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We will describe well-known 2-to-1 homomorphisms

SL2(C) −→ SO(3,C)

SL2(C)× SL2(C) −→ SO(4,C)

Sp2(C) −→ SO(5,C)

SL4(C) −→ SO(6,C)

and well-known 2-to-1 homomorphisms to real special orthogonal groups SO(p, q) with signatures (p, q):

SO(p, q) = {g ∈ SLp+q(R) : g>Qg = Q} (where Q =

(
1p 0
0 −1q

)
)



SU(2) −→ SO(3)

SL2(R) −→ SO(2, 1)

SU(2)× SU(2) −→ SO(4)

SL2(C) −→ SO(3, 1)

SL2(R)× SL2(R) −→ SO(2, 2)

Sp∗(2, 0) −→ SO(5)

Sp∗(1, 1) −→ SO(4, 1)

Sp2(R) −→ SO(3, 2)

SU(4) −→ SO(6)

SL2(H) −→ SO(5, 1)

SU(2, 2) −→ SO(4, 2)

SL4(R) −→ SO(3, 3)

Thus, these are small examples of spin groups, two-fold covers of special orthogonal groups.

All these constructions are standard, in principle well-known, but often obscured or left as exercises in larger,
systematic treatments of Lie theory or quadratic forms or Clifford algebras or Spin groups. [1]

[1] Thanks to Shaul Zemel for some corrections and suggestions, belatedly implemented.
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1. Over C

[1.1] SL2(C)→ SO(3,C) The space V of 2-by-2 complex matrices with trace 0, has symmetric bilinear
form 〈x, y〉 = tr(xy). The action of SL2(C) on V by g · x = gxg−1 preserves 〈, 〉:

〈g · x, g · y〉 = tr(gxg−1 · gyg−1) = tr(g · xy · g−1) = tr(xy) = 〈x, y〉

An orthogonal basis is (
1 0
0 −1

) (
0 1
1 0

) (
0 1
−1 0

)
with 〈, 〉 values 2, 2, −2, demonstrating non-degeneracy. Thus, SL2(C) maps to a copy of SO(3,C). The
kernel is just {±1}.

[1.2] SL2(C) × SL2(C) → SO(4,C) Let V = M2(C) be 2-by-2 complex matrices, with (g, h) ∈
SL2(C)× SL2(C) acting by (g, h) · x = gxh−1. Give V the bilinear form

〈x, y〉 = tr(x · wy>w−1) (where w =

(
0 −1
1 0

)
)

It is symmetric because trace is invariant under transpose, and because w−1 = −w. For g ∈ SL2(C),
g−1 = wg>w−1, and the pairing is invariant under the group action:

tr(gxh−1 · w(gyh−1)>w−1) = tr(gxh−1 · w(h−1)>w−1 · wy>w−1 · wg>w−1)

= tr(gxh−1 · h · wy>w−1 · g−1) = tr(g · xwy>w−1 · g−1) = tr(xwy>w−1)

Computing

〈
(
a b
c d

)
,

(
a′ b′

c′ d′

)
〉 = tr

((
a b
c d

)(
d′ −b′
−c′ a′

))
= tr

(
ad′ − bc′ ∗
∗ da′ − cb′

)
= ad′ − bc′ − cb′ + da′

an orthogonal basis is readily found: for example, [2](
1 0
0 1

) (
1 0
0 −1

) (
0 1
−1 0

) (
0 1
1 0

)
with 〈, 〉 values 2,−2, 2,−2, demonstrating non-degeneracy. Thus, SL2(C) × SL2(C) maps to a copy of
SO(4,C).

[1.3] Sp2(C)→ SO(5,C) The symplectic group [3] is

Sp2(C) = {g ∈ GL4(C) : g>Jg = J} (with J =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)

[2] One can also observe from this expression that the bilinear form is a sum of two hyperbolic planes, thus giving

signature (2, 2) without further computation.

[3] In some conventions, the subscript is made to be the size, so what we call Sp2 here might be called Sp4 elsewhere.
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Write gσ = Jg>J−1, so the condition can be rewritten as gσg = 12. The C-vectorspace V will be a subspace
of the space M4(C) of 4-by-4 complex matrices. Let 〈x, y〉 = tr(xy) on M4(C). Let Sp2(C) act on M4(C) by
g · x = gxgσ. This action respects 〈, 〉:

〈g · x, g · y〉 = tr(gxgσ · gygσ) = tr(g · xy · g−1) = tr(xy) = 〈x, y〉

Since 14 = gσg = g · 14 · gσ, the action has fixed-point 14, and the subspace

V = {x ∈M4(C) : xσ = x and 〈x, 14〉 = 0}

is stable under the action. In 2-by-2 blocks, the condition xσ = x is(
a b
c d

)
=

(
0 −1
1 0

)(
a b
c d

)>(
0 1
−1 0

)
=

(
0 −1
1 0

)(
a> c>

b> d>

)(
0 1
−1 0

)
=

(
d> −b>
−c> a>

)
Thus, d = a> and b, c are skew-symmetric. The condition 〈x, 14〉 = 0 requires tr(a) = 0. Thus, dimC V = 5.
To check that 〈, 〉 is non-degenerate on V , identify an orthogonal basis, such as

1 0
0 −1

1 0
0 −1




0 1
1 0

0 1
1 0




0 1
−1 0

0 −1
1 0




0 1
−1 0

0 1
−1 0




0 1
−1 0

0 −1
1 0


where empty positions are 0.

