Solutions for Midterm 2

1. The first elimination ideal is generated by $y^{2}-1$. Since $y^{2}-1=0$ if and only if $y=1$ or $y=-1$, the partial soultions are $y=1$ and $y=-1$. The ideal I contains the polynomial $f=x^{2} y^{2}+2 x y^{3}-1$ which is of degree 2 in x and the coefficient at x^{2} in this polynomial is $g(y)=y^{2}$. Since $g(y)$ does not vanish for $y=1$, by the Extension Theorem the partial solution $y=1$ can be extended to a solution, i.e. $V(I)$ contains a point whose y-coordinate equals 1 . Since $g(y)$ does not vanish for $y=-1$, by the Extension Theorem the partial solution $y=-1$ can be extended to a solution, i.e. $V(I)$ contains a point whose y-coordinate equals -1 .

2a. The idea is to eliminate x using the lex ordering $x>y$. We set
$f_{1}=x^{2}+x y+y^{2}$
$f_{2}=x^{3}-x^{2} y+y^{3}$
$f_{3}=S\left(f_{1}, f_{2}\right)=f_{2}-x f_{1}=x^{3}-x^{2} y+y^{3}-x^{3}-x^{2} y-x y^{2}=-2 x^{2} y-x y^{2}+y^{3}$.
$f_{4}=S\left(f_{1}, f_{3}\right)=f_{3}+2 y f_{1}=-2 x^{2} y-x y^{2}+y^{3}+2 y x^{2}+2 y^{2} x+2 y^{3}=$ $x y^{2}+3 y^{3}$.
$f_{5}=S\left(f_{1}, f_{4}\right)=x f_{4}-y^{2} f_{1}=x^{2} y^{2}+3 x y^{3}-x^{2} y^{2}-x y^{3}-y^{4}=2 x y^{3}-y^{4}$.
$f_{6}=S\left(f_{4}, f_{5}\right)=f_{5}-2 y f_{4}=2 x y^{3}-y^{4}-2 x y^{3}-6 y^{4}=-7 y^{4}$.
Thus the ideal $I=\left(f_{1}, f_{2}\right)$ contains the polynomial $f_{6}=-7 y^{4}$. This polynomial must vanish at every point of $V(I)$. But this polynomial vanishes only at $y=0$. Therefore every point of $V(I)$ has zero y-coordinate. Plugging $y=0$ into f_{1} we get the equation $x^{2}=0$ which has only one solution, $x=0$. Therefore $(0,0)$ is the only point on $V(I)$.
$\mathbf{2 b}$. The radical of the ideal $I=\left(f_{1}, f_{2}\right)$ is the defining ideal of the variety $V(I)$. Since $V(I)$ consists of a single point $(0,0)$, the defining ideal is (x, y).
3. Set $f=x^{2}+2 x y-y^{2}-2 x+2 y-2$. We compute the partial derivatives of f with respect to x and y and set them equal to 0 :
$\frac{\partial f}{\partial x}=2 x+2 y-2=0$
$\frac{\partial f}{\partial y}=2 x-2 y+2=0$
This system of equations has just one solution: $(0,1)$. But this point is not on the variety $V(f)$ because $f(0,1) \neq 0$.

Answer: the variety $V(f)$ has no singular points.
4. The variety of the ideal $I=\left(x^{5},(x-y)^{3}(x+y+2)^{4}\right)$ consists of the solutions of the system of equations

$$
\begin{aligned}
& x^{5}=0 \\
& (x-y)^{3}(x+y+2)^{4}=0 .
\end{aligned}
$$

The first equation implies $x=0$. Plugging this into the second equation yields $y^{3}(y+2)^{4}=0$, i.e. either $y=0$ or $y=-2$. Thus $V(I)$ consists of two points, $(0,0)$ and $(0,-2)$. The polynomial $x+y$ vanishes only at $(0,0)$ but not at $(0,-2)$. Since it does not vanish at every point of $V(I)$, it does not belong to the radical of I.

Answer: No.
$\mathbf{5 a}$. The intersection of two principal ideals in a polynomial ring is generated by the LCM of the two polynomials, i.e. a basis of the intersection is the polynomial $h=(x+y+1)^{3}(x-y)^{5}(2 x+4)^{6}(x+y)^{4}$.
$\mathbf{5 b}$ One has to compute a Groebner basis in the ring $\mathbb{C}[t, x, y]$ of the ideal $\left(t f_{1}, t f_{2},(1-t) g_{1},(1-t) g_{2}\right)$ with respect to the lex ordering $t>x>y$. The elements of this Groebner basis that do not contain the parameter t form a basis of $I \cap J$ in $\mathbb{C}[x, y]$.
6. The idea is to compute a basis of the first elimination ideal of $I=\left(f_{1}, f_{2}\right)$ where $f_{1}=t^{2}+t-x$ and $f_{2}=t^{3}-y$ with respect to the lex ordering $t>x>y$.

$$
f_{3}=S\left(f_{1}, f_{2}\right)=f_{2}-t f_{1}=t^{3}-y-t^{3}-t^{2}+t x=-t^{2}+t x-y .
$$

$$
f_{4}=S\left(f_{3}, f_{1}\right)=f_{3}+f_{1}=-t^{2}+t x-y+t^{2}+t-x=t x+t-x-y .
$$

$$
f_{5}=S\left(f_{4}, f_{1}\right)=t f_{4}-x f_{1}=t^{2} x+t^{2}-t x-t y-t^{2} x-t x+x^{2}=
$$ $t^{2}-2 t x-t y+x^{2}$.

$f_{6}=S\left(f_{5}, f_{1}\right)=f_{5}+f_{1}=t^{2}-2 t x-t y+x^{2}+t^{2}+t-x=-2 t x-t y+t+x^{2}-x$.
At this point one could use a shortcut by noticing that both f_{4} and f_{6} are linear in t. Since $f_{4}=t(x+1)-x-y$ and $f_{6}=t(-2 x-y+1)+x^{2}-x$, one can completely eliminate t by computing
$f_{7}=(x+1) f_{6}-(-2 x-y+1) f_{4}=x^{3}-3 y x-y^{2}-y$.
Answer: $I(V)=\left(x^{3}-3 y x-y^{2}-y\right)$.
7a. The resultant equals the following determinant

$$
\operatorname{det}\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & c & 1 \\
1 & 1 & 2 & c \\
0 & 1 & 0 & 2
\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}
1 & c & 1 \\
1 & 2 & c \\
1 & 0 & 2
\end{array}\right]+\operatorname{det}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & c \\
0 & 1 & 2
\end{array}\right]
$$

which equals

$$
\operatorname{det}\left[\begin{array}{ll}
c & 1 \\
2 & c
\end{array}\right]+2 \operatorname{det}\left[\begin{array}{ll}
1 & c \\
1 & 2
\end{array}\right]+\operatorname{det}\left[\begin{array}{ll}
1 & c \\
1 & 2
\end{array}\right]-\operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]=c^{2}-3 c+3
$$

Answer: $c^{2}-3 c+3$.
7b. The polynomial $c^{2}-3 c+3$ has no roots in \mathbb{Q}. Therefore the polynomials f and g have no common factors in $\mathbb{Q}[x]$ for any value of the parameter c. The polynomial $c^{2}-3 c+3$ has roots $c_{1}=\frac{3}{2}+\frac{\sqrt{3}}{2} i$ and $c_{2}=\frac{3}{2}-\frac{\sqrt{3}}{2} i$ in \mathbb{C}. For these values of c the polynomials f and g have a common factor in $\mathbb{C}[x]$.

