Solutions for Midterm 2

1. The first elimination ideal is generated by y? — 1. Since y?> — 1 = 0 if and
only if y = 1 or y = —1, the partial soultions are y = 1 and y = —1. The
ideal I contains the polynomial f = z%y? 4+ 2zy® — 1 which is of degree 2 in
x and the coefficient at 2 in this polynomial is g(y) = y2. Since g(y) does
not vanish for y = 1, by the Extension Theorem the partial solution y = 1
can be extended to a solution, i.e. V(I) contains a point whose y-coordinate
equals 1. Since g(y) does not vanish for y = —1, by the Extension Theorem
the partial solution y = —1 can be extended to a solution, i.e. V(I) contains
a point whose y-coordinate equals —1.

2a. The idea is to eliminate x using the lex ordering z > y. We set

=2 +ay+y?

fo=a% -2ty + 4P

fs=5S(f1, f2) = fo—zfi = B —2?y+y*—a’—a?y—ay? = —22%y—zy?+y°>.

fo=S(f1,f3) = f3+2yf1 = =222y — xy® + y° + 2y2® + 2P0 4+ 2° =
zy? + 3y°.

fs = S(f1, fa) = xfa—y* fL = 2®y® + 3ay® — 2%y? — wy® — y* = 2a9® — ¢

fo = S(fa f5) = f5 — 2yfa = 2xy® — y* — 20> — 6y* = 7y

Thus the ideal I = (f1, f2) contains the polynomial fs = —7y*. This
polynomial must vanish at every point of V' (I). But this polynomial vanishes
only at y = 0. Therefore every point of V' (I) has zero y-coordinate. Plugging
y = 0 into f; we get the equation 2 = 0 which has only one solution, z = 0.
Therefore (0,0) is the only point on V(I).

2b. The radical of the ideal I = (f1, f2) is the defining ideal of the variety
V(I). Since V (I) consists of a single point (0,0), the defining ideal is (z,y).

3. Set f = 2% + 2xy — 3% — 2z + 2y — 2. We compute the partial derivatives
of f with respect to x and y and set them equal to 0:

% =2 +2y—2=0

oy =20 —2y+2=0

This system of equations has just one solution: (0,1). But this point is
not on the variety V(f) because f(0,1) # 0.

Answer: the variety V(f) has no singular points.

4. The variety of the ideal I = (2%, (z — y)3(z + y + 2)*) consists of the
solutions of the system of equations

25 =0

(z—y)Plz+y+2)'=0.

The first equation implies x = 0. Plugging this into the second equation
yields y3(y +2)* = 0, i.e. either y = 0 or y = —2. Thus V(I) consists of two
points, (0,0) and (0,—2). The polynomial = + y vanishes only at (0,0) but
not at (0,—2). Since it does not vanish at every point of V'(I), it does not
belong to the radical of I.

Answer: No.
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5a. The intersection of two principal ideals in a polynomial ring is generated
by the LCM of the two polynomials, i.e. a basis of the intersection is the
polynomial h = (z +y + 1)3(z — y)°(2z + 4)% (2 + y)*.

5b One has to compute a Groebner basis in the ring Clt, z, y] of the ideal
(tfi,tfa, (L —1t)g1, (1 —t)ga) with respect to the lex ordering ¢t > = > y. The
elements of this Groebner basis that do not contain the parameter ¢t form a
basis of I N J in Clz, y].

6. The idea is to compute a basis of the first elimination ideal of I = (f1, f2)
where f; = t>+t—x and fy = t>—y with respect to the lex ordering t > = > y.
fs=8(f.o)=fo—th=0—y—t?—*+itx=—t*+tx—y.
f1=S8(fs, i) =fsa+fi=-t+te—y+t2+t—aos=tr+t—x—1.
fs = S(fi, f1) = tfs —afi = 2o+ 12 —tx —ty — t?2 — to + 22 =
t? — 2tx — ty + 2.
fo = S(fs, f1) = fs+f1 = 2=2tx—ty+a’+t2+t—x = —2tr—ty+t+a’—z.
At this point one could use a shortcut by noticing that both f4 and fg
are linear in t. Since fy =t(z+1)—x—yand fo = t(-2r —y+1) + 22—,
one can completely eliminate ¢ by computing
fr=(@+1)fo— (=20 —y+1)fa=2° - 3yz —y* —y.
Answer: I(V) = (2 — 3yz — 3% — y).
7a. The resultant equals the following determinant

1 (1) (1: 2 (1 ¢ 1 111
det =det |1 2 c¢|+det|l 1 ¢
L1 2 ¢ 10 2 0 1 2
01 0 2 L
which equals
det [; i]—|—2det B g]—i—det i g]—det [1 ﬂ =c? —3c+3.

Answer: ¢2 — 3¢+ 3.

7b. The polynomial ¢? —3c+3 has no roots in Q. Therefore the polynomials
f and ¢ have no common factors in Q[z] for any value of the parameter c.

V3 3 _ V3

The polynomial ¢ — 3¢ 4 3 has roots ¢; = % + %5t and o = 5 — 571 in C.
For these values of ¢ the polynomials f and g have a common factor in C[z].



