g x g^{*} \cdot g y g^{*}\right)=\lambda\left(g \cdot x y \cdot g^{-1}\right)=\lambda(x y)
$$

Thus,

$$
V=\left\{y \in M_{2}(\mathbb{H}): y^{*}=y \text { and }\left\langle y, 1_{2}\right\rangle=0\right\}=\left\{\left(\begin{array}{rr}
\frac{a}{\beta} & \beta \\
-a
\end{array}\right): a \in \mathbb{R}, \beta \in \mathbb{H}\right\}
$$

is stable under this action, and $\operatorname{dim}_{\mathbb{R}} V=5$. An orthogonal basis is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{rr}
0 & i \\
-i & 0
\end{array}\right) \quad\left(\begin{array}{rr}
0 & j \\
-j & 0
\end{array}\right) \quad\left(\begin{array}{rr}
0 & k \\
-k & 0
\end{array}\right)
$$

with values $2,2,2,2,2$, giving the desired signature.
[2.7] $S p^{*}(1,1) \rightarrow S O(4,1)$ One model of $G=S p^{*}(1,1)$ is

$$
S p^{*}(1,1)=\left\{g \in G L_{2}(\mathbb{H}): g^{*} S g=S\right\} \quad\left(\text { with } S=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\right)
$$

[^2]where $g^{*}=\bar{g}^{\top}$ with entry-wise quaternion conjugation. Let $g^{\sigma}=S g^{*} S^{-1}$, so the defining condition is $g^{\sigma} g=1_{2}$. The \mathbb{R}-vectorspace V will be a subspace of the space $M_{2}(\mathbb{H})$ of 2 -by- 2 matrices with entries in \mathbb{H}. Let $\langle x, y\rangle=\lambda(x y)$. Let G act on $M_{2}(\mathbb{H})$ by $g \cdot x=g x g^{\sigma}$. This action respects \langle,$\rangle :$
$$
\langle g \cdot x, g \cdot y\rangle=\lambda\left(g x g^{\sigma} \cdot g y g^{\sigma}\right)=\lambda\left(g \cdot x y \cdot g^{\sigma}\right)=\lambda\left(g \cdot x y \cdot g^{-1}\right)=\lambda(x y)=\langle x, y\rangle
$$

The \mathbb{R}-vectorspace is

$$
V=\left\{x \in M_{2}(\mathbb{H}): x^{\sigma}=x \text { and }\langle x, S\rangle=0\right\}=\left\{\left(\begin{array}{rr}
\alpha & b \\
-b & \bar{\alpha}
\end{array}\right): \alpha \in \mathbb{H}, b \in \mathbb{R}\right\}
$$

and is stable under the action, and $\operatorname{dim}_{\mathbb{R}} V=5$. An orthogonal basis is

$$
\left(\begin{array}{rr}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right) \quad\left(\begin{array}{rr}
j & 0 \\
0 & -j
\end{array}\right) \quad\left(\begin{array}{rr}
k & 0 \\
0 & -k
\end{array}\right) \quad\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

with values $2,-2,-2,-2,-2$, giving the desired signature.
[2.8] $S p_{2}(\mathbb{R}) \rightarrow S O(3,2) \quad$ The symplectic group is

$$
\left.S p_{2}(\mathbb{R})=\left\{g \in G L_{4}(\mathbb{R}): g^{\top} J g=J\right\} \quad \text { (with } J=\left(\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\right)
$$

Write $g^{\sigma}=J g^{\top} J^{-1}$, so the condition can be rewritten as $g^{\sigma} g=1_{2}$. The \mathbb{R}-vectorspace V will be a subspace of the space $M_{4}(\mathbb{R})$ of 4-by-4 real matrices. Let $\langle x, y\rangle=\operatorname{tr}(x y)$. Let $S p_{2}(\mathbb{R})$ act on $M_{4}(\mathbb{R})$ by $g \cdot x=g x g^{\sigma}$. This action respects \langle,$\rangle :$

$$
\langle g \cdot x, g \cdot y\rangle=\operatorname{tr}\left(g x g^{\sigma} \cdot g y g^{\sigma}\right)=\operatorname{tr}\left(g \cdot x y \cdot g^{-1}\right)=\operatorname{tr}(x y)=\langle x, y\rangle
$$

Since $1_{4}=g^{\sigma} g=g 1_{4} g^{\sigma}$, the action has fixed-point 1_{4}, and the subspace

$$
V=\left\{x \in M_{4}(\mathbb{R}): x^{\sigma}=x \text { and }\left\langle x, 1_{4}\right\rangle=0\right\}
$$

is stable under the action. In 2-by-2 blocks, the condition $x^{\sigma}=x$ is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\top}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a^{\top} & c^{\top} \\
b^{\top} & d^{\top}
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{rr}
d^{\top} & -b^{\top} \\
-c^{\top} & a^{\top}
\end{array}\right)
$$