[1.4] SL4(C) → SO(6,C) Let SL4(C) act in the natural way on the six-dimensional vectorspace

V =
∧2C4, namely, g · (v ∧w) = gv ∧ gw. Let e1, e2, e3, e4 be the standard basis of C4, and define [4] 〈, 〉 on

V by
x ∧ y = 〈x, y〉 · e1 ∧ e2 ∧ e3 ∧ e4 (with x, y ∈

∧2C4)

This form is symmetric because an even number of transpositions reverses the arguments:

(x ∧ y) ∧ (z ∧ w) = −x ∧ z ∧ y ∧ w = x ∧ z ∧ w ∧ y = −z ∧ x ∧ w ∧ y

= −z ∧ x ∧ w ∧ y = (z ∧ w) ∧ (x ∧ y) (for x, y, z, y ∈ C4)

The form is invariant under the action because〈
g · (x ∧ y), g · (z ∧ w)

〉
· e1 ∧ e2 ∧ e3 ∧ e4 = gx ∧ gy ∧ gz ∧ gw = det g · x ∧ y ∧ z ∧ w

= det g ·
〈
x ∧ y, z ∧ w

〉
· e1 ∧ e2 ∧ e3 ∧ e4

To check non-degeneracy, observe〈
e1 ∧ e2, e3 ∧ e4

〉
= 1

〈
e1 ∧ e3, e2 ∧ e4

〉
= −1

〈
e1 ∧ e4, e2 ∧ e3

〉
= 1

while 〈ei ∧ ej , ek ∧ e`〉 = 0 when {i, j} ∩ {k, `} 6= φ. Thus, an orthogonal basis is

(e1 ∧ e2)± (e3 ∧ e4) (e1 ∧ e3)± (e2 ∧ e4) (e1 ∧ e4)± (e2 ∧ e3)

with 〈, 〉 values ±2,∓2,±2.

[4] It is not necessary to choose a basis for C4, only to choose a basis for
∧4C4.
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2. Over R
Each homomorphism of complex groups gives rise to several homomorphisms of real groups.

[2.1] SU(2)→ SO(3) The standard special unitary group SU(2) is

SU(2) = {g ∈ SL2(C) : g∗g = 12} (where g∗ is g-conjugate-transpose)

The space V of 2-by-2 skew-hermitian complex matrices with trace 0 has symmetric real-valued real-bilinear
form 〈x, y〉 = Re(tr(xy)). An orthogonal basis is(

i 0
0 −i

) (
0 1
−1 0

) (
0 i
i 0

)
Each has value −2 for 〈, 〉, so the signature of 〈, 〉 on V is (0, 3). The action of SU(2) on V by g · x = gxg∗

preserves 〈, 〉, because
tr(gxg∗ · gyg∗) = tr(g · xy · g−1) = tr(xy)

Thus, SU(2) maps to a copy of SO(3). The kernel is just {±1}.

[2.2] SL2(R) → SO(2, 1) The space V of 2-by-2 real matrices with trace 0, with symmetric bilinear
form 〈x, y〉 = tr(xy), has orthogonal basis(

1 0
0 −1

) (
0 1
1 0

) (
0 1
−1 0

)
The values of 〈, 〉 are respectively 2, 2, −2, giving signature (2, 1). The action of SL2(R) on V by g ·x = gxg−1

preserves 〈, 〉:
〈g · x, g · y〉 = tr(gxg−1 · gyg−1) = tr(g · xy · g−1) = tr(xy) = 〈x, y〉

Thus, SL2(R) maps to a copy of SO(2, 1). The kernel is just {±1}.

[2.3] SU(2)× SU(2)→ SO(4) Let [5]

V = {complex 2-by-2 matrices x : x∗ = wx>w−1} (with w =

(
0 −1
1 0

)
)

= {2-by-2 complex matrices of the form

(
α β
−β α

)
with α, β ∈ C}

Let (g, h) ∈ SU(2)× SU(2) act by (g, h) · x = gxh∗. Give V the bilinear form

〈x, y〉 = Re(tr(xy∗))

[5] It is not a coincidence that the vectorspace is a standard model of the Hamiltonian quaternions:

a+ bi+ cj + dk −→
(
a+ bi c+ di

c− di a− bi

)
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For g ∈ SU(2) ⊂ SL2(R), g−1 = wg>w−1, giving the stabilization of V by the group action:

w(gxh∗)>w−1 = w(h∗)>w−1 · wx>w−1 · wg>w−1 = (h∗)−1x∗g−1 = hx∗g∗ = (gxh∗)∗

The pairing is invariant under the group action:

tr(gxh−1 · w(gyh−1)>w−1) = tr(gxh−1 · w(h−1)>w−1 · wy>w−1 · wg>w−1)

