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We develop basic properties of unitary Hilbert space representations of topological groups. The groups G
are locally-compact, Hausdorff, and countably based. This is a slight revision of my handwritten 1992 notes,
which were greatly influenced by [Robert 1983]. Nothing here is new, apart from details of presentation. See
the brief notes on chronology at the end.

One purpose is to isolate techniques and results in representation theory which do not depend upon additional
structure of the groups. Much can be done in the representation theory of compact groups without anything
more than the compactness. Similarly, the discrete decomposition of L?(I'\G) for compact quotients I'\G
depends upon nothing more than compactness. Schur orthogonality and inner product relations can be
proven for discrete series representations inside regular representations can be discussed without further
hypotheses.

The purely topological treatment of compact groups shows a degree of commonality between subsequent
treatments of Lie groups and of p-adic groups, whose rich details might otherwise obscure the simplicity of
some of their properties.

We briefly review Haar measure, and prove the some basic things about invariant measures on quotients
H\G, where this notation refers to a quotient on the left, consisting of cosets Hg.

We briefly consider Gelfand-Pettis integrals for continuous compactly-supported vector valued functions with
values in Hilbert spaces.

We emphasize discretely occurring representations, neglecting (continuous) Hilbert integrals of representa-
tions. Treatment of these discrete series more than suffices for compact groups.

Though it entails some complications, throughout we pay attention to closed central subgroups Z of groups
G, and we distinguish various spaces of functions on G by their behavior under Z. This has a cost in technical
complications in proofs and in notation. However, these complications are genuine. This issue comes up
already with GL(2,R) and GL(2,Q,), which have discrete series representations modulo their centers, but
not otherwise.
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1. Definitions: unitary representations, irreducibility
Always G is a group with a locally compact Hausdorff topology, with continuous multiplication and inversion.
Further, G has a countable basis.

Let V be a complex Hilbert space with inner product (,) and associated norm | |. A continuous C-linear
map T : V — V is unitary when it is invertible and for all v,w € V

(Tv, Tw) = (v,w)

For finite-dimensional V' existence of the inverse follows from the preservation of the inner product. Also, in
general, it in fact suffices to make the simpler demand that

(Tv, Tv) = (v,v)
for all v € V, since the more general condition can easily be shown to follow from the simpler one. (Consider
v+ w and v £ iw).

It is immediate that a product of two unitary operators is unitary, as is the inverse of a unitary operator, so
the collection of all unitary operators on V' forms a group.

A unitary representation of G on V is a group homomorphism
7 : G — { unitary operators on V'}

with the continuity property
g — m(g)v  is continuous

for every v € V. Sometimes the Hilbert space V is called the representation space of .

[1.0.1] Remark: We cannot and should not attempt to require that g — 7(g) be continuous with the
uniform operator topology
|T|uniform = sup |TU|
lv|<1
on operators on V. Simple natural examples (given later) fail to have this (excessive) continuity property.

Nevertheless, the function
GxV =V by gxv—=n(g

1s continuous:
[m(g" )" —m(g)v| < |m(g )" = 7(g" )| + [7(g")v — 7(g)v]

= [V = vl +][r(g) — m(g)]v|

by unitariness of w(g’). The term |[v" —v| certainly can be made small, and the term |[7(¢g") — 7(g)]v]| is small
for ¢’ close to g, by the continuity hypothesis above.

So a representation consists of both the Hilbert space V' and the group homomorphism 7. Thus, in a formal
context, a representation is a pair (V,7) or (m, V). Nevertheless, for brevity, very often the representation
(V,m) will be referred-to simply as ‘m’ or as ‘V’. For a representation referred to simply as ‘n’, a default
notation for the representation space corresponding to it is ‘V’.

A G-morphism or G-homomorphism or G-map or G-intertwining operator
o: V=V
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from one G-representation (V, ) to another (V’,#') is a continuous linear map ¢ : V' — V'’ which commutes
with the action of G in the sense that

pom(g)=n"(g)oyp

for all g € G. (Note that we are not directly requiring that ¢ respect the inner products.) An intertwining
operator is an isomorphism if it has a two-sided inverse. The collection of all G-intertwining operators
from (V, ) to (V’,7") will be denoted by Homg (7, 7") or Homg(V,V’) (using the notational abuse in which
‘m’ refers to the representation more properly denoted by ‘(w,V)’, and so on).

Let (V,7) be a unitary representation of G. A G-stable subspace V' of V is a complex subspace V' of V
so that, for all g € G and v/ € V', w(g)v’ € V'. We will be most interested in (topologically) closed G-stable
subspaces, but closed-ness is not part of the definition.

A subrepresentation (V’, ') of a representation (V, ) is a (topologically) closed G-stable subspace V'
of V, and 7'(g) is just the restriction of 7(g) to the subspace V'. Since closed subspaces of Hilbert spaces are
again Hilbert spaces, and restrictions of unitary operators are again unitary, we see that subrepresentations
of unitary representations are again unitary representations.

The direct sum representation (7, V) @ (7', V') (or simply 7 @ 7’) has representation space the direct sum
V @&V’ of the two Hilbert spaces, with the obvious

/

(m@& ) (g)(v& ) =m(g)ve ' (g)v
Note that the direct sum of the two Hilbert spaces has an inner product

(v1 ® vy, v2 @ v3) = (v1,v2) + (v}, v3)
It is not hard to check completeness, so we really do have a Hilbert space.

A unitary representation (7, V') of G is irreducible if there is no (topologically) closed G-stable subspace
of V other than {0} and V itself.

Sometimes for emphasis we would say topologically irreducible to emphasize that only closed subspaces
are considered, and use the phrase algebraically irreducible if it is intended not to require closedness of
the G-stable subspaces. Certainly algebraic irreducibility is a stronger condition in general than topological
irreducibility. In finite-dimensional spaces, since every subspace is closed, the distinction is meaningless, but
in general in infinite-dimensional spaces there can be proper G-stable subspaces which are not closed. In
certain more sophisticated contexts, for particularly nice groups G, it is sometimes possible to prove that
topological irreducibility implies algebraic irreducibility, but such assertions are far from trivial.

2. The dual (contragredient) representation

The dual space V* to a complex vectorspace V is the (complex) vectorspace of continuous linear (complex-
valued) functionals on V. Certainly V* is a complex vectorspace, by

(a-A)(v) = a(A(v))
for ANeV* aeC,andv e V.

On the other hand, when V is a Hilbert space, by the Riesz-Fischer theorem, every A € V* is of the form
A(v) = (v, vy)
for a uniquely-determined vy € V. A potential confusion arises in the fact that (as can be checked easily)
Ugx = G - Ux
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since (,) is conjugate-linear in its second argument. Thus, it is not quite the case that A — vy gives a
complex-linear isomorphism of V* to V. Rather, we define the conjugate vectorspace V to V' by redefining
scalar multiplication, by

a-v=av

(where the multiplication av is the ‘old’ multiplication in V). Thus, actually
V=V

Further, we adjust the inner product to be

(v,wyv= = (w,v)y
so that it is again complex-linear in the first argument and conjugate-linear in the second argument.

Let (7, V) be a unitary representation of G. The contragredient or dual representation (7*,V*) of G on
V* is defined by
T (9)(N)(v) = A(m(g) " v)
The possibly unexpected inverse in the right-hand side is exactly to assure that
7" (gh) = =" (g) 7" (h)

for g, h € G, which follows easily from the definition. Without the inverse there, things would not work right
except for abelian groups.

It is easy to check that (7%, V*) is again unitary.

3. Isotypic components, multiplicities, G-types

Now we will start to make more use of the notational abuse which allows us to write ‘7’ for the representation
space attached to 7, and so on. This makes the notation lighter and curbs the proliferation of parentheses.

Let m be an irreducible unitary representation of GG, and let o be another unitary representation of G. The

algebraic 7-isotypic component or m-isotype o), of min o is
U;Tlg = Z (p(ﬂ—)
]

where the sum is over the space Homg(w, o) of all G-intertwining operators ¢ : 1 — o. The topological
m-isotypic component in o, denoted o, is the topological closure of the algebraic m-isotypic component.

The space Homg (7, o) of all G-intertwining operators from 7 to o is a complex vectorspace. If this dimension
is finite then this dimension is called the multiplicity of 7 in o, and 7 is said to occur with finite
multiplicity in o¢. And, in the case of finite multiplicity, from elementary Hilbert space properties the
algebraic m-isotypic subspace is already topologically closed, so that the distinction between algebraic and
topological m-isotype vanishes.

If a non-zero vector v € o lies inside ¢(7) for some ¢ € Homg(7,0), then v has G-type 7 (in the strictest
sense). If; less stringently, v lies inside the algebraic 7-isotypic subspace 041 inside o, we still say that v has
G-type 7. Further, even if v only lies inside the topological m-isotype, we still may say that v has G-type =
(in the weakest sense). Distinguishing which is meant depends upon the context.
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4. Haar measure, measures on quotients, averaging maps

By topological group is usually meant a group G which has a locally compact Hausdorff topology such
that the group operation and inverse are continuous maps

GxG—Gbygxg — gq

G—-Gbyg—gt

Further, to avoid pathologies in product measures, most often we assume that (the topology of) G has a
countable basis.

Note that a topological group is not simply a group with a topology, nor even such with the requirement that
the group operations be continuous. That is, the local compactness and Hausdorff-ness are always implicit,
as may be the countability.

Let C2(G) be the set of compactly supported complex-valued functions on G. A positive regular Borel
measure (finite on compacta) p on a topological group G is right invariant if, for every f € C2(G) and for
every h € G we have

/ flgh) du(g) = / f(9) dulg)
G G
Replacing g by gh~! and then h by h~! suggests the abbreviation

du(gh) = du(g)

A right invariant positive regular Borel measure is also called a right Haar measure on G. The
corresponding left invariance condition defines left Haar measure.

The notion of Borel measure is essentially equivalent to the notion of linear functional A on C¢(G) with
the continuity property that for every compact subset C of G there is a constant C'x such that for every
f € C2(G) with support inside K

M) < Cx - sup [f(9)]
geK

(This property itself is an unrolled version of the requirement of continuity with respect to the natural
colimit-of-Banach-spaces topology on C2(G), but this technicality is not of immediate use.) We will not
reprove the following basic theorem.

[4.0.1] Theorem: Up to scalar multiples, there is a unique right Haar measure. ///

[4.0.2] Definition: A topological group G' is unimodular if a right Haar measure is a left Haar measure.

[4.0.3] Definition: Let u be a right Haar measure on G. The modular function A = A of G is defined
by
dpi(hg) = A(h) - du(g)

Thus, by definition, G is unimodular if and only if A = 1.

[4.0.4] Proposition: The modular function A is a continuous group homomorphism from G to the positive
real numbers (with multiplication). The function A is identically 1 on the center of G, on any compact
subgroup of G, and on any commutator ghg~'h~! in G.

Proof: That A is a group homomorphism is formal, by changing variables. Let u be a right Haar measure
on G. Given f € C2(G), f is uniformly continuous since it has compact support. Thus, given £ > 0 there is
a sufficiently small open neighborhood U of the identity 1 in G such that for h € U and for all g € G

|f(hg) — f(9)l <e
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Thus, for h € U by the continuity property of the integral

‘ /G F(hg) du(g) - /G f(g)dmg)‘q.u(spt(f))

That is,
AR —1]-

[ 16 du<g>] < e ulspt(f))

This proves continuity of A at 1, from which easily follows the general case.

Since du(zg) = du(gz) = du(g) certainly A is trivial on the center of G. Since the positive reals with
multiplication have no non-trivial compact subgroup, and since the continuous image of a compact group is
compact, A must be continuous on any compact subgroup of G. Finally, since R* is abelian, A must be
trivial on commutators. ///

Let H be a closed (not necessarily normal) subgroup of a topological group G. Let H\G be the set of cosets
Hyg, with the quotient topology. Note that G acts on the right on H\G by continuous maps. Define an
averaging map

a:CG) = C2(H\G)

by
a(f)(g) = /H f(hg) dh

for a right Haar measure dh on H. More generally, for a continuous group homomorphism
w:H— C*

define
C2H\G,w) ={f € C°(G) : f(hg) =w(h)- f(g), for all h € H,
g € G, and f is compactly-supported left mod H}

The corresponding averaging map
a, : C2G) — C2(H\G,w)

is

au(f)(9) = / w(h)" f(hg) dh

H
The following innocent lemma is essential in the sequel and in many other applications as well.
[4.0.5] Lemma: The averaging maps (just above) are surjections.