Thus, $d=a^{\top}$ and b, c are skew-symmetric. The condition $\left\langle x, 1_{4}\right\rangle=0$ requires that $\operatorname{tr}(a)=0$. Thus, $\operatorname{dim}_{\mathbb{R}} V=5$. The easily observed orthogonal basis

$$
\left(\begin{array}{rrrr}
1 & 0 & & \\
0 & -1 & & \\
& & 1 & 0 \\
& & 0 & -1
\end{array}\right)\left(\begin{array}{rrrr}
0 & 1 & & \\
1 & 0 & & \\
& & 0 & 1 \\
& & 1 & 0
\end{array}\right) \quad\left(\begin{array}{rrrr}
0 & 1 & & \\
-1 & 0 & & \\
& & 0 & -1 \\
& & 1 & 0
\end{array}\right)\left(\begin{array}{rrrr}
& & 0 & 1 \\
& & -1 & 0 \\
0 & 1 & & \\
-1 & 0 & &
\end{array}\right)\left(\begin{array}{rrrr}
& & & 0 \\
& & -1 & 0 \\
0 & -1 & & \\
1 & 0 & &
\end{array}\right)
$$

has \langle,$\rangle values 4,4,-4,-4,4$, giving signature 3,2 .
[2.9] $S U(4) \rightarrow S O(6) \quad$ Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the standard basis for \mathbb{C}^{4}. Give $\bigwedge^{2} \mathbb{C}^{4}$ the \mathbb{C}-valued $S L_{4}(\mathbb{C})$ invariant symmetric form

$$
\langle x \wedge y, z \wedge w\rangle \cdot e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}=x \wedge y \wedge z \wedge w \quad\left(\text { for } x, y, z, w \in \mathbb{C}^{4}\right)
$$

A six-dimensional \mathbb{R}-subspace of $\bigwedge^{2} \mathbb{C}^{4}$ stable under $S U(4)$ will be identified as the fixed vectors of an \mathbb{C}-conjugate-linear isomorphism $J: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ commuting with $S U(4)$, on which \langle,$\rangle takes real values.$

To make such J, use the positive-definite hermitian form $(x, y)=y^{*} x$ on \mathbb{C}^{4} invariant under $S U(4)$, giving a \mathbb{C}-conjugate-linear isomorphism $\mathbb{C}^{4} \rightarrow\left(\mathbb{C}^{4}\right)^{*}$ by $x \rightarrow(y \rightarrow(y, x))$, which induces $\bigwedge^{2} \mathbb{C}^{4} \rightarrow$ $\bigwedge^{2}\left(\mathbb{C}^{4 *}\right) \approx\left(\bigwedge^{2} \mathbb{C}^{4}\right)^{*}$. At the same time, the non-degenerate form \langle,$\rangle on \bigwedge^{2} \mathbb{C}^{4}$ gives a \mathbb{C}-linear isomorphism $\bigwedge^{2} \mathbb{C}^{4} \rightarrow \bigwedge^{2} \mathbb{C}^{4}$ by $v \rightarrow(w \rightarrow\langle w, v\rangle)$. Combining these,

with the right-to-left arrow a \mathbb{C}-conjugate-linear isomorphism, gives a \mathbb{C}-conjugate-linear isomorphism J of $\bigwedge^{2} \mathbb{C}^{4}$ to itself. Since $S U(4)$ respects both \langle,$\rangle and (,), the map J$ commutes with $S U(4)$. This is noted element-wise below.

We can track basis elements $e_{k} \wedge e_{\ell}$ under J. Since functionals $\left\langle-, e_{1} \wedge e_{2}\right\rangle$ and $\left(-, e_{3}\right) \wedge\left(-, e_{4}\right)$ both compute the $e_{3} \wedge e_{4}$ component of $\sum_{k<\ell} c_{k \ell} e_{k} \wedge e_{\ell}$, we have $J\left(e_{1} \wedge e_{2}\right)=e_{3} \wedge e_{4}$. That J commutes with the action of $g \in S U(4)$ can be made explicit:

$$
\begin{aligned}
& g \cdot\left(e_{1} \wedge e_{2}\right) \rightarrow\left\langle-, g\left(e_{1} \wedge e_{2}\right)\right\rangle=\left\langle g^{-1}(-), e_{1} \wedge e_{2}\right\rangle=g^{-1} \circ\left\langle-, e_{1} \wedge e_{2}\right\rangle=g^{-1} \circ\left(-, e_{3}\right) \wedge\left(-, e_{4}\right) \\
& =\left(g^{-1}(-), e_{3}\right) \wedge\left(g^{-1}(-), e_{4}\right)=\left(-, g e_{3}\right) \wedge\left(-, g e_{4}\right) \rightarrow g e_{3} \wedge g e_{4}=g \cdot\left(e_{3} \wedge e_{4}\right)=g \cdot J\left(e_{1} \wedge e_{2}\right)
\end{aligned}
$$