= tr(gxh−1 · h · wy>w−1 · g−1) = tr(g · xwy>w−1 · g−1) = tr(xwy>w−1)

Computing

〈
(

α β
−β α

)
,

(
α β
−β α

)
〉 = tr

((
α β
−β α

)(
α −β
β α

))
= tr

(
αα+ ββ ∗
∗ αα+ ββ

)
an orthogonal basis is readily found: for example,(

1 0
0 1

) (
i 0
0 −i

) (
0 i
i 0

) (
0 1
−1 0

)
with 〈, 〉 values 2, 2, 2, 2.

[2.4] SL2(C)→ SO(3, 1) With

V = {complex 2-by-2 matrices x : x∗ = wxw−1} (with w =

(
0 −1
1 0

)
)

= {2-by-2 complex matrices of the form

(
α ib
ic α

)
with α ∈ C, b, c ∈ R}

use the R-bilinear R-valued form 〈x, y〉 = Re(tr(xy)), where the overline denotes entry-wise complex
conjugation. An orthogonal basis is(

1 0
0 1

) (
i 0
0 −i

) (
0 i
i 0

) (
0 i
−i 0

)
with 〈, 〉 values 2, 2, 2,−2. Thus, the signature of 〈, 〉 is 3, 1. The action g · x = gxg−1 preserves the bilinear
form 〈x, y〉 = Re(tr(xy)) on the larger R-vectorspace of all complex 2-by-2 matrices, since

tr(gxg−1 · gyg−1) = tr(gxg−1 · gyg−1) = tr(g · xy · g−1) = tr(xy)

To check that SL2(C) stabilizes V , recall that g−1 = wg>w−1 for g ∈ SL2(C). For y ∈ V , by design,

(gyg−1)∗ = (g−1)∗y∗g∗ = (g>)−1 · wyw−1 · g> = w(g>)>w−1 · wyw−1 · wg−1w−1

= wgw−1 · wyw−1 · w(g−1)w−1 = w(gyg−1)w−1

so SL2(C) stabilizes V , and maps to a copy of SO(3, 1). The kernel is just {±1}.

[2.5] SL2(R) × SL2(R) → SO(2, 2) Let V be 2-by-2 real matrices, with (g, h) ∈ SL2(R) × SL2(R)
acting by (g, h) · x = gxh−1. Give V the bilinear form

〈x, y〉 = tr(x · wy>w−1) (where w =

(
0 −1
1 0

)
)
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It is symmetric because trace is invariant under transpose, and because w−1 = −w. For g ∈ SL2(R),
g−1 = wg>w−1, and the pairing is invariant under the group action:

tr(gxh−1 · w(gyh−1)>w−1) = tr(gxh−1 · w(h−1)>w−1 · wy>w−1 · wg>w−1)

= tr(gxh−1 · h · wy>w−1 · g−1) = tr(g · xwy>w−1 · g−1) = tr(xwy>w−1)

Computing

〈
(
a b
c d

)
,

(
a′ b′

c′ d′

)
〉 = tr

((
a b
c d

)(
d′ −b′
−c′ a′

))
= tr

(
ad′ − bc′ ∗
∗ da′ − cb′

)
= ad′ − bc′ − cb′ + da′

an orthogonal basis is readily found: for example, [6](
1 0
0 1

) (
1 0
0 −1

) (
0 1
−1 0

) (
0 1
1 0

)
with 〈, 〉 values 2,−2, 2,−2, giving the desired signature.

[2.6] Sp∗(2, 0)→ SO(5) Let H be the Hamiltonian quaternions. One model of G = Sp∗2 = Sp∗(2, 0) is

Sp∗(2, 0) = {g ∈ GL2(H) : g∗g = 12}

where g∗ = g> with entry-wise quaternion conjugation. The R-vectorspace V will be a subspace of the space
M2(H) of 2-by-2 matrices with entries in H. Let λ be the reduced trace

λ

(
α β
γ δ

)
= 1

2 · (α+ α+ δ + δ)

and on M2(H) let 〈x, y〉 = λ(xy). Let G act on M2(H) by g · x = gxg∗. This action respects 〈, 〉:

〈g · x, g · y〉 = λ(gxg∗ · gyg∗) = λ(g · xy · g−1) = λ(xy)

Thus,

V = {y ∈M2(H) : y∗ = y and 〈y, 12〉 = 0} = {
(
a β
β −a

)
: a ∈ R, β ∈ H}

is stable under this action, and dimR V = 5. An orthogonal basis is(
1 0
0 1

) (
0 1
1 0

) (
0 i
−i 0

) (
0 j
−j 0

) (
0 k
−k 0

)
with values 2, 2, 2, 2, 2, giving the desired signature.

