Solutions for Midterm 2

1. The first elimination ideal is generated by $y^2 - 1$. Since $y^2 - 1 = 0$ if and only if y = 1 or y = -1, the partial soultions are y = 1 and y = -1. The ideal I contains the polynomial $f = x^2y^2 + 2xy^3 - 1$ which is of degree 2 in x and the coefficient at x^2 in this polynomial is $g(y) = y^2$. Since g(y) does not vanish for y = 1, by the Extension Theorem the partial solution y = 1can be extended to a solution, i.e. V(I) contains a point whose y-coordinate equals 1. Since q(y) does not vanish for y = -1, by the Extension Theorem the partial solution y = -1 can be extended to a solution, i.e. V(I) contains a point whose y-coordinate equals -1.

2a. The idea is to eliminate x using the lex ordering x > y. We set

 $f_1 = x^2 + xy + y^2$ $f_2 = x^3 - x^2y + y^3$
$$\begin{split} \tilde{f_3} &= S(f_1,f_2) = \tilde{f_2} - xf_1 = x^3 - x^2y + y^3 - x^3 - x^2y - xy^2 = -2x^2y - xy^2 + y^3 \\ f_4 &= S(f_1,f_3) = f_3 + 2yf_1 = -2x^2y - xy^2 + y^3 + 2yx^2 + 2y^2x + 2y^3 = xy^2 + 3y^3. \end{split}$$

 $f_5 = S(f_1, f_4) = xf_4 - y^2f_1 = x^2y^2 + 3xy^3 - x^2y^2 - xy^3 - y^4 = 2xy^3 - y^4.$ $f_6 = S(f_4, f_5) = f_5 - 2yf_4 = 2xy^3 - y^4 - 2xy^3 - 6y^4 = -7y^4.$

Thus the ideal $I = (f_1, f_2)$ contains the polynomial $f_6 = -7y^4$. This polynomial must vanish at every point of V(I). But this polynomial vanishes only at y = 0. Therefore every point of V(I) has zero y-coordinate. Plugging y = 0 into f_1 we get the equation $x^2 = 0$ which has only one solution, x = 0. Therefore (0,0) is the only point on V(I).

2b. The radical of the ideal $I = (f_1, f_2)$ is the defining ideal of the variety V(I). Since V(I) consists of a single point (0,0), the defining ideal is (x,y).

3. Set $f = x^2 + 2xy - y^2 - 2x + 2y - 2$. We compute the partial derivatives of f with respect to x and y and set them equal to 0:

- $\frac{\partial f}{\partial x} = 2x + 2y 2 = 0$ $\frac{\partial f}{\partial y} = 2x 2y + 2 = 0$

This system of equations has just one solution: (0,1). But this point is not on the variety V(f) because $f(0,1) \neq 0$.

Answer: the variety V(f) has no singular points.

4. The variety of the ideal $I = (x^5, (x-y)^3(x+y+2)^4)$ consists of the solutions of the system of equations

 $x^5 = 0$

 $(x-y)^3(x+y+2)^4 = 0.$

The first equation implies x = 0. Plugging this into the second equation yields $y^3(y+2)^4 = 0$, i.e. either y = 0 or y = -2. Thus V(I) consists of two points, (0,0) and (0,-2). The polynomial x + y vanishes only at (0,0) but not at (0, -2). Since it does not vanish at every point of V(I), it does not belong to the radical of I.

Answer: No.

5a. The intersection of two principal ideals in a polynomial ring is generated by the LCM of the two polynomials, i.e. a basis of the intersection is the polynomial $h = (x + y + 1)^3 (x - y)^5 (2x + 4)^6 (x + y)^4$.

5b One has to compute a Groebner basis in the ring $\mathbb{C}[t, x, y]$ of the ideal $(tf_1, tf_2, (1-t)g_1, (1-t)g_2)$ with respect to the lex ordering t > x > y. The elements of this Groebner basis that do not contain the parameter t form a basis of $I \cap J$ in $\mathbb{C}[x, y]$.

6. The idea is to compute a basis of the first elimination ideal of $I = (f_1, f_2)$

where $f_1 = t^2 + t - x$ and $f_2 = t^3 - y$ with respect to the lex ordering t > x > y. $f_3 = S(f_1, f_2) = f_2 - tf_1 = t^3 - y - t^3 - t^2 + tx = -t^2 + tx - y$. $f_4 = S(f_3, f_1) = f_3 + f_1 = -t^2 + tx - y + t^2 + t - x = tx + t - x - y$. $f_5 = S(f_4, f_1) = tf_4 - xf_1 = t^2x + t^2 - tx - ty - t^2x - tx + x^2 = t^2 - 2tx - ty + x^2$.

 $f_6 = S(f_5, f_1) = f_5 + f_1 = t^2 - 2tx - ty + x^2 + t^2 + t - x = -2tx - ty + t + x^2 - x.$

At this point one could use a shortcut by noticing that both f_4 and f_6 are linear in t. Since $f_4 = t(x+1) - x - y$ and $f_6 = t(-2x - y + 1) + x^2 - x$, one can completely eliminate t by computing

 $f_7 = (x+1)f_6 - (-2x-y+1)f_4 = x^3 - 3yx - y^2 - y.$ Answer: $I(V) = (x^3 - 3yx - y^2 - y).$

7a. The resultant equals the following determinant

$$\det \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & c & 1 \\ 1 & 1 & 2 & c \\ 0 & 1 & 0 & 2 \end{bmatrix} = \det \begin{bmatrix} 1 & c & 1 \\ 1 & 2 & c \\ 1 & 0 & 2 \end{bmatrix} + \det \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & c \\ 0 & 1 & 2 \end{bmatrix}$$

which equals

$$\det \begin{bmatrix} c & 1 \\ 2 & c \end{bmatrix} + 2\det \begin{bmatrix} 1 & c \\ 1 & 2 \end{bmatrix} + \det \begin{bmatrix} 1 & c \\ 1 & 2 \end{bmatrix} - \det \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = c^2 - 3c + 3.$$

Answer: $c^2 - 3c + 3$.

7b. The polynomial $c^2 - 3c + 3$ has no roots in \mathbb{Q} . Therefore the polynomials f and g have no common factors in $\mathbb{Q}[x]$ for any value of the parameter c. The polynomial $c^2 - 3c + 3$ has roots $c_1 = \frac{3}{2} + \frac{\sqrt{3}}{2}i$ and $c_2 = \frac{3}{2} - \frac{\sqrt{3}}{2}i$ in \mathbb{C} . For these values of c the polynomials f and g have a common factor in $\mathbb{C}[x]$.

 $\mathbf{2}$