A similar computation gives $J\left(e_{3} \wedge e_{4}\right)=e_{1} \wedge e_{2}$. Since $(,) \wedge($,$) is conjugate-linear,$

$$
i e_{1} \wedge e_{2} \rightarrow i\left\langle-, e_{1} \wedge e_{2}\right\rangle \rightarrow i\left(-, e_{3}\right) \wedge\left(-, e_{4}\right)=\left(-,(-i) e_{3}\right) \wedge\left(-, e_{4}\right) \rightarrow-i e_{3} \wedge e_{4}
$$

and $J\left(i e_{3} \wedge e_{4}\right)=-i e_{1} \wedge e_{2}$. Thus, on the real four-dimensional space with basis

$$
e_{1} \wedge e_{2} \quad e_{3} \wedge e_{4} \quad i e_{1} \wedge e_{2} \quad i e_{3} \wedge e_{4}
$$

the map J is

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \oplus\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

Thus, $J^{2}=1$ on this subspace, and this subspace has ± 1 eigenspaces of equal dimension. Similarly, functionals $(-1)\left\langle-, e_{1} \wedge e_{3}\right\rangle$ and $\left(-, e_{2}\right) \wedge\left(-, e_{4}\right)$ both compute the $e_{2} \wedge e_{4}$ component, and $(-1)\left\langle-, e_{2} \wedge e_{4}\right\rangle$ and $\left(-, e_{1}\right) \wedge\left(-, e_{3}\right)$ both compute the $e_{1} \wedge e_{3}$ component, so, noting the signs,
$J\left(e_{1} \wedge e_{3}\right)=-e_{2} \wedge e_{4} \quad J\left(i e_{1} \wedge e_{3}\right)=i e_{2} \wedge e_{4} \quad J\left(e_{2} \wedge e_{4}\right)=-e_{1} \wedge e_{3} \quad J\left(i e_{2} \wedge e_{4}\right)=i e_{1} \wedge e_{3}$
Thus, $J^{2}=1$ on this subspace, and this subspace has ± 1 eigenspaces of equal dimension. Functionals $\left\langle-, e_{1} \wedge e_{4}\right\rangle$ and $\left(-, e_{2}\right) \wedge\left(-, e_{3}\right)$ both compute the $e_{2} \wedge e_{3}$ component, and symmetrically, so
$J\left(e_{1} \wedge e_{4}\right)=e_{2} \wedge e_{3} \quad J\left(i e_{1} \wedge e_{4}\right)=-i e_{2} \wedge e_{3} \quad J\left(e_{2} \wedge e_{3}\right)=e_{1} \wedge e_{4} \quad J\left(i e_{2} \wedge e_{3}\right)=-i e_{1} \wedge e_{4}$
Again, $J^{2}=1$ on this subspace, and this subspace has ± 1 eigenspaces of equal dimension. An orthogonal basis for the +1 -eigenspace for J is
$e_{1} \wedge e_{2}+e_{3} \wedge e_{4} \quad i e_{1} \wedge e_{2}-i e_{3} \wedge e_{4} \quad e_{1} \wedge e_{3}-e_{2} \wedge e_{3} \quad i e_{1} \wedge e_{3}+i e_{2} \wedge e_{3} \quad e_{1} \wedge e_{4}+e_{2} \wedge e_{3} \quad i e_{1} \wedge e_{4}-i e_{2} \wedge e_{3}$
with \langle,$\rangle values 2,2,2,2,2,2$.
$[2.10] S L_{2}(\mathbb{H}) \rightarrow S O(5,1) \quad$ Imbed $\mathbb{H} \subset M_{2}(\mathbb{C})$ by

$$
a+b i+c j+d k \longrightarrow\left(\begin{array}{cc}
a+b i & c+d j \\
-c+d i & a-b i
\end{array}\right) \quad \text { (with } a, b, c, d \in \mathbb{R} \text {) }
$$

Note the characterization

$$
\mathbb{H}=\left\{x \in M_{2}(\mathbb{C}): \bar{x}=w x w^{-1}\right\} \quad\left(\text { with } w=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\right)
$$

Thus, identify

$$
S L_{2}(\mathbb{H})=\left\{g \in S L_{4}(\mathbb{C}): \bar{g}=W g W^{-1}\right\} \quad\left(\text { where } W=\left(\begin{array}{rrrr}
0 & -1 & & \\
1 & 0 & & \\
& & 0 & -1 \\
& & 1 & 0
\end{array}\right)\right.
$$

where $g \rightarrow \bar{g}$ is entry-wise conjugation. Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the standard basis for \mathbb{C}^{4}, and give $\Lambda^{2} \mathbb{C}^{4}$ the \mathbb{C}-valued $S L_{4}(\mathbb{C})$-invariant symmetric form

$$
\left.\langle x \wedge y, z \wedge w\rangle \cdot e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}=x \wedge y \wedge z \wedge w \quad \text { (for } x, y, z, w \in \mathbb{C}^{4}\right)
$$