[2.7] Sp∗(1, 1)→ SO(4, 1) One model of G = Sp∗(1, 1) is

Sp∗(1, 1) = {g ∈ GL2(H) : g∗Sg = S} (with S =

(
0 1
1 0

)
)

[6] One can also observe from this expression that the bilinear form is a sum of two hyperbolic planes, thus giving

signature (2, 2) without further computation.
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where g∗ = g> with entry-wise quaternion conjugation. Let gσ = Sg∗S−1, so the defining condition is
gσg = 12. The R-vectorspace V will be a subspace of the space M2(H) of 2-by-2 matrices with entries in H.
Let 〈x, y〉 = λ(xy). Let G act on M2(H) by g · x = gxgσ. This action respects 〈, 〉:

〈g · x, g · y〉 = λ(gxgσ · gygσ) = λ(g · xy · gσ) = λ(g · xy · g−1) = λ(xy) = 〈x, y〉

The R-vectorspace is

V = {x ∈M2(H) : xσ = x and 〈x, S〉 = 0} = {
(

α b
−b α

)
: α ∈ H, b ∈ R}

and is stable under the action, and dimR V = 5. An orthogonal basis is(
1 0
0 1

) (
i 0
0 −i

) (
j 0
0 −j

) (
k 0
0 −k

) (
0 1
−1 0

)
with values 2,−2,−2,−2,−2, giving the desired signature.

[2.8] Sp2(R)→ SO(3, 2) The symplectic group is

Sp2(R) = {g ∈ GL4(R) : g>Jg = J} (with J =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)

Write gσ = Jg>J−1, so the condition can be rewritten as gσg = 12. The R-vectorspace V will be a subspace
of the space M4(R) of 4-by-4 real matrices. Let 〈x, y〉 = tr(xy). Let Sp2(R) act on M4(R) by g · x = gxgσ.
This action respects 〈, 〉:

〈g · x, g · y〉 = tr(gxgσ · gygσ) = tr(g · xy · g−1) = tr(xy) = 〈x, y〉

Since 14 = gσg = g 14 g
σ, the action has fixed-point 14, and the subspace

V = {x ∈M4(R) : xσ = x and 〈x, 14〉 = 0}

is stable under the action. In 2-by-2 blocks, the condition xσ = x is(
a b
c d

)
=

(
0 −1
1 0

)(
a b
c d

)>(
0 1
−1 0

)
=

(
0 −1
1 0

)(
a> c>

b> d>

)(
0 1
−1 0

)
=

(
d> −b>
−c> a>

)
Thus, d = a> and b, c are skew-symmetric. The condition 〈x, 14〉 = 0 requires that tr(a) = 0. Thus,
dimR V = 5. The easily observed orthogonal basis

1 0
0 −1

1 0
0 −1




0 1
1 0

0 1
1 0




0 1
−1 0

0 −1
1 0




0 1
−1 0

0 1
−1 0




0 1
−1 0

0 −1
1 0


has 〈, 〉 values 4, 4,−4,−4, 4, giving signature 3, 2.

[2.9] SU(4)→ SO(6) Let e1, e2, e3, e4 be the standard basis for C4. Give
∧2C4 the C-valued SL4(C)-

invariant symmetric form〈
x ∧ y, z ∧ w

〉
· e1 ∧ e2 ∧ e3 ∧ e4 = x ∧ y ∧ z ∧ w (for x, y, z, w ∈ C4)
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A six-dimensional R-subspace of
∧2C4 stable under SU(4) will be identified as the fixed vectors of an

C-conjugate-linear isomorphism J : C4 → C4 commuting with SU(4), on which 〈, 〉 takes real values.

To make such J , use the positive-definite hermitian form (x, y) = y∗x on C4 invariant under SU(4),

giving a C-conjugate-linear isomorphism C4 → (C4)∗ by x → (y → (y, x)), which induces
∧2C4 →∧2

(C4∗) ≈ (
∧2C4)∗. At the same time, the non-degenerate form 〈, 〉 on

∧2C4 gives a C-linear isomorphism∧2C4 →
∧2C4 by v → (w → 〈w, v〉). Combining these,

∧2C4
〈,〉 //

J

%%
(
∧2C4)∗

≈ // ∧2
(C4∗)

∧2C4
(,)∧(,)oo

with the right-to-left arrow a C-conjugate-linear isomorphism, gives a C-conjugate-linear isomorphism J of∧2C4 to itself. Since SU(4) respects both 〈, 〉 and (, ), the map J commutes with SU(4). This is noted
element-wise below.