Proof: Let q be the quotient map ¢ : G — H\G. First, we show that, given a compact subset C' of H\G
there is a compact subset C” of G such that ¢(C") = C. By the local compactness of G, we can take an open
neighborhood U of the identity in G such that U has compact closure U. Since a quotient map is open, q(U)
is open in H\G, as are all the translates ¢(U) - g for g € G. Since

cc |J adv)y

g:q(9)€C

and C' is compact there is a finite subcover
CCqU)grU...UqU)gn

The set o o
UgpU...UUg,

7



Paul Garrett: Unitary representations of topological groups (July 28, 2014)

1

is compact in G, and ¢~ is at least closed in G, so since G is Hausdorff

' (C)N([UgU...uTg,)
is the desired compact set in G.

First consider the case that w is trivial. Given f € C2(H\G), let C’ be a compact subset of G such that
q(C") = spt(f). Via Urysohn’s lemma, let ¢ be in C2(G) such that ¢ is identically 1 on a neighborhood of
C’. Let

F(g) =¢(g) - f(g) € C2(G)
Since f is already left H invariant
a(F) =ale) - f
Thus, noting that a(p) is identically 1 on an open containing the support of f,

a(F/a(p)) = alp) - flalp) = f

Since a(yp) is identically 1 on a neighborhood of the support of F', the quotient F'/a(¢p) is continuous. For
general w, a similar trick works, and

au(Flay(p)) = aw(p) - flaw(e) = f
/!

[4.0.6] Theorem: Let H be a closed (not necessarily normal) subgroup of a topological group G, with the
obvious action of G on the right. The quotient H\G has a right G-invariant (positive regular Borel) measure
if and only if

Agla = An

If such a measure exists it is unique up to scalar multiples, and can be uniquely normalized as follows. For
given right Haar measure dh on H and for given right Haar measure dg on G there is a unique invariant
measure dg on H\G such that for f € C2(G) we have the integration formula

/G f(g)dg = /H . ( /H f(hg)dh> dg

Proof: First, prove the necessity of the condition on the modular functions. Suppose that there is a right
G-invariant measure on H\G. Let « be the averaging map as in the previous lemma. For f € C2(G) the
map

f— a(f)(9) dg

H\G

is a right G-invariant functional (with the continuity property as above), so must be a constant multiple of
the Haar integral

o /G f(9)dg

Note that the averaging map behaves in a straightforward manner under left translation Ly f(g) = f(h™1g)
for h € H: for f € C2(G) and for h € H

a(Lnf)(g) = /H f(hag) da = Ay (h) /H f(xg) da

by replacing = by hx. Then
[ f@ds= [ ap@di=s0t [ atndi=am [ 0o
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from the first remark of this proof comparing the iterated integral to the single integral. Then replacing g
by hg in the integral gives

/ F(g)dg = A(R) " A (h) / f(9)dg
G G

Choosing f such that the integral is not 0 implies the condition on the modular functions stated in the
theorem.

We prove the sufficiency starting from the existence of Haar measures on G and on H. And first suppose
that both these groups are unimodular. As expected, we attempt to define an integral on C2(H\G) by

/H L@ = /G f(g)dg

invoking the fact that the averaging map « from C2(G) to C2(H\G) is surjective. The potential problem
with this is well-definedness. It suffices to prove that, if af = 0, then fG f(g)dg = 0. To see this, suppose
af = 0. Then, for all F € C2(G), the integral of F' against af is certainly 0, and we rearrange

0= [ F@aswyds = [ [ P fhayindg = [ [ F01g) f0)dgan

by replacing g by h~'g. Then replace h by h™!, so

0= /GaF(g)f(g)dg

The surjectivity of o shows that we can choose F' such that aF' is identically 1 on the support of f. Then
we have shown that the integral of f is 0, as claimed, proving the well-definedness for unimodular H and G.

For not-necessarily-unimodular H and G, in the previous argument the left translation by h~' produces a
factor of Ag(h~!). Then replacing h by h~! converts right Haar measure to left Haar measure, so produces
a factor of Ay (h)~!, and the other factor becomes Ag(h). If Ag(h) - Ag(h)~! = 1, then the product of
these two factors is 1, and the same argument goes through, proving well-definedness. ///

5. Regular and biregular representations

Let
/ f(g)dg
G

denote integration of a compactly supported continuous C-valued function f on G with respect to right Haar
measure. Since we will only be integrating functions, rather than discussing the measure itself, we will not
need to allocate a symbol for the Haar measure itself.

Let L?(G) denote the square-integrable complex-valued functions on G (using right Haar measure). The
right regular representation R of G on L?(G) is defined by

R(9)f(h) = Ry f(h) = f(hg)
for g,h € G and f € L*(G).

One may similarly define the left regular representation L by left translation on functions square-
integrable with respect to left Haar measure on G, by

L(g)f(h) = Ly f(h) = f(g~"h)

9
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The inverse in the formula is to have L(gg’) = L(g)L(¢’), as in the definition of contragredient representation.

If G is unimodular, that is, if a right Haar measure is also a left Haar measure, then the two notions of
L?(G) coincide, and there are simultaneous right and left representations on L?(G). For unimodular G, the
biregular representation of G x G on L?(G) is defined as

mi(g % g')f(h) = f(g~ hg')
In other words,
mi(g % ¢') = L(g) R(g") = R(g") L(g)

The choice of which of the g, ¢’ acts on the left versus right is purely a matter of convention, and can in
general be determined only from the context.

[5.0.1] Proposition: The right regular representation of G on L?(G) is unitary. If the group G is unimodular,
then also the left regular and biregular representations are unitary. (The proof is a special case of a more
general assertion proven just below).

The construction of the space L?(G) can be refined in a manner which turns out to be very important in
applications. Let Z be the center of G. Since the group operation in G is continuous, and since

Z = ﬂ {z € G:gz=2zg}

geG

presents Z as an intersection of closed sets, Z is a closed subgroup of G. Let w : Z — C* be a continuous
unitary character on Z, meaning that it is a continuous group homomorphism and |w(z)| =1 for all z € Z.

We say that a function f € C°(G) is compactly supported modulo Z if there is a compact set C' in G
so that
sppfCcZ2-C=C-Z

Let
Co(Z\G,w) ={f € C°(G) : f(z9) = w(2) - f(9),
forall z € Z, g € G, and f is compactly-supported mod Z}
This is the collection of continuous functions compactly supported modulo Z with central character w.

Note that for fi, fo € C2(Z\G,w) the product fifs lies in C2(Z\G), the space of compactly supported
continuous functions on the topological group Z\G. (The Hausdorfl-ness of this quotient depends upon the
fact that Z is closed.) Thus, we have an inner product on C2(Z\G,w) given by

o o) = / 0 R0 ds

where we still write dg for the right Haar measure on the quotient group, rather than using a special notation
for the measure on the quotient.

Note that Z\G certainly has a right G-invariant measure, since the condition

Az =1=A¢|z
for existence of such measure is met, where Ag is the modular function on a topological group H. That
the condition really holds follows from the fact that Z is abelian, assuring that Az = 1, and from the fact
that Z is a closed subgroup of the center of G, assuring that Ag|z = 1.
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Then let L?(Z\G,w) be the Hilbert space obtained by completing C2(Z\G,w) with respect to the metric
associated to this inner product. We define the right regular representation of G on L?(Z\G,w) just as
above: for g € G and f € L*(Z\G,w) define R, f by

Ry f(x) = f(xg)

By the fact that the measure is right G-invariant and |w(z)| = 1, this representation is unitary: for f1, fo in
L*(Z\G,w), and for g € G,

mﬁw&m:éwhmmmmM=éwﬁMﬁwm

1

by replacing x by g~ in the integral.

If the group G is unimodular (meaning that a right Haar measure is also a left Haar measure), then we can
define the left regular representation g — L, of G on L?(Z\G,w) (using the fact that Z is a closed
subgroup of the center). And then we also have the biregular representation of G x G on L*(Z\G,w).

In the above construction Z could be any closed subgroup of the center of G. Often we might take Z to
be the whole center, but this is not necessary. In any such situation the analogous space L?(Z\G,w) may
be constructed, with corresponding regular representation of G upon it. The ambiguity of the terminology
‘right regular representation’ is resolved only by context.

We should check the continuity of these representations. We do so for the right regular representation on
L*(Z\G,w). Essential use is made of the fact that the Haar measure is a Borel measure, and that all the
functions in the Hilbert space can be approximated (in an L? sense) by continuous functions with compact
support modulo Z, by invoking Urysohn’s lemma. Given f in L?(Z\G,w), choose ¢ in C2(Z\G,w) so that
in L? norm |p — f| < e. Thus, for g € G,

|Rgf — fI < |Rgf — Rygopl + | Rgp — | + | — f]
<2+ |Rgp — ¢
by the unitariness of R,.

We claim that ¢ is uniformly continuous: if spt C Z - C with C' compact, then certainly ¢ is uniformly
continuous on C. Given & > 0, fix a compact neighborhood U, of 1 in G and take a compact neighborhood
U cU, of 1 so that

lp(g90) — p(g)] < €

for g € C, 8 € U. Note that gf lies in the compact set C - U,. For g in the support of ¢, write g = zg’ with
z€ Z and g’ € C. Then, for 6 € U,

[p(90) — (9)] = |p(29'0) — w(29")] = w(2)p(g'0) — w(z)e(d")

= lp(g'0) — (g <&
since |w(z)| = 1. That is, elements of C?(Z\G,w) really are uniformly continuous.

To prove continuity of the right regular representation, it remains to estimate | Ry —¢|. With neighborhoods
U,U, of 1 as in the previous paragraph, we have

L&w—wﬁ=/’ lo(2g) — plo)|? dz

< / (e")?dx = (¢')* x meas (Z\spt(p) - U)
Z\spty-U,
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The latter measure is finite, since the set is compact, so for sufficiently small &’ we can make this less than
the original e.

This proves continuity of all these regular representations. The corresponding proof of continuity for left
and biregular representations is identical.

[5.0.2] Remark: At this point, it is easy to illustrate the unreasonableness of trying to require that
7 : G = Hom(V,V) be continuous in operator norm. Let G be any non-discrete group, such as R or the

circle. Fix a compact neighborhood U of 1, and take g € U with g # 1. Let ¢ € C2(G) be a positive,
real-valued function so that [, |¢|> =1 and so that

spt() - g Nspt(p) = ¢

Then
|Rgp — 0> = (Ryo — @, Rgo — o)

= |Ryp|* — 2/ p(zg) p(x) de + o[> =1-0+1

G

since the supports of ¢ and Ry¢ are disjoint. Thus, we have an estimate on the operator norm | |op:
|Rg - 1|0p 2 \/5

for any g # 1, no matter how close to 1. That is, in the right regular representation of a non-discrete group,
the operator norm |Ry; — 1|op does not go to 0 as g goes to 1. At the same time, of course, this does not
contradict the continuity of each operator R,.
[5.0.3] Remark: The terminology of right reqular and left reqular representations is ambiguous, in that

these terms sometimes refer specifically to representations on square-integrable functions, but sometimes to
other vector spaces of functions.

6. Hilbert-space valued Gelfand-Pettis integrals

We need a simple case of vector-valued integrals, namely, integrals of continuous compactly-supported
Hilbert space valued functions (with respect to regular Borel measures). The Gelfand-Pettis, or weak
integral considered in the following theorem is sufficient for our present purposes. The argument below takes
advantage of the special features of Hilbert spaces.

One important feature of Gelfand-Pettis integrals is the fact (in the corollary below) that they commute
with continuous linear maps.

[6.0.1] Theorem: Let X be a locally compact Hausdorff topological space with a countable basis, with a

positive regular Borel measure on X giving finite measure to compact subsets. Let V be a Hilbert space,
and f: X — V a continuous compactly-supported function. Then there is a unique vector we’ll denote as

/X f(x)dx

in V such that for all continuous linear functionals A on V

A(/X f(:c)dx)/XA(f(x))dx

where the latter integral is the usual Lebesgue integral.

12
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Proof: Since continuous linear functionals on V separate points, there is at most one such integral. The
issue is existence. Let {e, : @ € A} be an orthonormal basis for V. Each function f,(z) = (f(z),eq) is
compactly supported continuous C-valued, so has a standard Lebesgue integral

fo= [ gy da = [ (f@).ca)o

The obvious guess is I = ) I, - e4. To show convergence, observe that, for a finite /' C A, by Cauchy-
Schwarz-Bunyakowsky,

SO L = Z!/ ) o) do Z!/ o Z/l do- [ vda
ackF sptf
The latter constant is finite because f is compactly supported. This is dominated by

S [seal e = [ Y (seal de= [If@P dr < o

acA a€cA

since f is continuous and compactly supported, using Fubini-Tonelli and Plancherel. Thus, the tails of the
series ) o4 |I.|* go to zero, and the series converges.