A six-dimensional \mathbb{R}-subspace of $\bigwedge^{2} \mathbb{C}^{4}$ stable under $S U(4)$ will be identified as the fixed vectors of an \mathbb{C}-conjugate-linear isomorphism $J: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ commuting with $S L_{2}(\mathbb{H})$, on which \langle,$\rangle takes real values.$
Define conjugate-linear $J: \bigwedge^{2} \mathbb{C}^{4} \rightarrow \bigwedge^{2} \mathbb{C}^{4}$ by

$$
J(x \wedge y)=W \bar{x} \wedge W \bar{y}
$$

By design, J commutes with the action of $g \in S L_{2}(\mathbb{H})$:

$$
g \cdot J(x \wedge y)=g W \bar{x} \wedge g W \bar{y}=W \overline{W^{-1} \bar{g} W x} \wedge W \overline{W^{-1} \bar{g} W y}=W \overline{g x} \wedge W \overline{g y}=J(g \cdot x \wedge y)
$$

The effect of J on $e_{k} \wedge e_{\ell}$ and $i e_{k} \wedge e_{\ell}$ is readily computed, since $W e_{1}=e_{2}, W e_{2}=-e_{1}, W e_{3}=e_{4}$, and $W e_{4}=-e_{3}:$

$$
J\left(e_{1} \wedge e_{2}\right)=-e_{2} \wedge e_{1}=e_{1} \wedge e_{2} \quad J\left(e_{3} \wedge e_{4}\right)=-e_{4} \wedge e_{3}=e_{3} \wedge e_{4}
$$

while

$$
J\left(e_{1} \wedge e_{3}\right)=e_{2} \wedge e_{4} \quad J\left(e_{2} \wedge e_{4}\right)=-e_{1} \wedge-e_{3}=e_{1} \wedge e_{3}
$$

and

$$
J\left(e_{1} \wedge e_{4}\right)=e_{2} \wedge-e_{3}=-e_{2} \wedge e_{3} \quad J\left(e_{2} \wedge e_{3}\right)=-e_{1} \wedge e_{4}
$$

Visibly, $J^{2}=1$ on these vectors. Since J is conjugate-linear, we have $J^{2}=1$. An orthogonal basis for +1 eigenvectors is
$e_{1} \wedge e_{2}+e_{3} \wedge e_{4} \quad e_{1} \wedge e_{2}-e_{3} \wedge e_{4} \quad e_{1} \wedge e_{3}+e_{2} \wedge e_{4} \quad i e_{1} \wedge e_{3}-i e_{2} \wedge e_{4} \quad e_{1} \wedge e_{4}-e_{2} \wedge e_{3} \quad i e_{1} \wedge e_{4}+i e_{2} \wedge e_{3}$ with \langle,$\rangle values 2,-2,-2,-2,-2,-2$.
[2.11] $S U(2,2) \rightarrow S O(4,2) \quad$ One model of $S U(2,2)$ is

$$
S U(2,2)=\left\{g \in S L_{4}(\mathbb{C}): g^{*} S g=S\right\} \quad\left(\text { where } S=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & -1 & \\
& & & -1
\end{array}\right)\right.
$$

Again, with $e_{1}, e_{2}, e_{3}, e_{4}$ the standard basis for \mathbb{C}^{4}, give $\bigwedge^{2} \mathbb{C}^{4}$ the \mathbb{C}-valued symmetric form

$$
\langle x \wedge y, z \wedge w\rangle \cdot e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}=x \wedge y \wedge z \wedge w \quad\left(\text { for } x, y, z, w \in \mathbb{C}^{4}\right)
$$

A six-dimensional \mathbb{R}-subspace of $\bigwedge^{2} \mathbb{C}^{4}$ stable under $S U(2,2)$ will be identified as the fixed vectors of an \mathbb{C}-conjugate-linear isomorphism $J: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ commuting with $S U(2,2)$, and on which \langle,$\rangle takes real values.$

Use the non-degenerate hermitian form

$$
(x, y)=y^{*} S x
$$

on \mathbb{C}^{4} invariant under $S U(2,2)$, giving \mathbb{C}-conjugate-linear isomorphism $\mathbb{C}^{4} \rightarrow\left(\mathbb{C}^{4}\right)^{*}$ by $x \rightarrow(y \rightarrow(y, x))$, which induces $\Lambda^{2} \mathbb{C}^{4} \rightarrow \bigwedge^{2}\left(\mathbb{C}^{4 *}\right) \approx\left(\bigwedge^{2} \mathbb{C}^{4}\right)^{*}$. At the same time, the non-degenerate form \langle,$\rangle on \Lambda^{2} \mathbb{C}^{4}$ gives a \mathbb{C}-linear isomorphism $\bigwedge^{2} \mathbb{C}^{4} \rightarrow \bigwedge^{2} \mathbb{C}^{4}$ by $v \rightarrow(w \rightarrow\langle w, v\rangle)$. Combining these,

with the right-to-left arrow a \mathbb{C}-conjugate-linear isomorphism, gives a \mathbb{C}-conjugate-linear isomorphism J of $\Lambda^{2} \mathbb{C}^{4}$ to itself. Since $S U(2)$ respects both \langle,$\rangle and ($,$) , the map J$ commutes with $S U(2)$. This is noted element-wise below. It is important to check that $J^{2}=1$.