We can track basis elements ek∧e` under J . Since functionals 〈−, e1∧e2〉 and (−, e3)∧(−, e4) both compute
the e3 ∧ e4 component of

∑
k<` ck`ek ∧ e`, we have J(e1 ∧ e2) = e3 ∧ e4. That J commutes with the action

of g ∈ SU(4) can be made explicit:

g · (e1 ∧ e2) → 〈−, g(e1 ∧ e2)〉 = 〈g−1(−), e1 ∧ e2〉 = g−1 ◦ 〈−, e1 ∧ e2〉 = g−1 ◦ (−, e3) ∧ (−, e4)

= (g−1(−), e3) ∧ (g−1(−), e4) = (−, ge3) ∧ (−, ge4) → ge3 ∧ ge4 = g · (e3 ∧ e4) = g · J(e1 ∧ e2)

A similar computation gives J(e3 ∧ e4) = e1 ∧ e2. Since (, ) ∧ (, ) is conjugate-linear,

ie1 ∧ e2 → i〈−, e1 ∧ e2〉 → i(−, e3) ∧ (−, e4) = (−, (−i)e3) ∧ (−, e4) → −ie3 ∧ e4

and J(ie3 ∧ e4) = −ie1 ∧ e2. Thus, on the real four-dimensional space with basis

e1 ∧ e2 e3 ∧ e4 ie1 ∧ e2 ie3 ∧ e4

the map J is (
0 1
1 0

)
⊕
(

0 −1
−1 0

)
Thus, J2 = 1 on this subspace, and this subspace has ±1 eigenspaces of equal dimension. Similarly,
functionals (−1)〈−, e1 ∧ e3〉 and (−, e2)∧ (−, e4) both compute the e2 ∧ e4 component, and (−1)〈−, e2 ∧ e4〉
and (−, e1) ∧ (−, e3) both compute the e1 ∧ e3 component, so, noting the signs,

J(e1 ∧ e3) = −e2 ∧ e4 J(ie1 ∧ e3) = ie2 ∧ e4 J(e2 ∧ e4) = −e1 ∧ e3 J(ie2 ∧ e4) = ie1 ∧ e3

Thus, J2 = 1 on this subspace, and this subspace has ±1 eigenspaces of equal dimension. Functionals
〈−, e1 ∧ e4〉 and (−, e2) ∧ (−, e3) both compute the e2 ∧ e3 component, and symmetrically, so

J(e1 ∧ e4) = e2 ∧ e3 J(ie1 ∧ e4) = −ie2 ∧ e3 J(e2 ∧ e3) = e1 ∧ e4 J(ie2 ∧ e3) = −ie1 ∧ e4

Again, J2 = 1 on this subspace, and this subspace has ±1 eigenspaces of equal dimension. An orthogonal
basis for the +1-eigenspace for J is

e1∧e2+e3∧e4 ie1∧e2−ie3∧e4 e1∧e3−e2∧e3 ie1∧e3+ie2∧e3 e1∧e4+e2∧e3 ie1∧e4−ie2∧e3

with 〈, 〉 values 2, 2, 2, 2, 2, 2.
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[2.10] SL2(H)→ SO(5, 1) Imbed H ⊂M2(C) by

a+ bi+ cj + dk −→
(
a+ bi c+ dj
−c+ di a− bi

)
(with a, b, c, d ∈ R)

Note the characterization

H = {x ∈M2(C) : x = wxw−1} (with w =

(
0 −1
1 0

)
)

Thus, identify

SL2(H) = {g ∈ SL4(C) : g = WgW−1} (where W =


0 −1
1 0

0 −1
1 0

)

where g → g is entry-wise conjugation. Let e1, e2, e3, e4 be the standard basis for C4, and give
∧2C4 the

C-valued SL4(C)-invariant symmetric form〈
x ∧ y, z ∧ w

〉
· e1 ∧ e2 ∧ e3 ∧ e4 = x ∧ y ∧ z ∧ w (for x, y, z, w ∈ C4)

A six-dimensional R-subspace of
∧2C4 stable under SU(4) will be identified as the fixed vectors of an

C-conjugate-linear isomorphism J : C4 → C4 commuting with SL2(H), on which 〈, 〉 takes real values.

Define conjugate-linear J :
∧2C4 →

∧2C4 by

J(x ∧ y) = Wx ∧Wy

By design, J commutes with the action of g ∈ SL2(H):

g · J(x ∧ y) = gWx ∧ gWy = WW−1gWx ∧WW−1gWy = Wgx ∧Wgy = J(g · x ∧ y)

The effect of J on ek ∧ e` and iek ∧ e` is readily computed, since We1 = e2, We2 = −e1, We3 = e4, and
We4 = −e3:

J(e1 ∧ e2) = −e2 ∧ e1 = e1 ∧ e2 J(e3 ∧ e4) = −e4 ∧ e3 = e3 ∧ e4
while

J(e1 ∧ e3) = e2 ∧ e4 J(e2 ∧ e4) = −e1 ∧ −e3 = e1 ∧ e3
and

J(e1 ∧ e4) = e2 ∧ −e3 = −e2 ∧ e3 J(e2 ∧ e3) = −e1 ∧ e4
Visibly, J2 = 1 on these vectors. Since J is conjugate-linear, we have J2 = 1. An orthogonal basis for +1
eigenvectors is

e1∧e2+e3∧e4 e1∧e2−e3∧e4 e1∧e3+e2∧e4 ie1∧e3−ie2∧e4 e1∧e4−e2∧e3 ie1∧e4+ie2∧e3

with 〈, 〉 values 2,−2,−2,−2,−2,−2.