Now verify the weak integral property. For finite F' C A, let fr(z) = > cp fa(r)-ecaand Ip =3 cplo-€q.
For arbitrary v in the Hilbert space,

(Ip,v) Z/ ), €q) dx - {€q,v /Z - (eq,v) dx

acF ael

— [{X ((@.ca)-ca). v) do = [tfeta).o) do
acF

Since |(fr,v)| < |f(2)] - |v|, by the dominated convergence theorem

[ttetar o de — [t

We showed that limg Ir = I, so we have the assertion of the theorem. ///
The following property of Gelfand-Pettis integrals is widely useful.
[6.0.2] Corollary: Let T : V — W be a continuous linear map of Hilbert spaces. Let f: X — V be a

continuous compactly supported V-valued function on a topological space X with a positive regular Borel
measure giving compact subsets finite measure. Then

T(/X f(x)dx)z/XTf(x)dm

Proof: For a continuous linear functional x4 on W, by the defining property of the integral,

“(/X Tf(x)dm):/XMon(x)dx

But o T is a continuous linear functional on V, so

/X Mon(x)da::uoT(/X f(x)dx)

13
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MOTUX f(q;)dac) :u<T (/X f(x)da:))

which proves as asserted that the image under T of the integral of f is the integral of T o f. ///

and by associativity

[6.0.3] Remark: The assertions of the theorem and corollary are valid in much greater generality, namely
in quasi-complete locally convex topological vector spaces, but the argument is more complicated than the
above.

7. Convolution, Approximate Identities

The collection C?(G) of compactly-supported continuous (complex-valued) functions on G has the
convolution (using, right Haar measure)

(0% 9)(g) = /G olgz) (z) da

The specific configuration of left /right and the ‘inverse’, together with use of right Haar measure, makes this
product associative. The computation to verify the associativity illustrates fundamental points, so we give
it: let f, ¢, be in C2(G). Then

(f * (0% ) /fgx (px) (@ dxf//fgxl (x5 ") () dy da

// Flgy™ta™") p(a) d(y) do dy

by changing the order of integration and then replacing x by xy. Then this is

/G (F * 9)gy ) w(y) dy = ((f * o) *¥)(g)

as asserted.

Now let (m,V) be a unitary representation of G. For each fixed v € V, for ¢ € C2(G) the map G — V
defined by

is continuous and compactly supported. Therefore, by the basic theory of integration of compactly supported
continuous Hilbert-space valued functions, there exists an integral of F', meaning an element I of the Hilbert
space V with the obviously desirable property

(I, w) = /G o(9) (n(g)v, w) dg

for all w € V. This integral is denoted by

m(p)v :/G v(g) m(g)v dg

Using the notation 7(p) for this averaged value of 7(g) creates some ambiguity, but this ambiguity is almost
always immediately dispelled by context.

14
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[7.0.1] Proposition: For ¢ € C2(G), for 7 unitary, 7(¢) is a continuous linear operator with operator norm
satisfying the inequality

wwwgémmmzmm@

where the L'-norm is with respect to right Haar measure.

Proof: We compute directly:

m@op = sup (o) u)\<:supt/'| 2)o,w)]| de
[v|<1, Jw|<1
<swp [ Jol@)|- rle)el - fuldo = [ [o(o)]de
as claimed, using unitariness and the Cauchy-Schwarz-Bunyakowsky inequality. ///

[7.0.2] Corollary: The map ¢ — 7(p) extends from C2(G) to L*(G). We have

m(p * ) = m(p) o7 (V)

The map L'(G) — Hom(V,V) is continuous, where L'(G) has the L! topology and Hom(V,V) has the
operator topology.

Proof: The inequality of the proposition proves the asserted continuity. The fact that 7 maps convolution

product to product of endomorphisms follows from the analogous fact for C'¢(G) and from the density of
C?(G) in LY(@G), from Urysohn’s lemma.

To check that 7(p * ) = 7w(p)m(y) for ¢, € C2(G), compute directly the effect of this operator on any
given vector v € V:

W(‘P*Q/J)U:/ (px ) (z) m(x)vde

/ / o(zg™h) vdgdx—/ / o(zg™h) )m(z)vdxdg

by changing the order of integration, certainly justified if the supports are compact and the functions ¢,
continuous. Then, replacing « by zg, the integral is

// :rg)vdxdg—/ (/ e, vdg) d

as desired. /]

[7.0.3] Proposition: In the situation as above, the adjoint operator to 7 () is 7(¢*), where we define

©*(9) = (971 /Alg)
where A is the modular function on G, in particular so that with dg denoting right Haar measure

dg/A(g) = left Haar measure

Proof: Computing directly, and without loss of generality taking ¢ to be in C2(G):
(rleo.u) = [ pla) (a)o, ) da

15
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:/G@(x) (U,W(m)*w>dl‘=/ p(x) (v, (2™ w) do

G
by unitariness of . Replacing by x 7!, this is

| e r@ude™) = [ pla™) o) da)/A)
G

G

since

d(z™") = d(z)/A(z)
Then, using the defining property of the Gelfand-Pettis integral, this is simply

(v, /G @) m(e)w d(z) /A()) = (v, 7(p" )

as claimed, where the complex conjugate appears because the inner product is conjugate-linear in its second
argument. ///

[7.0.4] Definition: A sequence {¢;} of functions in C¢(G) is an approximate identity (in a strong sense)
if

e ;(x) >0 for all z € G and for all indices 4

¢ [ pi(z)dx =1, for all indices i

e For every neighborhood U of 1 in G there is a large-enough index iy so that for ¢ > iy we have sptyp; C U.

[7.0.5] Claim: For locally compact, Hausdorff G, approximate identities exist.

Proof: Given an arbitrarily small neighborhood U of 1 € G, using the continuity of multiplication, there is
a neighborhood V' of 1 such that V -V C U. The closure V of V is contained in V -V C U. Then invoke
Urysohn’s lemma to make a continuous function with values between 0 and 1, identically 1 on V, identically
0 outside U. ///

[7.0.6] Proposition: Let {¢;} be an approximate identity, and fix v in the representation space V for the
unitary representation 7. Then 7(¢;)v — v in V.

Proof: Given e > 0, take a small enough neighborhood U of 1 so that for all x € U we have |r(z)v —v| < ¢,
invoking the continuity of the representation. Take ¢ = ¢; with i large enough so that the support of ¢ is
inside U. Since [, ¢ =1,

|m(p)v —v| = ‘ /Gap(x)ﬂ(x)(v) dx — v‘ < /Ggo(x) Sm(z)v — vl de < / p(x)-edr=c¢

G

giving the asserted convergence. /!

8. Group representations versus algebra representations

[8.0.1] Proposition: Let (r,V) and (7, V') be unitary representations of G.
e The collection of closed G-stable subspaces of V is identical to the collection of closed C2(G)-stable
subspaces of V.
e A continuous linear map T : V — V' is a G-homomorphism if and only if it is an C?(G)-homomorphism,
that is, if and only if

() oT =T om(p)

for all p € C2(G).
e The representation (m, V') is G-irreducible if and only if it is C2(G)-irreducible, that is, if and only if V
has no proper closed C2(G)-stable subspace.
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Proof: The third assertion of the proposition is a special case of the first.

If W is a closed G-subspace of V', then it is a Hilbert space, and the Gelfand-Pettis integral theory above
applies. The integrals
Yo = / flg)m(g)vdg

expressing the action of f € C2(G) have values again in W. That is, a closed G subspace is an C2(G)-
subspace. On the other hand, for any C?(G)-stable subspace W and for g € G, for w € W, with an
approximate identity ¢;,

m(g)w = 7(g) limw(p;)w = m(g) lim/G wi(h) w(h)wdh = lim/G wi(h) T(gh)w dh

by the continuity of m(g) and by the basic properties of the Gelfand-Pettis integral. Replacing h by g~ th,
this becomes

hm/ ei(g th) m(h)wdh = A(g™) lim 7(Lyp; )w
where A(g) is the modular function on G, with
d(g~h) = A(g™") dh

By the assumption that C2(G) is stable under left translations, the functions h — ¢;(g~'h) are again in
C?2(@). Thus, W is stable under G, as well.

To prove that a G-homorphism gives rise to an C?(G)-homomorphism, repeatedly use properties of Gelfand-
Pettis integrals. For f € C2(G) and v € V,

(T on(f / F@) (@) da) = /G T(f(2) 7)) da

Further, since T is linear, the latter is

/f dx—/f 2)Tv dx

where finally we use the fact that T'(w(z)v) = #'(2)Tv. The latter expression is none other than 7' (f)(Tv),
as asserted.

On the other hand, for an approximate identity ¢;,
m(pi)v — v
Let g € G. As in the comparison of G-subspaces and C?(G)-subspaces,
(g)m(pi) = Alg) ™" m(Lgpi)
Using the continuity of T : V — V’
T(n(g)v) = limT(n(g)m(pi)v) = Alg) " imT(m(Lgs)v) = A(g) ™" lim 7' (Lgei)T(v)
since T' is an C?(G)-map. Going backward now, this is
lim 7'(g)’ (0:)T'(v) = 7'(9)T (v)
by properties of approximate identities. Thus, T" is a G-map. ///
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9. Schur's Lemma for bounded operators

This result is a corollary of basic spectral theory for continuous linear operators on Hilbert spaces. Let S be
a C-algebra with an involution s — s*, with C-linear ring homomorphisms

m:S — Endc(V)
7'+ S — Endc (V')
for two Hilbert spaces V and V', converting the involution in S to adjoint in the operators:
w(s*) =m(s)*
m'(s") ='(s)"
Let T : V — V' be a continuous linear map commuting with S in the sense that for all s € S

7'(s)oT =T on(s)

[9.0.1] Theorem: Suppose that V is S-irreducible, in the sense that there is no proper closed subspace of
V stable under 7(S). Then T is a scalar multiple of an isometry of V to a closed subspace of V.

Proof: Consider ¢ = T* o T, where T* : V' — V is the adjoint of T.. The relation
m'(s)oT =Tomn(s)

gives
T or'(s)" =n(s)* oT*

and since 7(S) and 7’/ (S) are closed under adjoints we conclude that ¢ commutes with 7(S), and ¢* = ¢. By
general spectral theory, the spectrum o () of ¢ is not empty. The self-adjointness implies that o(p) C R. If
o () were not merely a single point, there would be two continuous functions f, g on o(¢) such that neither
is identically 0, but fg = 0 on o(¢), by Urysohn’s lemma. By the von Neumann and Gelfand spectral theory,
the map

Clz] = Clg]

sending 2 — ¢ factors through the restriction C[z]|,(,) of functions in the polynomial ring to the set o ().
And from there is extends to an isometry of algebras (by continuity)

C?(o(¢))sup norm —> operator norm closure of Cly] (isomorphism)
Therefore, f(y) # 0, g(¢) # 0, but fg(¢) = 0, and all these commute with 7(.5).
Then ker f(yp) is closed, is 7(S)-stable, and is not all of V' since f(p) # 0. Also, ker f(¢) # 0 since

9(p) (ker f(p)) =0

and g(¢) # 0. Then ker f(p) would be a proper closed 7(.S) subspace of V', contradiction.

Thus, o(y) is a single point A. Again by spectral theory for self-adjoint operators, this implies that ¢ is
multiplication by the scalar A. Then

<Tx7Ty>V’ = <T*T$7y>v =A- <x7y>V
proving the theorem. ///
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[9.0.2] Corollary: If 7, V is an irreducible unitary representation of G, and if T € End¢ (V) commutes with
the action of G, then T is a scalar. ///

10. Schur’s lemma for unbounded operators

This technical strengthening of Schur’s lemma is necessary later in discussion of matrix coefficient functions.

Let S be a C-algebra with an involution s — s*, with C-linear ring homomorphisms
m: S — Endg(V)

7'+ S — Endc (V)

for two Hilbert spaces V and V', converting the involution in S to adjoint in the operators:

[10.0.1] Theorem: Let T be a (not necessarily continuous, but) closed linear operator Dy — H' for a
dense subset D of V', with Dp stable by 7(S). Suppose that T' commutes with the action of S in the sense
that for all s € §

n'(s)oT =Ton(s) (on Dr)

If H has no proper m(S)-stable closed subspaces, then T is a scalar multiple of an isometry extending a
mapping of V to a closed subspace of V.