Tracking $e_{k} \wedge e_{\ell}$ and $i e_{k} \wedge e_{\ell}$ under J is nearly identical to that for $S U(4)$, with important sign flips.
Functionals $\left\langle-, e_{1} \wedge e_{2}\right\rangle$ and $\left(-, e_{3}\right) \wedge\left(-, e_{4}\right)$ both compute the $e_{3} \wedge e_{4}$ component of $\sum_{k<\ell} c_{k \ell} e_{k} \wedge e_{\ell}$. The two sign flips from $\left(e_{3}, e_{3}\right)=-1$ and $\left(e_{4}, e_{4}\right)=-1$ cancel. Thus, $J\left(e_{1} \wedge e_{2}\right)=e_{3} \wedge e_{4}$. A similar computation gives $J\left(e_{3} \wedge e_{4}\right)=e_{1} \wedge e_{2}$. Since $(,) \wedge($,$) is conjugate-linear, J\left(i e_{1} \wedge e_{2}\right)=-i e_{3} \wedge e_{4}$ and and $J\left(i e_{3} \wedge e_{4}\right)=-i e_{1} \wedge e_{2}$. Thus, on the real four-dimensional space with basis

$$
e_{1} \wedge e_{2} \quad e_{3} \wedge e_{4} \quad i e_{1} \wedge e_{2} \quad i e_{3} \wedge e_{4}
$$

the map J is

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \oplus\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

Thus, $J^{2}=1$ on this subspace, and this subspace has ± 1 eigenspaces of equal dimension. This part is identical to that for $S U(2)$.

Functionals $(-1)\left\langle-, e_{1} \wedge e_{3}\right\rangle$ and $(-1)\left(-, e_{2}\right) \wedge\left(-, e_{4}\right)$ both compute the $e_{2} \wedge e_{4}$ component, with sign flip due to $\left(e_{4}, e_{4}\right)=-1$. Similarly, $(-1)\left\langle-, e_{2} \wedge e_{4}\right\rangle$ and $(-1)\left(-, e_{1}\right) \wedge\left(-, e_{3}\right)$ both compute the $e_{1} \wedge e_{3}$ component, with $\left(e_{3}, e_{3}\right)=-1$. Noting the signs,
$J\left(e_{1} \wedge e_{3}\right)=e_{2} \wedge e_{4} \quad J\left(i e_{1} \wedge e_{3}\right)=-i e_{2} \wedge e_{4} \quad J\left(e_{2} \wedge e_{4}\right)=e_{1} \wedge e_{3} \quad J\left(i e_{2} \wedge e_{4}\right)=-i e_{1} \wedge e_{3}$
Thus, $J^{2}=1$ on this subspace, with ± 1 eigenspaces of equal dimension. Functionals $\left\langle-, e_{1} \wedge e_{4}\right\rangle$ and $(-1)\left(-, e_{2}\right) \wedge\left(-, e_{3}\right)$ both compute the $e_{2} \wedge e_{3}$ component, so

$$
J\left(e_{1} \wedge e_{4}\right)=-e_{2} \wedge e_{3} \quad J\left(i e_{1} \wedge e_{4}\right)=-i e_{2} \wedge e_{3}
$$

Functionals $\left\langle-, e_{2} \wedge e_{3}\right\rangle$ and $(-1)\left(-, e_{1}\right) \wedge\left(-, e_{4}\right)$ both compute the $e_{1} \wedge e_{4}$ component, so

$$
J\left(e_{2} \wedge e_{3}\right)=-e_{1} \wedge e_{4} \quad J\left(i e_{2} \wedge e_{3}\right)=i e_{1} \wedge e_{4}
$$

Again, $J^{2}=1$ on this subspace, with ± 1 eigenspaces of equal dimension. An orthogonal basis for the +1 -eigenspace for J is
$e_{1} \wedge e_{2}+e_{3} \wedge e_{4} \quad i e_{1} \wedge e_{2}-i e_{3} \wedge e_{4} \quad e_{1} \wedge e_{3}+e_{2} \wedge e_{3} \quad i e_{1} \wedge e_{3}-i e_{2} \wedge e_{3} \quad e_{1} \wedge e_{4}-e_{2} \wedge e_{3} \quad i e_{1} \wedge e_{4}+i e_{2} \wedge e_{3}$