[2.11] SU(2, 2)→ SO(4, 2) One model of SU(2, 2) is

SU(2, 2) = {g ∈ SL4(C) : g∗Sg = S} (where S =


1

1
−1

−1

)
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Again, with e1, e2, e3, e4 the standard basis for C4, give
∧2C4 the C-valued symmetric form〈

x ∧ y, z ∧ w
〉
· e1 ∧ e2 ∧ e3 ∧ e4 = x ∧ y ∧ z ∧ w (for x, y, z, w ∈ C4)

A six-dimensional R-subspace of
∧2C4 stable under SU(2, 2) will be identified as the fixed vectors of an

C-conjugate-linear isomorphism J : C4 → C4 commuting with SU(2, 2), and on which 〈, 〉 takes real values.

Use the non-degenerate hermitian form
(x, y) = y∗Sx

on C4 invariant under SU(2, 2), giving C-conjugate-linear isomorphism C4 → (C4)∗ by x → (y → (y, x)),

which induces
∧2C4 →

∧2
(C4∗) ≈ (

∧2C4)∗. At the same time, the non-degenerate form 〈, 〉 on
∧2C4 gives

a C-linear isomorphism
∧2C4 →

∧2C4 by v → (w → 〈w, v〉). Combining these,

∧2C4
〈,〉 //

J

%%
(
∧2C4)∗

≈ // ∧2
(C4∗)

∧2C4
(,)∧(,)oo

with the right-to-left arrow a C-conjugate-linear isomorphism, gives a C-conjugate-linear isomorphism J of∧2C4 to itself. Since SU(2) respects both 〈, 〉 and (, ), the map J commutes with SU(2). This is noted
element-wise below. It is important to check that J2 = 1.

Tracking ek ∧ e` and iek ∧ e` under J is nearly identical to that for SU(4), with important sign flips.

Functionals 〈−, e1∧e2〉 and (−, e3)∧(−, e4) both compute the e3∧e4 component of
∑
k<` ck`ek∧e`. The two

sign flips from (e3, e3) = −1 and (e4, e4) = −1 cancel. Thus, J(e1∧e2) = e3∧e4. A similar computation gives
J(e3∧e4) = e1∧e2. Since (, )∧(, ) is conjugate-linear, J(ie1∧e2) = −ie3∧e4 and and J(ie3∧e4) = −ie1∧e2.
Thus, on the real four-dimensional space with basis

e1 ∧ e2 e3 ∧ e4 ie1 ∧ e2 ie3 ∧ e4

the map J is (
0 1
1 0

)
⊕
(

0 −1
−1 0

)
Thus, J2 = 1 on this subspace, and this subspace has ±1 eigenspaces of equal dimension. This part is
identical to that for SU(2).

Functionals (−1)〈−, e1∧e3〉 and (−1)(−, e2)∧(−, e4) both compute the e2∧e4 component, with sign flip due
to (e4, e4) = −1. Similarly, (−1)〈−, e2 ∧ e4〉 and (−1)(−, e1) ∧ (−, e3) both compute the e1 ∧ e3 component,
with (e3, e3) = −1. Noting the signs,

J(e1 ∧ e3) = e2 ∧ e4 J(ie1 ∧ e3) = −ie2 ∧ e4 J(e2 ∧ e4) = e1 ∧ e3 J(ie2 ∧ e4) = −ie1 ∧ e3

Thus, J2 = 1 on this subspace, with ±1 eigenspaces of equal dimension. Functionals 〈−, e1 ∧ e4〉 and
(−1)(−, e2) ∧ (−, e3) both compute the e2 ∧ e3 component, so

J(e1 ∧ e4) = −e2 ∧ e3 J(ie1 ∧ e4) = −ie2 ∧ e3

Functionals 〈−, e2 ∧ e3〉 and (−1)(−, e1) ∧ (−, e4) both compute the e1 ∧ e4 component, so

J(e2 ∧ e3) = −e1 ∧ e4 J(ie2 ∧ e3) = ie1 ∧ e4

Again, J2 = 1 on this subspace, with ±1 eigenspaces of equal dimension. An orthogonal basis for the
+1-eigenspace for J is

e1∧e2+e3∧e4 ie1∧e2−ie3∧e4 e1∧e3+e2∧e3 ie1∧e3−ie2∧e3 e1∧e4−e2∧e3 ie1∧e4+ie2∧e3

10
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The last four have sign flips in comparison to the analogous basis for SU(4), giving 〈, 〉 values
2, 2,−2,−2,−2,−2.

[2.12] SL4(R) → SO(3, 3) This is just the obvious real form of the isogeny for SL4(C) above. Let

SL4(R) act in the natural way on the six-dimensional vectorspace V =
∧2R4, namely, g · (v ∧w) = gv ∧ gw.