Proof: That T is closed means that, by definition, the graph

I'r={(z,Tx):2 € Dr}CcVaV
is closed. By definition, the graph of —T* is

I g ={(-T*y,y) :y € Dy} = T3
The denseness of D assures the uniqueness of the adjoint 7. Thus, we have an orthogonal decomposition

VeV =I'r T _p-
Thus, given v € V, for some x € Dy and y € D~
(v,0) = (z,Tx) + (=T"y,y)
Write = Av and y = Bv. By orthogonality
Y = (v, 0) ey = (@, T2)]* + (=T"y, y)I = |z}, + T2} + [Ty + ylo = [2ld + [yl3

This implies that A and B are bounded (hence, continuous) operators A : V' — V and B : V — V’. Thus

we can write
v=Av+T*Bv 0=TAv — Bv

from which we obtain
ly=A+T*B 0y =TA-B
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Then B = T' A, and substitute to obtain
ly =A+T'TA = (1v+T*T)0A

Thus, evidently
A=y +TT7)" "

This shows that (1y +7*T)~! extends to a bounded operator. It is immediate that also Dy« is 7/(.S) stable,
so by the bounded operator version of Schur’s lemma (1y + T*T) 7! is a scalar A. Then solve to obtain (at

first only on D)

T*T:(i—l)dv

This extends to a map defined on all of V. Note that A cannot be 0 since 1y = (1y +T*T)A. Then as in
the bounded case,

(Te, Ty)y: = (T*Ta, gy = (= — {z,y)v

A
for x,y € Dp. This shows that T is bounded, hence continuous (and extends to all of V). Then apply the
bounded case of Schur’s lemma to conclude that T is a scalar multiple of an isometry. ///

11. Central characters of irreducible unitary representations

Again, the center Zg of a topological group G is a closed subgroup, since

Zg = ﬂ 2€G:2g=gz= ﬂ (closed subsets)
geG geG

and since the group operation is continuous.

[11.0.1] Corollary: (of Schur’s lemma) Let 7,V be an irreducible unitary representation of G. Then
sends the center Zg of G to scalar operators on V, with |n(z)| =1 for z € Z. ///

[11.0.2] Remark: The restriction of 7 to the center is the central character of 7, often denoted w;.

12. Matrix coefficient functions, discrete series

For 7,V a unitary representation of GG, the matrix coefficient function attached to u,v € V is defined to
be

cuw(9) = (7(g)u,v)

Since the map g — m(g)v is continuous, each coefficient function is a continuous C-valued function on G.
And by the unitariness, for g, z,y € G, the biregular representation’s behavior is

Cun(y~ gr) = (n(y~ gz)u,v) = (n(g) - m(@)u, w(y~") " v) = ((g) - 7(2)u, T(Y)v) = Cr@yum(y)o(9)

That is, letting L be the left regular and R be the right regular representation of G on functions on G,

L(y)R(l’)Cu,'n = Cr(z)u,m(y)v

Let Z be a closed subgroup of G contained in the center Zg of G. One might take Z = {1} for simplicity,
though for G with non-compact center this renders the following result (and others) vacuous. The finesse is
to take Z large enough such that Zg/Z is compact. This is not used directly in the following proof, though
is necessary for non-vacuity.
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[12.0.1] Theorem: Take G unimodular. Let 7,V be irreducible unitary with central character w (from
Schur’s lemma). The following are equivalent.

e 7 is a subrepresentation of L?(Z\G,w).

e There exist non-zero u,v € V such that ¢, , € L*(Z\G,w).

e For all u,v € V we have ¢, , € L*(Z\G,w).

[12.0.2] Definition: If these conditions are met, 7 is a discrete series representation of G, or is said to
be square integrable (modulo 7).

[12.0.3] Remark: If the center Zg is non-compact then, for example, L?(G) has no non-zero unitary
subrepresentations, for the following reason. Suppose, to the contrary, that there were such 7, V. By Schur’s
lemma it has a central character w, and necessarily |w| = 1, that is, w is unitary. Take u,v in V. Then

(u, vy = /Gu(g)v(g)dg=/z(;\GU(g)v(g)(/Zc le) dg

The inner integral is +00, which means that the integral for the inner product diverges, contradiction.

[12.0.4] Definition: The discrete spectrum L2(Z\G,w) (with central character w) is the completion
in L?(Z\G,w) of the sum of all irreducible subrepresentations of L?(Z\G,w), that is, of all discrete series
representations with central character w.

Proof: (of theorem) First, we prove that the fact that 7 is a subrepresentation of L?(Z\G,w) implies that
some matrix coeflicient function is square integrable modulo Z. Take wu,v in the space of an irreducible 7
in L?(Z\G,w), with (u,c) # 0. Since C?(Z\G,w) is dense, there exists ¢ € C2(Z\G,w) whose orthogonal
projection pr to 7 is arbitrarily close to v, so

Cupre(l) = (u,prep) # 0

Thus, cu,pre is not the 0 function. And we know that the averaging map

i, — /Z w(2) tpo(zg) dz

of C2(G) to C2(Z\G,w) is a surjection so let ¢, be in C2(G) such that ap, = ¢. Then

Cu,pre(9) —/Z\G u(hg)o( )dh—/Z\G u(hg)/z w(2) Po(zh) dzdh—/Z\G /Z u(zhg) Bo(zh) dz dh

— [ uthg)ahydn = [ (9w dh = Ligt)uls)
G

G

where ¢ (z) = Po(z~ 1) and L is the left regular representation. We need unimodularity of G to know that
a right Haar measure is a left Haar measure, and, equivalently, that the left regular representation L of G
on L*(Z\G,w) formed with right Haar measure is unitary. Then L(p})u € V, 80 ¢y pry is in V. Thus, there
is a (non-zero) matrix coefficient function which is square integrable modulo Z.

Next, we prove that existence of some non-zero matrix coefficient function which is square-integrable modulo
Z implies both that all coefficient functions are square integrable, and that 7 imbeds into L?(Z\G,w). Let
u,v € V such that ¢, , € L?(Z\G,w). Let

W={z€V:c,, € L*(Z\G,w)}

and on W define

Tz =cyy
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Thus, T is a linear map
T:W = L*(Z\G,w)

[12.0.5] Lemma: The operator T is a closed (possibly unbounded) operator.
Proof: (of claim) Let w, be a sequence of points in W, and suppose that the sequence of points (w,,, Tw,)
has a limit (u, f) in V & L?(Z\G,w). We must show that f € T(W). Pointwise, for g € G, as w, — uin V,

for any v € V,
(Twn)(9) = Cwnw(9) = (T(g)wn,v) = (wn, w(9) " v) = (u,m(g) " 0)

so the limit exists pointwise. The limit is uniform:

[Cwn0(9) = Cun(9)] = [(T(g)(wn = u),v)| < Jwp — ul [v]

by Cauchy-Schwarz-Bunyakowsky and unitariness. Now we will show that f = ¢, , in an L? sense. Let | |,
be the norm on L?(Z\G,w), and put

1
Xn={z € 2\G:|f(2)| 2 ~}
Necessarily the measure of X,, is finite. Let | |, be the L? norm on L?(Z\ZX,,,w). Then

”Cu,v - f"w < Z ch,v - f”n < Z (”cu,v - Cwin,v”n + ”Cwin,v - f”n)
n n

where for each index n the index i, is any index. Since the measure of X,, is finite, we can choose each i,
large enough such that both

|, < e/2"

”cu,v — Cw;, v

from the uniform convergence, and

chin,v - f”n < ”Cwin,v - f” <eg

via convergence in L?(Z\G,w). Therefore, ¢, , is in L?*(Z\G,w) and ¢, = f in L?*(Z\G,w). This proves
that T is closed. ///

Now 7(G) certainly stabilizes Dy = W, since

T(m(9)r) = Cr(g)ww = Ry Capw

Thus, as D is non-empty and G-stable, it must have closure all of V' (by irreducibility), so is dense. Likewise,
T commutes with the action of G (on Dy = W), so we can invoke the unbounded version of Schur’s lemma:
T is a scalar multiple of an isometry of V to a closed subspace of L?(Z\G,w).

Thus, in particular, for all z € V, we have ¢,, € L?(Z\G,w), and 7 is imbedded by T as a subrepresentation
of L?(Z\G,w), from the assumption that at least one non-zero coefficient function is square-integrable modulo
Z.

The same discussion applied to the map y — ¢, and left regular representation (using unimodularity to
know that the biregular representation is unitary) shows that the square integrability of a single non-zero
matrix coefficient functions suffices to prove the square integrability of all of them. ///

[12.0.6] Corollary:  (of proof) (Not necessarily assuming unimodularity) if an irreducible unitary
representation has one non-zero square-integrable matrix coefficient ¢, ., then ¢, ,, is square integrable for
all win V', and

T:2 = Cpo,
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is a scalar multiple of an isometry. ///

13. Schur orthogonality, inner product relations, formal degree

Let Z be a closed subgroup of the center Z¢ of G such that Zg/Z is compact.

[13.0.1] Theorem: Let 7,V and 7/, V' be non-isomorphic discrete series representations of unimodular G.
Suppose that both 7(z) and 7/(z) act by a scalar w(z) for a unitary character w of Z. Then, for all u,v € V
and z,y € V'

/ Cuw(9) Cx,y (9)dg =0
Z\@
where the first matrix coefficient function is attached to m and the second to 7.

Proof: Let v € V be fixed, and T : V — L?(Z\G,w) by Tu = ¢, ,. Similarly, let y € V' be fixed and define
T :V'— L*(Z\G,w) by T'z = ¢, Letting (,) be the inner product on L*(Z\G,w),

<cu,'u>cx,y> = <TU7T/-T> = <u, T*T/LL'>

Since T*T : V! — V and 7 # 7’ and T*T’ commutes with the action of G, it must be that T*T’ = 0. Thus,
we have the theorem. /]

[13.0.2] Theorem: Let 7,V be a discrete series representation of unimodular G, in L?(Z\G,w). Then
there is 0 < d,; < oo, the formal degree of 7 (corresponding to choice of Haar measure on G) such that for
all u,v,z,y in V

| i@ = 1 (wa) o)
Z\G Tr

Proof: Let T and T’ be as in the proof of the previous theorem. Then, as in that proof, T*T’ = X\ - 1y for
some scalar A = ), . That is,
<Cu,v7 Cm,y> = )\v,y . <’U,,(L'>

But, similarly, complex conjugating and replacing g by g~ !,

<cu,v7 C:v7y> = / Cu,v(g) Cm,y(g) dg = / Cv,u(g) Cy,ac(g) dg = )\uﬂc : <U7y>
Z\G X!

Thus,

/ cun(9) Ty (9) dg = ¢ (u,2) 0, )
Z\G

for some constant ¢ not depending on u, v, z,y. Define d; = 1/c. For this to be reasonable, we need ¢ # 0.
And, indeed, for v # 0 we have ¢, (1) = (v,v) > 0, and since these coefficient functions are continuous,

0 < {cow,Cvp) =c- (v,0)
showing that ¢ # 0. /]

[13.0.3] Remark: Multiplying the Haar measure by a > 0 multiplies d, by 1/a, so the invariant is d, dg.

[13.0.4] Remark: Not surprisingly, for compact Z\@, the formal degree (suitably normalized) is simply
the dimension of the representation space of 7.
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14. Hilbert-Schmidt operators

We recall some standard facts, with proof, concerning an important concrete class of compact operators
on Hilbert spaces, namely the Hilbert-Schmidt operators, which arise naturally in many applications.

Recall that a Hilbert-Schmidt operator T : V' — W between two Hilbert spaces is a continuous linear
operator such that for an orthonormal basis {e,} of V'

Z ITen |3 < +oo

The Hilbert-Schmidt norm |T|gs = |T|2 on such operators is the square root of the sum, that is,
ITI}s =TI =) ITealiv
n

The following standard fact is basic to this discussion.

[14.0.1] Lemma: The Hilbert-Schmidt norm is independent of the choice of orthonormal basis. The
Hilbert-Schmidt norm of an operator T and its Hilbert-space adjoint 7" coincide.

Proof: Let {e;} and {f;} be two orthonormal bases. Then using Plancherel-Parseval twice
DATHE =Y W fuen)P =) [fiu T e =D Y [fi, Trep)P =) T el
i (2N i, Jj o J

The latter expression certainly does not depend upon the f;, and incidentally shows that the Hilbert-Schmidt
norm of the adjoint T* is the same as that of T ///

We recall a standard result:

[14.0.2] Proposition: Hilbert-Schmidt operators are compact operators. The space of all Hilbert-Schmidt
operators is the completion of the space of finite-rank operators under the Hilbert-Schmidt norm (which
dominates the uniform operator norm).