The last four have sign flips in comparison to the analogous basis for $S U(4)$, giving \langle,$\rangle values$ $2,2,-2,-2,-2,-2$.
[2.12] $S L_{4}(\mathbb{R}) \rightarrow S O(3,3) \quad$ This is just the obvious real form of the isogeny for $S L_{4}(\mathbb{C})$ above. Let $S L_{4}(\mathbb{R})$ act in the natural way on the six-dimensional vectorspace $V=\Lambda^{2} \mathbb{R}^{4}$, namely, $g \cdot(v \wedge w)=g v \wedge g w$. Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the standard basis of \mathbb{R}^{4}, and define \langle,$\rangle on V$ by

$$
x \wedge y=\langle x, y\rangle \cdot e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4} \quad\left(\text { with } x, y \in \wedge^{2} \mathbb{R}^{4}\right)
$$

This form is symmetric because an even number of transpositions reverses the arguments:

$$
\begin{aligned}
& (x \wedge y) \wedge(z \wedge w)=-x \wedge z \wedge y \wedge w=x \wedge z \wedge w \wedge y=-z \wedge x \wedge w \wedge y \\
& \quad=-z \wedge x \wedge w \wedge y=(z \wedge w) \wedge(x \wedge y) \quad\left(\text { for } x, y, z, y \in \mathbb{R}^{4}\right)
\end{aligned}
$$

The form is invariant under the action because

$$
\begin{gathered}
\langle g \cdot(x \wedge y), g \cdot(z \wedge w)\rangle \cdot e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}=g x \wedge g y \wedge g z \wedge g w=\operatorname{det} g \cdot x \wedge y \wedge z \wedge w \\
=\operatorname{det} g \cdot\langle x \wedge y, z \wedge w\rangle \cdot e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}
\end{gathered}
$$

To check non-degeneracy, observe

$$
\left\langle e_{1} \wedge e_{2}, e_{3} \wedge e_{4}\right\rangle=1 \quad\left\langle e_{1} \wedge e_{3}, e_{2} \wedge e_{4}\right\rangle=-1 \quad\left\langle e_{1} \wedge e_{4}, e_{2} \wedge e_{3}\right\rangle=1
$$

while $\left\langle e_{i} \wedge e_{j}, e_{k} \wedge e_{\ell}\right\rangle=0$ when $\{i, j\} \cap\{k, \ell\} \neq \phi$. Thus, an orthogonal basis is

$$
\left(e_{1} \wedge e_{2}\right) \pm\left(e_{3} \wedge e_{4}\right) \quad\left(e_{1} \wedge e_{3}\right) \pm\left(e_{2} \wedge e_{4}\right) \quad\left(e_{1} \wedge e_{4}\right) \pm\left(e_{2} \wedge e_{3}\right)
$$

with \langle,$\rangle values \pm 2, \mp 2, \pm 2$.
[2.13] Why not $S U(3,1) ?^{[7]}$ One model of $S U(3,1)$ is

$$
S U(3,1)=\left\{g \in S L_{4}(\mathbb{C}): g^{*} S g=S\right\} \quad\left(\text { where } S=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & -1
\end{array}\right)\right.
$$

We could attempt the same procedure for $S U(3,1)$ as for $S U(4), S L_{2}(\mathbb{H})$, and $S U(2,2)$, by arranging a conjugate-linear map J on $\bigwedge^{2} \mathbb{C}^{4}$ and commuting with $S U(3,1)$, and hoping that the $S L_{4}(\mathbb{C})$-invariant \mathbb{C} valued form \langle,$\rangle on \Lambda^{2} \mathbb{C}^{4}$ is real-valued on J-eigenspaces. Indeed, the same diagrammatic description of J produces a conjugate-linear map J commuting with $S U(3,1)$, so $S U(3,1)$ stabilizes eigenspaces of J.
However, $J^{2}=-1$, not +1 , on \mathbb{C}^{4} :
The functionals $\left\langle-, e_{1} \wedge e_{2}\right\rangle$ and $(-1)\left(-, e_{3}\right) \wedge\left(-, e_{4}\right)$ both compute the $e_{3} \wedge e_{4}$ component, so

$$
J\left(e_{1} \wedge e_{2}\right)=-e_{3} \wedge e_{4}
$$

[7] Also, as S. Zemel notes, the maximal compact $S(U(3) \times U(1))$ of $S U(3,1)$ has dimension 9 , which is not the dimension $\frac{p(p-1}{2}+\frac{q(q-1)}{2}$ of the maximal compact $O(p) \times O(q)$ of $O(p, q)$ for any $p+q=6$.
while $\left\langle-, e_{3} \wedge e_{4}\right\rangle$ and $\left(-, e_{1}\right) \wedge\left(-, e_{2}\right)$ both compute the $e_{1} \wedge e_{2}$ component, so

$$
J\left(e_{3} \wedge e_{4}\right)=e_{1} \wedge e_{2}
$$

Similarly, $(-1)\left\langle-, e_{1} \wedge e_{3}\right\rangle$ and $(-1)\left(-, e_{2}\right) \wedge\left(-, e_{4}\right)$ both compute the $e_{2} \wedge e_{4}$ component, so

