An unlikely distribution

> Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

First, a well-known example: the principal-value integral

$$
\eta(f)=\lim _{\varepsilon \rightarrow 0^{+}} \int_{|x| \geq \varepsilon} \frac{f(x)}{x} d x \quad \quad \text { (test functions } f \text {) }
$$

is a distribution, and satisfies $x \cdot \eta=1$: for test functions f,

$$
(x \cdot \eta)(f)=\eta(x \cdot f)=\lim _{\varepsilon \rightarrow 0^{+}} \int_{|x| \geq \varepsilon} \frac{x \cdot f(x)}{x} d x=\lim _{\varepsilon \rightarrow 0^{+}} \int_{|x| \geq \varepsilon} f(x) d x=\int_{\mathbb{R}} 1 \cdot f(x) d x=1(f)
$$

However, this does not imply (by the obvious symbolic division), that η is (integration-against) $1 / x$. Among other obstacles, $1 / x$ is not locally L^{1}. Nevertheless, again, $x \cdot \eta=1$, as distributions.

Compatibly, the meromorphic family of odd distributions $\operatorname{sgn}(x) /|x|^{s}$ has a meromorphic continuation to $s \in \mathbb{C}$, and is discovered to be holomorphic at $s=1$, for various reasons. From this, some incarnation of the pointwise function $\operatorname{sgn}(x) /|x|=1 / x$ gives a distribution, despite the pointwise function $1 / x$ not being locally L^{1}. As checked above, the principal value integral against $1 / x$ is one formulaic expression for this distribution.

In considerable parallel, the even function $v=1 /|x|$ is not locally L^{1}. It satisfies $x \cdot v=\operatorname{sgn}(x)$. Note that $\operatorname{sgn}(x)$ is the odd degree-zero distribution, 1 is the even degree-zero distribution, and

$$
x \cdot 1 / x=1 \quad x \cdot 1 /|x|=\operatorname{sgn}(x) \quad \text { (as pointwise functions) }
$$

However, in contrast to the odd case, the corresponding family of even distributions, $1 /|x|^{s}$, does have a pole at $s=1$, and the residue is (a constant multiple of) δ. Further:
[0.1] Claim: The integrate-against- $1 /|x|$ functional does not extend from the subspace of test functions vanishing at 0 to an even, homogeneous distribution.

Proof: Suppose it did extend to such a functional u. Let f be a test function. For $t>0$, by homogeneity,

$$
0=u(f)-u(f \circ t)=u(f-f \circ t)
$$

Since $f-f \circ t$ vanishes at 0 ,

$$
u(f-f \circ t)=\int_{\mathbb{R}} \frac{1}{|x|}(f(x)-f(t x)) d x
$$

Let f be positive and monotone decreasing going away from 0 , so that the derivative is positive to the left and negative to the right. For $t>1$ and all $x \neq 0, f(x)-f(t x)>0$, so

$$
0=\int_{\mathbb{R}} \frac{1}{|x|}(f(x)-f(t x)) d x>0
$$

contradiction.
Thus, although $x \cdot 1 /|x|=\operatorname{sgn}(x)$ as a pointwise function away from $0,1 /|x|$ does not extend to a homogeneous, even distribution. (Of course, Hahn-Banach or more direct constructions can make some extension, but it will not be homogeneous and even.)

Nevertheless, we claim that there is an even (tempered) distribution v such that $x \cdot v=\operatorname{sgn}$. This would seem to suggest that (in some regularized sense) $v=\operatorname{sgn} / x=1 /|x|$, which would contradict the demonstrated
non-existence of a reasonable regularization of $1 /|x|$. Also, the equation $x \cdot v=\operatorname{sgn}$ might suggest that v is homogeneous (at least up to some multiple of δ, which is annihilated by multiplication by x).
[0.2] Claim: (Up to constants) the Fourier transform \widehat{u} of $u=\log |x|$ satisfies $x \cdot \widehat{u}=\operatorname{sgn}$.
Proof: First, $\partial u / \partial x=\eta$. Taking Fourier transform, up to constants,

$$
x \cdot \widehat{u}=\widehat{\eta}=\operatorname{sgn}
$$

by computing one way or another that the Fourier transform of η is a multiple of sgn.
[0.3] To distinguish the two cases, note that 1 and sgn are the two degree-zero positive-homogeneous distributions, even and odd, respectively. Apply $\partial=\partial / \partial x$. With $x \cdot v=1$, this gives $\partial x v=0$, or $(x \partial+1) v=0$. In contrast, $x \cdot v=\operatorname{sgn}$ gives $(x \partial+1) v=2 \delta \neq 0$.

The differential equation $(x \partial-s) u=0$ is the equation for positive-homogeneity of degree s, so a solution to $(x \partial+1) v=0$ is positive-homogeneous of degree -1 , as we know the principle-value integral of $1 / x$ to be.

The differential equation $(x \partial+1) u=2 \delta$ is obviously not a homogeneous equation, so a solution u is not positive-homogeneous of degree -1 . Still, δ does satisfy $(x \partial+1) \delta=0$, as expected from its positivehomogeneity of degree -1 . In particular, $(x \partial+1)^{2} u=0$. That is, u is a generalized eigenvector of the Euler operator $x \partial$.
[0.4] Origin of $\log |x|$ is in variation of parameters, which produces generalized eigenvectors from a parametrized family of eigenvectors. Here, the operator is the Euler operator $x \partial$, with addition constraints of parity. The case of immediate interest is even eigenfunctions and generalized eigenfunctions.
The meromorphic family $|x|^{s}$ with $s \in \mathbb{C}$ satisfies the eigenfunction equation(s) $(x \partial-s)|x|^{s}=0$. Differentiating with respect to s gives

$$
-|x|^{s}+(x \partial-s)\left(\log |x| \cdot|x|^{s}\right)=0
$$

or

$$
(x \partial-s)\left(\log |x| \cdot|x|^{s}\right)=|x|^{s}
$$

Thus, $(x \partial-s)^{2}\left(\log |x| \cdot|x|^{s}\right)=0$. Evaluating at $s=0,(x \partial) \log |x|=1$. As above, taking Fourier transform, $-\partial x \widehat{\log |x|}=\delta$, which gives

$$
(x \partial+1) \widehat{\log |x|}=-\delta
$$