Proof: We claim that the Hilbert-Schmidt norm dominates the uniform operator norm | [op. Indeed,
granting that the norm does not depend upon the choice of orthonormal basis, we may suppose without loss
of generality that a given vector x is of length 1 and is the first vector e; in an orthonormal basis. Then

z|=

2 2 2 2
1715, = sup Talfy <D | Tealiy = T3
n
Given a Hilbert-Schmidt operator and an orthonormal basis {e;}, let T}, be the composition pr,, o T where
pr, is the orthogonal projection to the finite-dimensional space
Ce1 ®...+Ce,

Thus, 7T, is a finite-rank operator. Then Hilbert-Schmidt norm of T" — T}, is

1T~ Tullsp = D I Tesliy

i>n

which goes to 0 as n — o0, since T has finite Hilbert-Schmidt norm. Since the Hilbert-Schmidt norm
dominates the operator norm, 7,, — T in operator norm. Since operator-norm limits of finite-rank operators
are compact, 1" is compact. ///
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15. Tensor products of representations

It is an elementary exercise to see that the direct sum V @& W of two Hilbert spaces is a Hilbert space, with

(vow,v &) = (v,0)? + (w,w')?

and that the obvious linear maps of V and W to the sum are continuous. By contrast, unless one of V', W is
finite-dimensional, the usual (algebraic) tensor product V ® W is not a Hilbert space, although it certainly
has the inner product obtained from

w@w,v @uw) = (v,v) - {(w,w)

by extending hermitian-bilinearly. We can define a Hilbert-space tensor product
V@W = completion of V @ W

with respect to the norm coming from the inner product.

[15.0.1] Remark: Abstractly, in some suitable category the tensor product we have denoted with a hatted
tensor symbol is the proper tensor product, so might deserve an unadorned tensor symbol. However, the
above notational style seems to be more common in practice.

Given unitary 7,V and 7', V' of G and G’, we define the (external) tensor product representation 7 ® 7’
of G x G’ by taking the representation space to be V&V’, taking the obvious definition

(r@)(gx g)(ver)=mr(g) )@ (g))
and extending by hermitian-bilinearity and continuity. Observe that 7 ® «’ is unitary. In general, V ® V' is

a (G x G')-stable but not topologically closed subspace of V@V,

[15.0.2] Lemma: V ® V' is a topologically closed subspace of V&V if and only if at least one of V or V'
is finite-dimensional, in which case

VeV =vev!

PTOOf: If V is finite-dimensional, then choose an orthonormal basis ey, ..., e, for V, and we can express
any vector in the tensor product in the form

n

Zei@)wi

i=1

for suitable w; in W. It is easy to see that a sequence of such vectors is a Cauchy sequence if and only if
the corresponding vectors w; form a Cauchy sequence. Thus, for V finite-dimensional the algebraic tensor
product is itself already complete.

If, on the other hand, neither V' nor W is finite dimensional, let e; and f; be orthonormal bases (countable,
for simplicity). The vector

=1

d e

L

=1

lies in the completion, but not in the algebraic tensor product. ///

Then the (internal) tensor product of unitary representations m, V' and ', V' of G is defined as above,
but restricting the group action to the diagonal copy §(G) of G inside G x G. That is,

(r@7)(g9)(v @ v) =m(g)(v) ® 7'(g)(v")
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and extend.

[15.0.3] Remark: It is seldom possible to distinguish by purely notation devices between external and
internal tensor products. Context is necessary. Some writers use a square tensor symbol for external tensor
products, but this is not universal.

[15.0.4] Proposition: For two Hilbert spaces V and W, the (completed) tensor product V*&@W (with V*
the complex conjugate) is naturally isomorphic to the Hilbert space of Hilbert-Schmidt operators V.— W
with the Hilbert-Schmidt norm. The (non-completed) V* ® W is naturally isomorphic to the space of
finite-rank operators V' — W via

(A @ w)(v) = A@©) - w

for A € V* and w € W, extending linearly.
Proof: The map A ® w just defined has image C - w, so is rank 1. Thus, V* ® W consists of finite-rank
operators. Conversely, for a finite-rank operator T, let ey, ..., e, be an orthonormal basis for the image of

T. Then take
Ai(v) = (T, e;)

Thus, we really do get all finite-rank operators in this manner. It is straightforward to verify that the tensor
product norm and the Hilbert-Schmidt norm agree. ///

Then

16. Irreducibility of external tensor products of irreducibles

[16.0.1] Theorem: Let 7,V and 7', V' be unitary irreducibles of G and G’, respectively. Then T&7/, V&V’
is an irreducible unitary of G x G’.

[16.0.2] Remark: The converse is not universally true, that is, there are irreducible unitaries of certain
groups G x G’ which are not isomorphic to tensor products of irreducibles of G and G’.

Proof: We already constructed the Hilbert space V&V’ on which G' x G’ acts unitarily. In a Hilbert space
the orthogonal complement W of a G x G’-stable subspace W is again stable. Thus, both the orthogonal
projection to W and the orthogonal projection to W+ are G x G’ maps. They are not scalars. Thus, we
have a converse to Schur’s lemma, namely that an reducible unitary representation of G x G’ has non-scalar
G x G’ endomorphisms.

We prove that a G x G’-endomorphism T of 7@’ is scalar. For V' € V/ and A’ € V'* the map ¢, » : V = V

defined by
1y @A
vV = T(vev) Sy

with
(lyeXN)(z®y) =X(y) =

is a G-map. Thus, by Schur’s lemma,
ot (0) = By v

for some 0,/ »/, since V is irreducible.

The map V* — V'« by ' — (v/ — 6,/ /) is a G'-morphism. Since V' is irreducible, V'* is irreducible, and
by Schur’s lemma there is a constant 6 such that

01/,)\’ =cC- <’Ul, )‘/>
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(identifying V"* with V’ conjugate-linearly, as usual). Then for any A € V* and X € V'*
(T ) ,AQXN)=A0pyx-v)=Av) - c- N)=c- (v, AR N)

Thus, T acts by the scalar ¢, and we conclude that the tensor product is irreducible. ///

17. Decomposition of discrete series

Still assume that G is unimodular. Fix a closed subgroup Z in the center of G. Let w be a unitary character
(one-dimensional representation) of Z. For 7 an irreducible unitary representation in the discrete series of
G modulo (the closed central subgroup) Z, with character w on Z, let L?(Z\G,w)™ denote the m-isotypic
component inside L?(Z\G,w), with the right regular representation R. That is, this is the closure of the
sum of all isomorphic copies of  in L?(Z\G,w).

[17.0. 1] Theorem: For 7 in the discrete series with central character w, the isotypic component L?(Z\G, w)™
is stable under the left regular representation L, and as G X G-representation with the biregular representation,

L*(Z\G,w)" =~ 1@ 1"

Thus, the discrete spectrum with central character w is

—

LA(Z\G,w) %@ TR

7 discrete
where the hat on the sum denotes completion.

[17.0.2] Remark: The Hilbert space corresponding to the tensor product 7 ® 7’ is the completion inside
L?(Z\G,w) of the algebraic tensor product of the two representation spaces.

Proof: For 7 in the discrete series, the Schur orthogonality relations and inner product relations show that
the map
@1 — L3(Z2\G,w)
by extending the map
UKV = Cyy

is a G X G map. Also, for non-isomorphic w and 7’ the images are orthogonal. What needs to be shown
is that there is nothing else in the discrete spectrum than this. In particular, we need to show that the
m-isotype is no larger than the image of 7 ® 7*.

If f is in a copy of 7 inside L?(Z\G,w) but is orthogonal to all coefficient functions ¢, , coming from 7® 7*,
then by the stability of matrix coefficient functions under the left regular representation L we find that L(g)f
is still orthogonal to all these coefficient functions.

Take ¢ € C2(G) real-valued such that (with ¢*(g) = p(g71) )

m(")(f) #0

Existence of approximate identities assures the existence of such. Then

W)@ = [ 107t e man= [ fgeman= [ o) ( / so(zh)w(z)dz) dh

Z\G

Let ¢, (h) denote the complex conjugate of the last inner integral, and let 1 be the orthogonal projection of
Y to the w-isotype. Then

(") f(9) = cfp.(9) = crn(9)
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and thus ) L
(W(W*)ﬁ Cu,v> = <cf,n>cu,v> = Z : <f7 77> . <77, U>

In particular, taking v = f and v = 7 gives a contradiction. Thus, there is no function non-zero f in the
m-isotype such that f is orthogonal to all the matrix coeflicient functions. That is, 7 ® 7* is all of the

m-isotype. /]

18. CY(@G) yields Hilbert-Schmidt operators on discrete series

Take G unimodular, and Z a closed subgroup of the center, w a unitary character on Z. For ¢ € C2(QG)
write

pulg) = / w(z) " p(zg) dz € C2(Z\G,w)

For 7w an irreducible unitary representation in the discrete series with central character w, let pr, be the
orthogonal projection to the m-isotype L?(Z\G,w)™ in L?(Z\G,w), which we now know to be isomorphic to
7 ® 7* under the biregular representation.

[18.0.1] Theorem: For ¢ € C9(G) and m,V an irreducible subrepresentation of L?(Z\G,w) (that is, in
the discrete series for Z\G and w) with the right regular representation R, the Hilbert-Schmidt norm of
m(®) is expressible as

|7 (@)l s = Iprw(sow)lm(Z\c,w)

Proof: Let e; be an orthonormal basis for V. Write Cij = Ce;e,; for the corresponding matrix coefficient
functions. Then
I7@)5s =D [7@) (e =D [(x(@)(e:), ;)]
i ij

by Plancherel. Further, this is

3 ([ 7@ e dones

2 2

-3 | [ Fr@ e =3

1] 1]

2

/ (9) (n(9)(es), e;) dg
G

since the main property of Gelfand-Pettis integrals, that they commute with continuous linear functions,
allows us to move the integral out of the inner product. (We are only using the continuous compactly
supported case, with values in a Hilbert space.) The inner product inside the integral is exactly the coefficient

function c¢;;, so, more succinctly, this is
/ cij(9) (/ w(2)Pu(29) dZ) dg
Z\G z

=Y e )P =D [pws cig)?
ij ij

2 2

| -%

ij

| ot

5|

2
/ 9)¢i5(9) dg
Z\G

using the usual averaging trick.

=2

ij

The Schur inner product relations directly tell us that the normalizations /dc;; of the matrix coeflicient
functions ¢;; are an orthonormal basis for the 7-isotype m@7* in L?(Z\G, w). Thus, the last sum of integrals

_ 1
Im@)ls = x [pr 2 (00|22 (210G 0)
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19. Admissibility for discrete series

Suppose that the unimodular G has a compact open subgroup K. This certainly occurs in p-adic groups
and other totally disconnected groups. Then the characteristic function (or indicator function) chy of K is
in C2(G). Normalize by

ChK

meas (K)

e =€eKg =

[19.0.1] Theorem: For 7,V in the discrete series in L?(Z\G,w), the space of K-fixed vectors
VE ={veV :n(kv=wv, forall k € K}

is finite-dimensional. In fact,
Z dﬂ— : dlm(c Vﬂ.K = |ew|2L2(Z\G,w) < o0
s

where 7 is summed over isomorphism classes of (irreducible) discrete series representations with central w,
and e, is the averaged

eu(g) = /Z w(z) ek (zg)dz € C2(Z\G,w)

Proof: Tt is immediate that m(ex) is the identity operator on V¥ and the latter is a closed subspace of V,
so is a Hilbert space in its own right. Further m(ex) maps all of V to V. By the previous result, 7(ex) is
Hilbert-Schmidt, so compact. For the identity operator on a Hilbert space to be compact requires that the
space be finite dimensional. Further, again by the previous result,

Do de-dimVE = de - mlen)lis = Y Iprelen)l® = lewlZa 2\

This is the stronger conclusion. ///

20. Compactness of operators on compact ZI'\G

Still take G unimodular, Z a closed subgroup of the center, and w a unitary character of Z. Let I" be a
discrete subgroup of G such that ZT' is discrete in Z\G, and w =1 on Z NT. Define

Co(ZT\G,w) ={f € C°(Q) : f(zv9) =w(2)f(g) for z € Z,v € T, f compactly supported left mod ZT'}
Note that T' and G are both unimodular, so T\G and ZI'\G have right G-invariant measures. Let

L?(ZT'\G,w) be the completion of C?(ZT\G,w) with respect to the metric arising from the norm attached
to the inner product

i fo) = / £1(9) Talg) dg
ZI\G

The group G acts by right translation on C?(ZI'\G,w), and since we integrate with respect to a right G-
invariant measure on the quotient ZI'\G the inner product just defined is preserved by this action. Thus, by
continuity, the right translation action of G extends to the completion. Let R denote the right translation
representation.