$$
J\left(e_{1} \wedge e_{3}\right)=e_{2} \wedge e_{4}
$$

while $(-1)\left\langle-, e_{2} \wedge e_{4}\right\rangle$ and $\left(-, e_{1}\right) \wedge\left(-, e_{3}\right)$ both compute the $e_{1} \wedge e_{3}$ component, giving

$$
J\left(e_{2} \wedge e_{4}\right)=-e_{1} \wedge e_{3}
$$

Functionals $\left\langle-, e_{1} \wedge e_{4}\right\rangle$ and $\left(-, e_{2}\right) \wedge\left(-, e_{3}\right)$ both compute the $e_{2} \wedge e_{3}$ component, so

$$
J\left(e_{1} \wedge e_{4}\right)=e_{3} \wedge e_{3}
$$

while $\left\langle-, e_{2} \wedge e_{3}\right\rangle$ and $(-1)\left(-, e_{1}\right) \wedge\left(-, e_{4}\right)$ both compute the $e_{1} \wedge e_{4}$ component, so

$$
J\left(e_{2} \wedge e_{3}\right)=-e_{1} \wedge e_{4}
$$

Thus, $J^{2}=-1$, not +1 , on $\bigwedge^{2} \mathbb{C}^{4}$. Thus, the only possible eigenvalues are $\pm i$.
Nevertheless, any J-eigenspace inside the \mathbb{R}-vectorspace $\bigwedge^{2} \mathbb{C}^{4}$ is stabilized by $S U(3,1)$. But the conjugatelinearity of J shows that there cannot be $\pm i$-eigenvalues in $\bigwedge^{2} \mathbb{C}^{4}:$ if $J v=i v$, then

$$
-v=J^{2} v=J(i v)=-i J v=(-i) i v=v
$$

Thus, this device has failed to produce $S U(3,1)$-stable proper \mathbb{R}-subspaces of $\bigwedge^{2} \mathbb{C}^{4}$.

3. Appendix: isomorphism classes of forms over \mathbb{C} and \mathbb{R}

For convenience, we recall a classification over \mathbb{C} and over \mathbb{R} : as elaborated below, dimension is the only invariant of non-degenerate symmetric bilinear forms over \mathbb{C}, and signature is the only invariant over \mathbb{R}.

A vector space V with a symmetric bilinear form over a field is non-degenerate when, for every $v \neq 0$ in V, there is $w \in V$ such that $\langle v, w\rangle \neq 0$.

The corresponding orthogonal group is the isometry group

$$
\left\{g \in \operatorname{Aut}_{k}(V):\langle g v, g w\rangle=\langle v, w\rangle, \text { for all } v, w \in V\right\}
$$

A basis $\left\{v_{i}\right\}$ is orthogonal when $\left\langle v_{i}, v_{j}\right\rangle=0$ for $i \neq j$.
[3.1] Non-degenerate forms over \mathbb{C} classified by dimension We claim that for a non-degenerate symmetric bilinear \mathbb{C}-valued form \langle,$\rangle on a finite-dimensional \mathbb{C}$-vectorspace V, there is an orthogonal basis v_{1}, \ldots, v_{n} such that $\left\langle v_{i}, v_{i}\right\rangle=1$ for all i.

Given $v \neq 0$ in V, when $\langle v, v\rangle \neq 0$. Replace v by $v_{1}=v / \sqrt{\langle v, v\rangle}$ with either square root, to arrange $\left\langle v_{1}, v_{1}\right\rangle=1$. When $\langle v, v\rangle=0$, use non-degeneracy to obtain w such that $\langle v, w\rangle \neq 0$. In case $\langle w, w\rangle \neq 0$, we are in the first case, and if $\langle w, w\rangle=0$, then $\langle v+w, v+w\rangle=2 \neq 0$, and again we are back to the first case.

That is, there is a vector with $\langle v, v\rangle=1$.
To complete the induction argument, show that for $\langle v, v\rangle=1$ the orthogonal complement

$$
v^{\perp}=\{w \in V:\langle v, w\rangle=0\}
$$

is non-degenerate. Indeed, given $0 \neq v^{\prime} \in v^{\perp}$, let $w \in V$ such that $\left\langle v^{\prime}, w\right\rangle \neq 0$. Retain this property while adjusting w to be in v^{\perp} by replacing it by $w-\langle w, v\rangle$.