Let e1, e2, e3, e4 be the standard basis of R4, and define 〈, 〉 on V by

x ∧ y = 〈x, y〉 · e1 ∧ e2 ∧ e3 ∧ e4 (with x, y ∈
∧2R4)

This form is symmetric because an even number of transpositions reverses the arguments:

(x ∧ y) ∧ (z ∧ w) = −x ∧ z ∧ y ∧ w = x ∧ z ∧ w ∧ y = −z ∧ x ∧ w ∧ y

= −z ∧ x ∧ w ∧ y = (z ∧ w) ∧ (x ∧ y) (for x, y, z, y ∈ R4)

The form is invariant under the action because〈
g · (x ∧ y), g · (z ∧ w)

〉
· e1 ∧ e2 ∧ e3 ∧ e4 = gx ∧ gy ∧ gz ∧ gw = det g · x ∧ y ∧ z ∧ w

= det g ·
〈
x ∧ y, z ∧ w

〉
· e1 ∧ e2 ∧ e3 ∧ e4

To check non-degeneracy, observe〈
e1 ∧ e2, e3 ∧ e4

〉
= 1

〈
e1 ∧ e3, e2 ∧ e4

〉
= −1

〈
e1 ∧ e4, e2 ∧ e3

〉
= 1

while 〈ei ∧ ej , ek ∧ e`〉 = 0 when {i, j} ∩ {k, `} 6= φ. Thus, an orthogonal basis is

(e1 ∧ e2)± (e3 ∧ e4) (e1 ∧ e3)± (e2 ∧ e4) (e1 ∧ e4)± (e2 ∧ e3)

with 〈, 〉 values ±2,∓2,±2.

[2.13] Why not SU(3, 1)? [7] One model of SU(3, 1) is

SU(3, 1) = {g ∈ SL4(C) : g∗Sg = S} (where S =


1

1
1
−1

)

We could attempt the same procedure for SU(3, 1) as for SU(4), SL2(H), and SU(2, 2), by arranging a

conjugate-linear map J on
∧2C4 and commuting with SU(3, 1), and hoping that the SL4(C)-invariant C-

valued form 〈, 〉 on
∧2C4 is real-valued on J-eigenspaces. Indeed, the same diagrammatic description of J

produces a conjugate-linear map J commuting with SU(3, 1), so SU(3, 1) stabilizes eigenspaces of J .

However, J2 = −1, not +1, on C4:

The functionals 〈−, e1 ∧ e2〉 and (−1)(−, e3) ∧ (−, e4) both compute the e3 ∧ e4 component, so

J(e1 ∧ e2) = −e3 ∧ e4

[7] Also, as S. Zemel notes, the maximal compact S(U(3) × U(1)) of SU(3, 1) has dimension 9, which is not the

dimension
p(p−1

2 +
q(q−1)

2 of the maximal compact O(p)×O(q) of O(p, q) for any p+ q = 6.

11
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while 〈−, e3 ∧ e4〉 and (−, e1) ∧ (−, e2) both compute the e1 ∧ e2 component, so

J(e3 ∧ e4) = e1 ∧ e2

Similarly, (−1)〈−, e1 ∧ e3〉 and (−1)(−, e2) ∧ (−, e4) both compute the e2 ∧ e4 component, so

J(e1 ∧ e3) = e2 ∧ e4

while (−1)〈−, e2 ∧ e4〉 and (−, e1) ∧ (−, e3) both compute the e1 ∧ e3 component, giving

J(e2 ∧ e4) = −e1 ∧ e3

Functionals 〈−, e1 ∧ e4〉 and (−, e2) ∧ (−, e3) both compute the e2 ∧ e3 component, so

J(e1 ∧ e4) = e3 ∧ e3

while 〈−, e2 ∧ e3〉 and (−1)(−, e1) ∧ (−, e4) both compute the e1 ∧ e4 component, so

J(e2 ∧ e3) = −e1 ∧ e4

Thus, J2 = −1, not +1, on
∧2C4. Thus, the only possible eigenvalues are ±i.

Nevertheless, any J-eigenspace inside the R-vectorspace
∧2C4 is stabilized by SU(3, 1). But the conjugate-

linearity of J shows that there cannot be ±i-eigenvalues in
∧2C4: if Jv = iv, then

−v = J2v = J(iv) = −iJv = (−i)iv = v

Thus, this device has failed to produce SU(3, 1)-stable proper R-subspaces of
∧2C4.
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3. Appendix: isomorphism classes of forms over C and R
For convenience, we recall a classification over C and over R: as elaborated below, dimension is the only
invariant of non-degenerate symmetric bilinear forms over C, and signature is the only invariant over R.

A vector space V with a symmetric bilinear form over a field is non-degenerate when, for every v 6= 0 in V ,
there is w ∈ V such that 〈v, w〉 6= 0.