Our significant hypothesis now is that
ZT\G is compact
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In particular, this implies that
Co(ZT\G,w) = C°(ZT\G,w)
and that, with the sup norm, this is a Banach space (as opposed to C?(X) for a non-compact space X,

which is in general only a colimit of Banach spaces, and definitely not complete metric).

[20.0.1] Lemma: With ZT'\G compact, for ¢ € C9(G), the operator R(y) is a compact operator on the
Banach space C?(ZTI'\G,w). Hence, R(y) is a compact operator on the Hilbert space L?(ZI'\G,w).

Proof: The second assertion follows from the first, since the compactness of the quotient implies that (with
invariant measure) it has finite total measure, so continuous functions are square-integrable.

Let
lg) = /Z w(z) p(zg) dz

U(g,h) = (g~ vh)

vel

[20.0.2] Sublemma: The function ¥ is uniformly continuous, and is in

C(ZT\G x ZT\G,w @ )

Proof: (of sublemma) The point of the assertion of the sublemma is that for g and h both in a fixed compact
subset C' of Z\G, the set
Lo ={y €T :9(g 'yh) # 0 for some g,h € C}

is finite modulo Z, that is, Z\Z - T'¢ is finite. That this is so is easy to see:
g 'vh € sptyp implies y € C -spt(¢) - C~E N ZT

The set Cspt(¢)C~1 is compact mod Z, and ZT is discrete mod Z, yielding the result. Therefore, for
g,h € C, the sum defining ¥ is a uniformly finite sum of continuous functions, so is continuous. The
equivariance under the center is formal. Finally, since |w| = 1 and ZT'\G is compact we have uniform
continuity. ///

Returning to the proof of the lemma, we need to show that for given ¢ there is a constant ¢ such that, for
feC2(ZI\G,w),

|R(@) flsup < ¢ [flL2zr\cw)
To this end, note that

N = [ o saman= [ otgmsman= [ g ( / w(z)so(g—lzmdz) dh

7\G
_ —1 — —1 —
= [, vt an /Z e T VGZZ\ZFW ny | dh /Z L T by an

Then by Cauchy-Schwarz-Bunyakowsky

IR(2) f(9)]? < /

f? / [W(g,)[> < If172 - sup [¥]? - meas (ZT'\G)
ZT\G ZI\G

as desired. From this it follows that R(y) maps L?(ZI'\G,w) to C2(ZT'\G,w), since L? limits are necessarily
mapped to C¢ limits.
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Thus, if we can show that R(y) maps the unit ball in L?(ZI'\G,w) to a uniformly equicontinuous set of
functions in C?(ZT\G,w), then the Arzela-Ascoli theorem would imply that the image by R(y) of this ball
is totally bounded, so has compact closure, proving that R(¢) is a compact operator. The computation above
also yields

[R(¢)f(g") = R(e) f(9)] < |12 '/ZF\G (W (g’ h) = W(g, h)* dh

The uniform continuity of ¥ and the finite measure of the quotient ZT'\G complete the argument. ///

21. Discrete decomposition of compact-quotient L*(ZTI'\G, w)

Keep the previous assumptions. In particular, ZI'\G is compact.

[21.0.1] Theorem: Under the right translation action R of G, the Hilbert space L?*(ZT'\G,w) is the
completed direct sum of m-isotypic subspaces L?(ZT\G,w)™ where 7 varies over isomorphism classes of
irreducible unitary representations. Further, the multiplicity of each such 7 is finite. Thus,

L*(ZT\G,w) ~ @ My T (Mg < 00)

Proof: This will be a corollary of the compactness of the operators R(¢) proven above for ¢ € C2(G).

Take ¢ € C2(G) such that ¢* = ¢, where p*(g) = ¢(¢g~1). Then R(yp) is a self-adjoint compact operator on
X = L?(ZT\G,w), so gives a decomposition

X = @Ax(x)

where X () is the M-eigenspace, and is finite-dimensional for A £ 0. We need

[21.0.2] Lemma: Take v # 0 in X(\) with X # 0. Let W be the closure of the subspace of X spanned by
R(g)v for g € G. Then W is Artinian as a G-space, that is, a descending chain of closed G-stable subspaces
must stabilize after finitely-many steps. In particular, W contains a non-zero irreducible closed G-space.

Proof: (of lemma) For closed G-subspaces W1 C Wy C W with W # W, we will show that
Wi(A) # Wa(A)

Let p; be the orthogonal projection to W;. These are G-maps, so commute with 7' = R(ip). If Wi (X) = Wa(A),
then necessarily p;(v) = pa(v), so

R(G) - pi(v) = pi(R(G) - v) = p;(dense subspace of W) = dense subspace of W;

Since the W; are closed, they are equal. Since the A-eigenspaces are finite-dimensional, in effect we have
shown that the dimension of the A-eigenspaces may be used to unambiguously index closed G-subspaces
of W. Thus we obtain the Artinian-ness. In particular, we can take X, to be a minimal non-zero closed
subspace of W, thus an irreducible G-space. ///

Returning to the proof of the theorem, let {X,} be a maximal set of irreducible subrepresentations such
that ) X0 = @, Xo. (Invoke Zorn’s lemma.) Suppose that the closure of this sum is not the whole space
X. Let X’ be the orthogonal complement of this closure. Existence of approximate identities assures that
there is ¢ € C2(G) such that R(p # 0 on X’. Then either R(p + ¢*) or R(p — ¢*)/i is non-zero, and
yields a non-zero self-adjoint compact operator on X’. Then the lemma implies that X’ has a non-zero
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irreducible subspace, contradicting maximality. That is, X = L?(ZI'\G,w) is the completion of a direct sum
of irreducibles.

To see that a m-isotype is of finite multiplicity, again use compactness of the operators from C2(G). With
» = p*, R(p) acts by scalar A on X™()\). Non-zero scalar operators are compact only for finite-dimensional
spaces, so X™(A) is finite-dimensional for A # 0. Given 7, take ¢ = ¢* such that R(y) is non-zero on the
representation space V. of 7, invoking the existence of approximate identities. Then V;(\) # 0 for some
non-zero A. The previous finite-dimensionality result gives

dime X™(\)

multiplicity of 7 = dime Vi (\) =

This finishes the proof of the theorem. ///

22. Peter-Weyl theorem for compact quotients

Keep the assumptions from above, in particular that ZT'\G is compact. Note that this includes the case
that G is compact and Z and I are trivial, thus incidentally applying to compact G. But the case that I is
non-trivial is more interesting.

[22.0.1] Theorem: Given f € C2(ZT\G,w) = C°(ZT\G,w), and given £ > 0, there is a finite set F of
irreducibles 7 occuring in X = L?(ZT'\G,w) and continuous f. in the m-isotype X™ of X, such that

f(g)_zfﬂ'

meF

sup <e€

geG

Proof: First, we need

[22.0.2] Lemma: For f uniformly continuous on G, and for an approximate identity ¢; in C2(G) (in the
strong sense, namely that the supports shrink to {1}), the functions

£(9) = R@) (o) = [ $gh)ei(h) dn
G
tend to f in sup norm.

Proof: (of lemma) Given ¢ > 0, take a neighborhood U of 1 such that |f(gu) — f(g)| < € for all g € G and
u € U. Take @; with support inside U. Then for all g € G, since the integral of ; is 1,

Ifi(g)—f(9>|=‘ [ it et - 1601 dh]< [oie=s

This proves the lemma. /1]

Thus, given f € C2(ZT\G,w), f is necessarily uniformaly continuous since |w| = 1 and ZT'\G is compact,
from the lemma take ¢ € C2(G) such that

sup |f — R(p)f| <e

On the other hand, f has an L? expansion

F="f (freX™)

all 7
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From above, there is a constant ¢ such that for all ¢ € X the image R(¢)v is in C¢(ZT'\G,w) and

[R(P)lsup < C - 9] 2

Take a finite set I’ of n’s such that

If =Y fl<e/C

TER
Then
IR(©)f = D R(@)frlwp < ¢
TeR
By remarks above, each R(¢)fr is continuous, and since R(p) stabilizes isotypes is still in X7. ///

[22.0.3] Corollary: In the above situation, for g € G, g not in ZT', for any unitary w there exists 7 occurring
in L?(ZT'\G,w) such that 7(g) # 1.

Proof: Since g is not in ZT, there is f € C2(ZT'\G,w) such that f(g) =1 and f(1g) = 0. Take a finite sum
> rer fx with fr in the 7-isotype in L?(ZI'\G, w) such that

fizfﬂ'

TEF

1

su < =
P 2

Then some f, must have different values at 1¢ and g. Thus,

R(g)f=(1) = fx(g) # f=(1)

so R(g)fx # f pointwise. Both f, and R(g)f. are continuous, so R(g)fr # fr in an L? sense. ///

23. Admissibility for compact quotients

Suppose that G has a compact open subgroup K, that ZI'\G is compact, and w is a unitary character of Z.

[23.0.1] Corollary: For 7 irreducible unitary occuring in L?(ZT'\G,w) with ZT'\G' compact, for a compact
open subgroup K of G, the space

VE —{v eV, :n(k)v=uoforall k € K}
of K-invariant vectors in the representation space V; of 7 is finite-dimensional:

dime VE < oo

Proof: As earlier, the trick is that we can let
¢ = characteristic function of K /meas (K)

Then the right-translation action R(y) is the identity map on V.X. From above, R(y) is compact. Since
a non-zero scalar operator is compact only on finite-dimensional spaces, we have the finiteness conclusion.

"
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24. Unitarizability of representations of compact groups

We specialize our considerations to compact G.

[24.0.1] Theorem: Let V, (,) be a Hilbert space, G' a compact group, and m : G x V — V a continuous, not
necessarily unitary, representation. Then there is another inner product (,)pew on V such that the topology
given by the new inner product on V is the same as the old topology. That is, there are 0 < ¢ < ¢’ < oo
such that for all v € V

¢ 1,0) < (U, V)new < ¢ (v, 0)

and 7 is unitary with respect to the new inner product.
Proof: By continuity, for all v the set {m(g)v : g € G} is compact (in V), so bounded. Thus, by Banach-

Steinhaus (uniform boundedness), the operators m(g) are uniformly equicontinuous. Thus, given € > 0, the
exists § > 0 such that for all v € V and for all g € G

|[v| <6 implies |m(g)v|<e

Take € = 1. With the corresponding 6 > 0

| =

[v] <1 implies |m(g)v| <

Thus, the operator norm of 7(g) is at most 1/ for all g. That is,

1

rlg)ol < 5 I
Replacing g by ¢g~! and v by 7(g)v, we also have

o] < 5 In(g)v]

vl < 5 lmlg)v
which yields

§|v| < [m(g)v]
Therefore,

1
62 |v|? - meas (G) < /G |7 (g)v]*dg < 3 |v]? - meas (G)

Let

020y = /G i (g)ol? dg

This is clearly G-invariant, and the inequality shows that the topologies are the same. Of course, not every
norm arises from an inequality. We must show that

‘U + U|121ew - |u - U‘iew =2 |u|121ew + 2|v|1216w

But this just follows from integrating the corresponding identity for the old norm. ///

Therefore, all our prior discussion of unitary representations applies to arbitrary (continuous) Hilbert-space
representations of compact groups.

[24.0.2] Corollary: A finite-dimensional continuous representation of compact G is a direct sum of
irreducibles. Any finite-dimensional representation of compact G is unitarizable.
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Proof: From basic functional analysis, a finite-dimensional topological vector space has a unique Hausdorff
topology such that vector addition and scalar multiplication are continuous. Thus, without loss of generality
we may suppose that the representation space is C™ with the usual inner product.

Certainly finite-dimensional spaces are Artinian, so an easy induction on dimension proves that finite-
dimensional G-spaces decompose as orthogonal direct sums of irreducibles. ///

25. Compact G and compact Z\G

The previous results are decisive for G and Z\G compact, with Z a closed subgroup of the center of G.
One can think of the simple case in which Z = {1} if one wants, but we will not treat this separately. The
following assertions are special cases or nearly immediate corollaries of prior results. These results are often
proven in their own right, but here it is economical to obtain them as corollaries.

[25.0.1] Corollary: Let Z\G be compact. (Necessarily G' is unimodular.) Then

(i) Every irreudible unitary 7 of Z\G is finite-dimensional, and is in the discrete series L?(Z\G,w) for the
unitary character w obtained by restricting 7 to the closed central Z.