Thus, dimension is the only isomorphism-class invariant of non-degenerate symmetric bilinear forms over \mathbb{C}, or over any algebraically closed field of characteristic not 2 . The standard model is

$$
O(n, \mathbb{C})=\left\{g \in G L_{n}(\mathbb{C}): g^{\top} g=1_{n}\right\}
$$

[3.2] Non-degenerate forms over \mathbb{R} classified by signature We claim that for non-degenerate \mathbb{R}-valued symmetric bilinear form \langle,$\rangle on a finite-dimensional \mathbb{C}$-vectorspace V, there are non-negative integers p, q and an orthogonal basis $v_{1}, \ldots, v_{p}, w_{1}, \ldots w_{q}$ such that that $\left\langle v_{i}, v_{i}\right\rangle=1$ for $1 \leq i \leq p$ and $\left\langle w_{j}, w_{j}\right\rangle=-1$ for $1 \leq j \leq q$.

This is Sylvester's law of inertia. The pair (p, q) is the signature. The standard model is

$$
O(p, q)=\left\{g \in G L_{p+q}(\mathbb{R}): g^{\top} Q g=Q\right\} \quad\left(\text { where } Q=\left(\begin{array}{cc}
1_{p} & 0 \\
0 & -1_{q}
\end{array}\right)\right)
$$

Given $v \neq 0$, when $\langle v, v\rangle \neq 0$, replacing v by $v / \sqrt{|\langle v, v\rangle|}$ gives $\langle v, v\rangle= \pm 1$. When $\langle v, v\rangle=0$, there is w such that $\langle v, w\rangle \neq 0$. In case $\langle w, w\rangle \neq 0$, we are back to the first case. When $\langle w, w\rangle=0,\langle v+w, v+w\rangle=2 \neq 0$, and again we are back to the first case.

Thus, there is v with $\langle v, v\rangle= \pm 1$.
An argument nearly identical to the complex case shows that v^{\perp} is non-degenerate, so and induction gives existence of a signature.

For uniqueness, let a totally isotropic subspace W of V be a subspace on which $\langle\rangle=$,0 , that is, $\left\langle w, w^{\prime}\right\rangle=0$ for all $w, w^{\prime} \in W$. A maximal totally isotropic subspace is also called Lagrangian.

We claim that all Lagrangian subspaces W have the same dimension. Uniqueness of signature will follow from showing this common dimension is $\min (p, q)$.

A reformulation of the definition of maximal totally isotropic is that W^{\perp} is just W itself. Thus, for W^{\prime} another maximal totally isotropic subspace, the non-degenerate \langle,$\rangle gives a non-degenerate pairing of W /\left(W \cap W^{\prime}\right)$ and $W^{\prime} /\left(W \cap W^{\prime}\right)$. A non-degenerate pairing between finite-dimensional vectorspaces gives an isomorphism of each to the dual of the other, so the dimensions are equal.

Next, given a totally isotropic subspace W, there is another totally isotropic subspace W^{\prime} such that \langle, is non-degenerate on $W+W^{\prime}$. Indeed, given $w_{1} \in W$, find w_{1}^{\prime} such that $\left\langle w_{1}, w_{1}^{\prime}\right\rangle \neq 0$. Without loss of generality, $\left\langle w_{1}^{\prime}, w_{1}^{\prime}\right\rangle=0$, since otherwise replace w_{1}^{\prime} by $w_{1}^{\prime}-\frac{1}{2}\left\langle w_{1}^{\prime}, w_{1}^{\prime}\right\rangle \cdot w_{1}$. As above, $\left(\mathbb{R} w_{1}+\mathbb{R} w_{1}^{\prime}\right)^{\perp}$ is non-degenerate, and $W \cap\left(\mathbb{R} w_{1}+\mathbb{R} w_{1}^{\prime}\right)^{\perp}$ is codimension 1 inside W. Thus, an induction chooses a basis $w_{1}^{\prime}, \ldots, w_{m}^{\prime}$ for another totally isotropic subspace W, with $\left\langle w_{i}, w_{i}^{\prime}\right\rangle=1$ for all i, and $\left\langle w_{i}, w_{j}^{\prime}\right\rangle=0$ for $i \neq j$.

Thus, given a Lagrangian subspace W, there are corresponding $w_{1}, w_{1}^{\prime}, \ldots w_{m}, w_{m}^{\prime}$, and the collection $w_{i} \pm w_{i}^{\prime}$ gives an orthogonal basis for the span of $W+W^{\prime}$ with m positive and m negative values. Thus, min $(p, q) \geq m$.

On the other hand, taking $p \geq q$ and orthogonal basis $v_{1}, \ldots, v_{p}, w_{1}, \ldots, w_{q}$ as above, $v_{1}+w_{1}, \ldots, v_{q}+w_{q}$ spans a totally isotropic subspace. This gives the opposite inequality, proving that $\min (p, q)$ is the (common) dimension of Lagrangian subspaces.

[^0]: [1] Thanks to Shaul Zemel for some corrections and suggestions, belatedly implemented.

[^1]: [4] It is not necessary to choose a basis for \mathbb{C}^{4}, only to choose a basis for $\Lambda^{4} \mathbb{C}^{4}$.

[^2]: [6] One can also observe from this expression that the bilinear form is a sum of two hyperbolic planes, thus giving signature $(2,2)$ without further computation.