The corresponding orthogonal group is the isometry group

{g ∈ Autk(V ) : 〈gv, gw〉 = 〈v, w〉, for all v, w ∈ V }

A basis {vi} is orthogonal when 〈vi, vj〉 = 0 for i 6= j.

[3.1] Non-degenerate forms over C classified by dimension We claim that for a non-degenerate
symmetric bilinear C-valued form 〈, 〉 on a finite-dimensional C-vectorspace V , there is an orthogonal basis
v1, . . . , vn such that 〈vi, vi〉 = 1 for all i.

Given v 6= 0 in V , when 〈v, v〉 6= 0. Replace v by v1 = v/
√
〈v, v〉 with either square root, to arrange

〈v1, v1〉 = 1. When 〈v, v〉 = 0, use non-degeneracy to obtain w such that 〈v, w〉 6= 0. In case 〈w,w〉 6= 0, we
are in the first case, and if 〈w,w〉 = 0, then 〈v + w, v + w〉 = 2 6= 0, and again we are back to the first case.

That is, there is a vector with 〈v, v〉 = 1.

To complete the induction argument, show that for 〈v, v〉 = 1 the orthogonal complement

v⊥ = {w ∈ V : 〈v, w〉 = 0}

is non-degenerate. Indeed, given 0 6= v′ ∈ v⊥, let w ∈ V such that 〈v′, w〉 6= 0. Retain this property while
adjusting w to be in v⊥ by replacing it by w − 〈w, v〉. ///

Thus, dimension is the only isomorphism-class invariant of non-degenerate symmetric bilinear forms over C,
or over any algebraically closed field of characteristic not 2. The standard model is

O(n,C) = {g ∈ GLn(C) : g>g = 1n}

[3.2] Non-degenerate forms over R classified by signature We claim that for non-degenerate R-valued
symmetric bilinear form 〈, 〉 on a finite-dimensional C-vectorspace V , there are non-negative integers p, q and
an orthogonal basis v1, . . . , vp, w1, . . . wq such that that 〈vi, vi〉 = 1 for 1 ≤ i ≤ p and 〈wj , wj〉 = −1 for
1 ≤ j ≤ q.

This is Sylvester’s law of inertia. The pair (p, q) is the signature. The standard model is

O(p, q) = {g ∈ GLp+q(R) : g>Qg = Q} (where Q =

(
1p 0
0 −1q

)
)

Given v 6= 0, when 〈v, v〉 6= 0, replacing v by v/
√
|〈v, v〉| gives 〈v, v〉 = ±1. When 〈v, v〉 = 0, there is w such

that 〈v, w〉 6= 0. In case 〈w,w〉 6= 0, we are back to the first case. When 〈w,w〉 = 0, 〈v + w, v + w〉 = 2 6= 0,
and again we are back to the first case.

Thus, there is v with 〈v, v〉 = ±1.

An argument nearly identical to the complex case shows that v⊥ is non-degenerate, so and induction gives
existence of a signature.
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For uniqueness, let a totally isotropic subspace W of V be a subspace on which 〈, 〉 = 0, that is, 〈w,w′〉 = 0
for all w,w′ ∈W . A maximal totally isotropic subspace is also called Lagrangian.

We claim that all Lagrangian subspaces W have the same dimension. Uniqueness of signature will follow
from showing this common dimension is min (p, q).

A reformulation of the definition of maximal totally isotropic is thatW⊥ is justW itself. Thus, forW ′ another
maximal totally isotropic subspace, the non-degenerate 〈, 〉 gives a non-degenerate pairing of W/(W ∩W ′)
and W ′/(W ∩W ′). A non-degenerate pairing between finite-dimensional vectorspaces gives an isomorphism
of each to the dual of the other, so the dimensions are equal.

Next, given a totally isotropic subspace W , there is another totally isotropic subspace W ′ such that 〈, 〉
is non-degenerate on W + W ′. Indeed, given w1 ∈ W , find w′1 such that 〈w1, w

′
1〉 6= 0. Without loss of

generality, 〈w′1, w′1〉 = 0, since otherwise replace w′1 by w′1 − 1
2 〈w′1, w′1〉 · w1. As above, (Rw1 + Rw′1)⊥ is

non-degenerate, and W ∩ (Rw1 + Rw′1)⊥ is codimension 1 inside W . Thus, an induction chooses a basis
w′1, . . . , w

′
m for another totally isotropic subspace W , with 〈wi, w′i〉 = 1 for all i, and 〈wi, w′j〉 = 0 for i 6= j.

Thus, given a Lagrangian subspace W , there are corresponding w1, w
′
1, . . . wm, w

′
m, and the collection wi±w′i

gives an orthogonal basis for the span ofW+W ′ withm positive andm negative values. Thus, min (p, q) ≥ m.

On the other hand, taking p ≥ q and orthogonal basis v1, . . . , vp, w1, . . . , wq as above, v1 + w1, . . . , vq + wq
spans a totally isotropic subspace. This gives the opposite inequality, proving that min (p, q) is the (common)
dimension of Lagrangian subspaces. ///
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