(ii) For a unitary character w of Z, the biregular representation of G x G on L?(Z\G,w) decomposes the
latter Hilbert space as

L*(Z\G,w) ~ @lezw TR

and the right regular representation decomposes as

—

L%Z\G,w)%@ L dimm -7

(iii) (Peter-Weyl) The subspace ™ ® 7* of L*(Z\G,w) consists entirely of continuous functions. Given
f e CZ\G,w), and given € > 0, there is a finite set F of irreducibles 7 and f, € 7 ® 7* such that

sup |f(g Zf”|<5

geG reF
(iv) For an irreducible unitary = of G,

dimc 7

meas (Z\G)

formal degree of m =

Proof: The fundamental point here is that the compactness of Z\G implies that every matrix coefficient
function ¢y, is square integrable modulo the center. Thus, all irreducibles are discrete series representations.

And with T' = {1}, the quotient ZT'\G = Z\G is compact, so every irreducible occurs with finite multiplicity.
Then the decomposition of the biregular representation

L*(Z\G,w QB et
shows that the multiplicity of w is dim7*. Thus, the dimension of 7*, hence of 7, is finite.

Since by the existence of approximate identitities there is 7 such that R(p)m ® 7* is dense in 7 ® 7*, and
since ™ ® 7* is finite-dimensional, the image is the whole # @ 7*. And each R(w)f is continuous. Then the
remainder of the Peter-Weyl assertion follows from the general case.

Last, let e; be an orthonormal basis for a (finite-dimensional, from above) irreducible unitary =, and write
Cij = Cese; - Then by Plancherel-Parseval and unitariness

Z\Czﬂz ZZ g)ei, e;)] Z|7r el|2 Z\el|2 ledimﬂ

ij
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Then
/ > leij(9)I dg = dim 7 - meas (2\G)
Z

\G

On the other hand, by the Schur inner-product relations,
1 (dim )?
S lelo)Pdg = Y o =
/Z\G 7 7 dr dr

Comparing these two equalities gives the assertion. ///

26. Induced representations with Ay = Aq|g
Our point is simply to give the definition in this case, and see that it gives a means of constructing unitary
representations of G from unitary representations of H.

Let H be a closed subgroup of G with the modular function condition Ay = Ag|g met, so that there is a
right G-invariant measure on H\G. Let o, V, be a unitary (not necessarily irreducible) representation of H,
and let

COUE\G. o) — continuous V,-valued functions f on G, compactly supported left
¢(H\G, ) = | odulo H, such that f(hg) =o(h)f(g) forallh€ H and g € G

We let G act by the right translation action R. For f; and fo in C2(H\G, o, define an inner product by

Ur fo) = /H (0. ala))odo

The unitariness of o assure that the integrand depends only upon the coset Hg. And it is clear that the
right translation action of G preserves this inner product. Let

md$ o = Ind$ o = L2(H\G, 0)

be the completion of CO(H\G, o) with respect to the metric associated to the norm associated to this inner
product. This is a unitary representation of G.

For example, with ¢ = 1 on V,, = C, this simplifies to
nd$ 1~ L*(H\G)

[26.0.1] Remark: There are many other genres of induced representations, hence an inevitable need for
clarification from context.

27. Principal series Ind% o A/

Now drop the modular function condition for a right-invariant measure on P\G for a closed subgroup P of
G. Instead, suppose that G is unimodular, and that there is a compact subgroup K of G such that we have

an Iwasawa decomposition
G=P -K={pk:pePkeK}

Let A denote the modular function of P. For f; and f5 in

Co(P\G, Al /2g) = {continuous V,-valued functions f on G, compactly supported left}

modulo P, such that f(pg) = AY20(p)f(g) for p€ P and g € G
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define
i f) = /K (1(9). fo(9))o di

Note that the integration is over the compact subgroup K, not over the whole group GG. While it is clear that
G acts by right translations R on C2(P\G,A'?0), it is not at all clear that G preserves the inner product
defined just above. In fact, it might not be entirely clear that this pairing is positive-definite.

[27.0. 1] Theorem: The inner product defined above is G-invariant and positive-definite, and the completion
is a unitary representation of G.

Proof: We need

[27.0.2] Lemma: The functional on C2(G) defined by

fo [ rwh) s

with right Haar measure dp and dk on P and K is a right Haar integral. That is, it is invariant under right
translation of f by elements of G.

Proof: (of lemma) The group P x K acts transitively on G = PK by (p,k)(g) = pgk™!, and the isotropy

group of 14 is
©={0,0):0e PNK}CPxK

which is compact since P is closed and K is compact. Then
Ao =1=Apxk|©
since © is compact, so G & (P x K)/© has a unique right P x K-invariant measure y (up to constants). Let

g be the quotient map
PxK— (PxK)/Oo~G

The lemma just below shows that this map is a homeomorphism. Compute

_ _dp_
| t@aute)= [ [ st 5 ar

since % is a left Haar measure on P. This is

| w5t a= [ [ o S a

since K is unimodular (being compact). On the other hand, the usual Haar integral on G also is left P-
invariant and right K-invariant. The uniqueness result proves that the double integral in terms of P and K
must be a multiple of the usual Haar integral. ///

Returning to the proof of the theorem, the function

U(g) = (f1(9), f2(9))

is in C2(P\G, A), so by the general result on surjectivity of averaging maps there is 1 in C¢(G) such that

W(g) = /P Ap)(pg) dp
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Then

(R(g)f1, R(g)f2) = /K R(g)¥ (k) dk = /K U(kg) dk = /K /P w<pkg>j(’;)dk: /G (hg) dh = /G (h) dh

by the lemma, and then replacing h by hg~'. Thus, the inner product is G-invariant. The positive-

definiteness follows similarly, and the unitariness on the completion is then clear. ///
Finally, we prove the following standard lemma on comparison of topologies.

[27.0.3] Lemma: Let G be a locally compact, Hausdorff topological group, with a countable basis. Let X
be a Hausdorff topological space with a continuous transitive action of G upon it. (The map G x X — X is
continuous.) Let xg be a fixed element of X, and let

Gz ={9 € G: gxo = 70}
be the isotropy group of g in G. Then the natural map
G/Gzy =+ X
by ¢G4, = gxo is a homeomorphism.

Proof: The map gG,, — gxo is a continuous bijection, by assumption. We need to show that it is open.
Let U be an open subset of G, and take a compact neighborhood V of 1 € G sothat V™! =V and gV2 Cc U
for fixed g € U. Since G has a countable basis, there is a countable list g1, g, ... of elements of G so that
G =, 9iV. Let W,, = g,Vx,. By the transitivity, X = (J, W;. Now W, is compact, being a continuous
image of a compact set, so is closed since X is Hausdorff.

Since X is locally compact and Hausdorff, by Urysohn’s Lemma it is regular. In particular, if no W,, contained
an open set, then there would be a sequence of non-empty open sets U,, with compact closure in X so that

Un—l - Wn—l D Un

and - - -
U DU, DU3D...

Then (" U; # 0, yet this intersection fails to meet any W,,, contradiction.
Therefore, some W,,, = g,V xg contains an open set S of X. For h € V so that hxg € S,
gro = gh™thag € gh™'S C gh™'WVayg C gV - Vg C Uxg

Therefore, gz is an interior point of Uxg, for all g € U. ///

28. Frobenius reciprocity for discrete series

We introduce only a special case of Frobenius reciprocity provable in this general setting, and applicable to
unitary representations.

Let Z be a closed central subgroup of unimodular G, and Z C H C G for another closed subgroup H with
Z\H compact. Fix a unitary character w of Z. Let 7 be an irreducible subrepresentation of L?(Z\G,w),
that is, in the discrete series of G with central character w. Let o be an irreducible unitary of H (hence,
from above, finite-dimensional, since Z\ H is compact).

[28.0.1] Theorem:

Homg (7, Ind$ o) ~¢ Homp (7|5, o)
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Proof: We need

[28.0.2] Lemma: Letting H act on L?(Z\G,w) by left translation L, we have a natural isomorphism
md% o ~ (L*(Z2\G,w) @ o)

That is, the induced representation is the H-fixed vectors in the indicated tensor product.

Proof: (of Lemma) Since Z\H is compact,

L*(H\G,0) C L*(Z\G,w)

Map
L*(Z2\G,w)® o) = L?(Z\G,w)
by
(feuv)g)=flg)-v
Since o is finite-dimensional the conclusion of the lemma is immediate and formal. ///

For the theorem, using the lemma,
Homg (7, Ind% o) = Homg(m, L2(H\G, o)) = Homg(r, (L*(Z\G,w) @ o))

= Homg (7, m — isotype in (L*(Z\G,w) ® 0)") = Homg (7, ((1 @ ) @ o))

since the actions of G and H commute, by our decomposition results for discrete series in the biregular
representation. Continuing, this is

Homg (m,7 @ (7* @ o)) ~ (7* @ 0)! ~ Homp (7|, 0)

since o is finite-dimensional. /]

29. Traces, characters, central functions for Z\G compact

Take Z\G compact with Z a closed subgroup of the center of G (so G is unimodular). From above, every
irreducible unitary of G is finite dimensional, with some unitary central w on Z.

[29.0.1] Definition: Let 7,V be an irreducible (finite-dimensional) of G. The character X of 7 is the
function on G defined by

Xx(g) = trace w(g) = > (m(g)es, e:)

%

for any orthonormal basis e; of 7.

[29.0.2] Remark: If 7 were not finite-dimensional, the character y, of m could not be defined as a pointwise-
evaluatable function, but only as some more general sort of entity. Such a discussion would require more
structure on G, as well as hypotheses on 7.

[29.0.3] Definition: The central functions L2, (Z\G,w) in L*(Z\G,w) are the conjugation-invariant
functions

Lien(Z2\G,w) = {f € L*(Z\G,w) : f(h™"gh) = f(g) for h,g € G}

(The equalities are in the almost-everywhere sense.) Since the defining conditions are closed conditions, this
is a closed subspace of L?(Z\G,w), though it is not generally G-stable. Of course it is stable under the
conjugation action of G

Tconj (h)f(g) = f(hilgh)
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Also, L?(Z\G,w) is a unitary representation of G' with the conjugation action, and so L2, (Z\G,w) is unitary

cen
under this action, as well. The central character under the conjugation action is trivial.

Since trace is invariant under conjugation, it is immediate that each x, is a central function.
[29.0.4] Theorem: The collection

{Xx : 7 irreducible , 7|Z = w}
is an orthogonal basis for L2, (Z\G,w), and

<X7r7 X7r> = meas (Z\G)

Proof: The orthogonality and inner products’ values follow from the expression of y, in terms of matrix
coefficient functions, from Schur’s inner product relations, and from the fact that d, = dim(7)/meas (Z\G)
for Z\G compact.

Since by the compactness of Z\G

—

L*(2\G,w) =P TR

7T|ZZ<.0

and 7 ® 7* is conjugation-stable, it suffices to show that the central functions in 7 ® 7* are exactly the
multiples of x,. From above the central functions in 7 ® 7* (using finite-dimensionality of 7, V')

(Vo VY~ Homg(V,V) ~ C

since 7 is irreducible, invoking (an easy case of) Schur’s lemma. That is, the space of central functions in
7 ® 7* is one-dimensional, so must be just C - x. ///

[29.0.5] Corollary: With G as above, the characters of mutually non-isomorphic irreducible unitary
representations are linearly independent. ///

[29.0.6] Corollary: Two irreducible unitary representations of G are isomorphic if and only if their
characters are equal. ///

30. Complete reducibility for Z\G compact

Let 0,V, be an arbitrary (not necessarily irreducible, nor necessarily finite-dimensional) unitary represen-
tation of G, such that o]z is scalar w, where w is a unitary character of the closed central subgroup Z,
and Z\G is compact. The following theorem asserts that ¢ is completely reducible, meaning that it is a
(completed) direct sum of irreducibles.

[30.0.1] Theorem: With these hypotheses, o decomposes as a (completed) orthogonal direct sum of its
isotypic components, as
~ o
Vo~ P Vs

where 7 runs over isomorphism classes of irreducible unitary representations of G with central character w,
and V[ is the m-isotypic component of V. The orthogonal projector to the m-isotypic component is

4x(v) = / (@) o(g)v dg / meas (Z\G)
Z\G

[30.0.2] Remark: Decomposition as a sum rather than a more general integral of irreducibles can be
guaranteed only under various relatively special hypotheses. This discreteness property fails in very simple
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circumstances, such as L?(R) with the translation action of R. The Fourier Inversion formula exactly
expresses this Hilbert space as an integral of one-dimensional spaces, each spanned by x — e*®, but these
exponential functions do not themselves lie inside L?(R).

Proof: The orthogonal complement of the indicated sum is certainly a G' subspace of V,. Thus, it suffices
to show that if VI = 0 for all 7 then V, = 0.

Fix w € V,,. Define T : V,, — L*(Z\G,w) by

We have continuity:

1o = [

(o(g)v, w)? dg < / o (g)u]? - Jwl? dg = meas (Z\G) - [o]? - |w]?
Z\G Z\G

by Cauchy-Schwarz-Bunyakowsky and unitariness, and using the finiteness of the measure of Z\G. Since we
have the decomposition

L*(Z\G,w) = @WTF ®*

(for 7 running over irreducibles with central character w), T' composed with some orthogonal projector g, to
an isotypic subspace 7 ® 7* must be non-zero. Then ¢, o T gives a non-zero isomorphism from ker (g, o T')*
to a m-isotypic subspace, contradiction.

To prove the last assertion about orthogonal projections: the integral for ¢m exists in a strong sense: as Z\G
is compact there is ¢ € C2(G) such that

Xr(9) = / w(z) " p(2g) dz
z
by the surjectivity of these averaging maps (proven earlier). Thus, by integration theory,

gx = 0(p/meas (Z\G))

Therefore, it suffices to take v in a copy of V. inside V,, where 7’ is an irreducible, and show that

qﬂ(v):{o T

v T

To this end, we compute

meas (Z\G) - gx(o(g)v) = /

W olhgvdh = [ () olghudn

Z\G Z\G

by replacing h by ghg™', using the central-ness of x.. This makes visible the fact that the map ¢, is a
G-hom, so on any irreducible V, is a scalar (by Schur). To evaluate this scalar, we may as well compute
inside L?(Z\G,w), for example on the function x, . The latter is a continuous function, so has unambiguous
pointwise values (unlike an L? function), so the scalar is 0 for 7 % 7', and for 7 ~ 7’ it is

0 (xx)(1) e Xw (@) Xx(9)dg (dim7)?2 1 B
X-(1)  meas(Z\G) -dim7  dg meas (Z\G) - dim7
by Schur’s inner product relations. ///
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31. Tensor factorization of irreducibles of G x G’

We showed earlier that (external) tensor products m ® 7’ of irreducible unitaries 7 and 7’ of G and G’ yield
irreducible unitaries of G x G’. The converse is not true without some additional hypotheses on G or G’.
The easiest first case is the following.

[31.0.1] Theorem: Suppose that Z\G is compact, for a closed subgroup Z of the center of G. Then any
irreducible unitary o of G x G’ is isomorphic to = ® 7’ for an irreducible (finite-dimensional) unitary 7 of G
and an irreducible unitary 7’ of G'.

Proof: From Schur’s lemma, o is scalar on the center of G x G’. Thus, from the previous result for some 7, V'
irreducible unitary of G the m-isotype ¢™ is non-zero. As V is finite-dimensional (since Z\G is compact),

Homg(V,V,) = (V* @ V,)¢

And V* ® V is a Hilbert space (since V* is finite-dimensional), so its fixed vectors (V* ® V)¢ under G are
a Hilbert space as well, being the intersection of closed linear subspaces. Further, (V* @ V,) is a unitary
representation 7/, V' of G’. Define

T VeV =V,

by
T(v®p) = p(v)

using the fact that V' consists of linear maps from V to V,. This map is continuous, is a G x G'-
homomorphisms. Since V, is irreducible, and the map is not the zero map, T must be a surjection. We
must show that it is injective. Indeed, if >, ;(v;) = 0, with a finite set of linearly independent ¢;, then
©1(v1) is in the sum of the images of the other ¢;, so v; = 0 by linear independence of the maps ¢;. Thus,
T is injective. And, last, if 7’ had a proper closed G’-subspace then © ® 7’ would also have a proper closed
G x G'-subspace, contradicting the irreducibility. ///

32. Unitarizability and positive-definite functions

Sometimes a representation’s potential to be completed to a unitary Hilbert space representation is not
entirely clear.

Let V' be a complex vector space (not necessarily with a topology), and
m:G— GLg(V)

a group homomorphism from a topological group G to the group of all C-linear automorphisms of V' (with
no topological requirements).

[32.0.1] Definition: The representation 7 is unitarizable or pre-unitary if there is an inner product (, )
on V (that is, a positive-definite hermitian form) so that
(i) with the metric topology on V from the norm |v| = (v,v)!/? for all v € V the map g — 7(g)v is a

continuous function G — V', and
(ii) (,) is G-invariant, in the sense that

(m(g),v,7(g)w) = (v, w)
for all v,w € V and g € G.
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[32.0.2] Proposition: In the situation just described, a unitarizable representation m can be extended
(continuously) to give a unitary representation of G on the Hilbert space V' obtained by completing V' with
respect to the norm.

Proof: The proof proceeds in the natural manner. Define 7 on V in the obvious way: for v; in V and v; — ©
with © in the completion, try to define

7(g)v = lim 7(g)v;

7

Since 7(g) is unitary, 7(g)v; is still a Cauchy sequence, so has a limit 7(g)? in the completion. It is easy
to check that this extension is still C-linear and preserves inner products. Then, given ¢ > 0 and & € V,
choose v € V such that || < . Choose a small enough neighborhood U of g such that for h € U we have
|7(h)v — m(g)v|] < e. Then

[7(9)0 — 7 (h)o] < |7(9)0 — m(g)v| + |w(g)v — m(h)v| + |7 (h)v — 7 (h)0]
=0—v|+|r(g)v—7m(h)v|+|v -0 <e+e+e

This proves the required continuity. ///

[32.0.3] Definition: A function f € C°(G) is positive definite if, for all finite sets of g; in G and ¢; in C,

> g te) >0
ij

[32.0.4] Lemma: If f is a positive definite function, then f(1) >0, f(¢~') = f(g), and |f(g)| < f(1).

Proof: Taking a single element g; in G and ¢; = 1, we obtain f(1) > 0. The other two assertions will
be obtained by taking the set of elements 1,¢ in G and complex numbers 1,z. The definition of positive-
definiteness gives

FOA+22) +2f(g7 ") +2f(9) = 0

Therefore, for all complex z, zf(g~1) + Zf(g) is real. Taking z = 1 and z = i gives two equations solution
of which yields f(g=! = f(g). If f(g) =0, the fact that f(1) > 0 trivially gives |f(g)| < f(1). Now suppose
that f(g) # 0. Let

with ¢ real. Using f(g~' = f(g) we have
FOQA+) +2t|f(g)) =0

for all t € R. The minimum of the left-hand side occurs where the derivative with respect to ¢ is 0, namely
where

2t f() +2[f(9)| =0

or

t=—|f(g)l/f(1)
Substituting this back into the inequality, and multiplying through by an additional factor of f(1), we have

2
fﬂfﬂ+(@%@)]—mﬂmﬁ>o

or

FO?*+1f @) = 2lf(9))* = 0
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from which we obtain f(1) > |f(g)|- ///

[32.0.5] Theorem: Let f be a positive definite function on G, and V the C-vectorspace of all finite
linear combinations of right translates of f by G, with G acting on V' by right translations R. Then V is
unitarizable, with inner product given by the formula

<Z ciR(gi)f, ZCjR(Qj)f> = Z i f(g;'9:) 20

Conversely, for any unitary representation 7 of G on a Hilbert space V, for any v € V' the matrix coefficient
function f(g) = (m(g)v,v) is positive definite.

Proof: First we prove the easy half. Let 7 be unitary. Then
0< \Zcﬂf(gi)UF = Z (cicjm(gi)vi, m(gj)v) = Z (cicim(gy) m(gi)vi,v) = Z <CiFjW(gflgi)vi,U>
i ij ij ij
by unitariness.
On the other hand, suppose f is positive definite. Let
E(9)=> cif(9g:) Flg)=_d;f(gh)
i J
Using f(g~") = f(9),

(B F) =) eidi f(h'g:) = 3 diB(h") = eiF ()

Thus, the inner product (E, F) is independent of the expressions for E and F, but only depends on the
functions. That is, the inner product is well-defined.

That the inner product has the positive semi-definiteness property (F, F') > 0 is immediate from the definition
of positive-definiteness. Therefore, a Cauchy-Schwarz-Bunyakowsky in equality holds for it, even without
knowing that the inner product is actually positive definite. Thus, if (F, F') = 0, then

F(g) =Y cif(99:) = (F,Ryf)

%

and then
[F(9) = [(F, Ry f)|? < (F,F) - (Ryf, Ry f)

from which F is identically 0. Thus, (,) is positive definite, not merely semi-definite.

For G-invariance, expanding the definition makes clear that it was designed to ensure this invariance:

(RgE, RyF) = Z cid; f((ghy) ™" (99:) = Z cid; f(hy ' g:) = (E,F)

ij ij
The continuity is not difficult. Using unitariness and G-invariance
|RyF — R,F|? = (RgF,RyF) — (RyF, R, F) — (R F,RyF) + (RLF, R, F)

= (F,F) = (RyF, Ry F) — (RyF, RyF) + (F,F) = _cie; (2f(g}9:) — f(g; " h""99:) — f(g; "9 "hgs))

ij
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As g approaches h, the continuity of f assures that both f(g;lh_lggi) and f(g;lg_lhgi) approach f(g;lgi).
Since the sums are finite, this shows that the whole approaches 0. ///

33. Type I groups, CCR/liminal groups

Returning to the question of factoring irreducible unitaries of G X G’ as tensor products of irreducibles of G
and G’, we can isolate some useful technical properties while explaining definitions. Similar preparations are
relevant to a second eventual goal, that of a spectral decomposition of L2(Z\G) and/or L*(ZT\G) without
the assumption of compactness of Z\G or ZI'\G.

Let S be a set of continuous linear operators on a Hilbert space V. The commutator S’ of S is defined to
be
S" = {T continuous linear operators on V : T® = ®T for all € S}

[33.0.1] Definition: A factor representation 7 of a group G on a Hilbert space V is a (usually unitary)
representation 7 such that
7(G) N7(G) = scalar operators

[33.0.2] Remark: Schur’s lemma implies that irreducible unitary representations m, V have this property,
since in that case already the commutator is small:
7(G) = scalar operators

[33.0.3] Definition: A unitary Hilbert space representation o,V, of G is (strongly) isotypic if it is a
(completed orthogonal) direct sum
Vo & @aeA Va

of irreducible unitaries 7, V, all isomorphic to a single irreducible unitary 7, V. To be more specific, we
could say that o is m-isotypic.

[33.0.4] Definition: A topological group G is type I if every factor representation is (strongly) isotypic.

[33.0.5] Definition: A topological group G is CCR (Kaplansky’s ‘completely continuous representations’)
or (Dixmier’s) liminal or liminaire if for every irreducible unitary representation 7,V of G the image in
End(V) of C2(G) consists entirely of compact operators.

The following result is not too hard, but we will not prove it here just now.

[33.0.6] Proposition: If G is a Type I group and if 7 is an irreducible unitary Hilbert space representation
of G x H, then 7 is of the form 7 ® w9 where 7y is an irreducible unitary representation of G and w5 is an
irreducible unitary representation of H.

The first general theorem we would want to prove is

[33.0.7] Theorem: Liminal groups are Type 1.

The second theorem we eventually would want to prove, for applications to representations of adele groups,
especially automorphic representations, is

[33.0.8] Theorem: A real, complex, or p-adic reductive group is liminal, hence of Type L

[33.0.9] Remark: In fact, the proof of the liminality proceeds by showing something stronger, namely that
each irreducible unitary 7,V of these reductive groups G is admissible in the sense that for a maximal
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compact subgroup K for each irreducible p of K the p-isotype V7 is of finite multiplicity (equivalently, of
finite dimension). The proof of admissibility is non-trivial. Then one notes that the K-conjugation-invariant
elements of C?(G) stabilize the K-isotypic components, so are finite rank operators. Thus, the closure (in
operator norm) would consist entirely of compact operators. These conjugation-invariant functions are dense
in C2(G) in the L! norm, so all of C2(G) consists of compact operators.

[33.0.10] Remark: The following bibliography is meant to give a rough idea of the chronology of some
aspects of abstract harmonic analysis. The papers (as opposed to monographs or texts) mentioned below
are typically one of the earliest in a series of several papers on related matters by the same author(s). One
thing we have neglected in our discussion is the general finer structure theory of topological groups, though
this was a topic of interest in the earlier works in abstract harmonic analysis.
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