1. (15 points) The lines given parametrically by

$$
\langle x, y, z\rangle=\langle 5-t, 3+2 t, 1+2 t\rangle, \quad-\infty<t<\infty
$$

and

$$
\langle x, y, z\rangle=\langle 5+2 s, 3+2 s, 1-s\rangle, \quad-\infty<s<\infty
$$

intersect at the point $\langle x, y, z\rangle=\langle 5,3,1\rangle$. Find an equation for the plane which contains both lines.

SOLUTION: A normal vector \vec{v} is the cross product of the vectors $\langle-1,2,2\rangle$ and $\langle 2,2,-1\rangle$ in the directions of the two given lines.

$$
\vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-1 & 2 & 2 \\
2 & 2 & -1
\end{array}\right|=-6 \vec{i}+3 \vec{j}-6 \vec{k} .
$$

We can divide \vec{v} by 3 , so an equation for the plane is $-2(x-5)+(y-3)-2(z-1)=0$, or simplifying:

$$
-2 x+y-2 z=-9
$$

2. (15 points) Find an equation for the elliptical cylinder in (x, y, z)-space containing infinitely many lines parallel to the z-axis, and containing the slanted circle $z=y, x^{2}+y^{2}+z^{2}=4$.

SOLUTION: Eliminate z from the equations $z=y, x^{2}+y^{2}+z^{2}=4$ to get $x^{2}+2 y^{2}=4$. This is the equation of the ellipse which is the projection of the slanted circle into the (x, y)-plane. So the elliptical cylinder is given by the same equation:

$$
x^{2}+2 y^{2}=4
$$

as an equation for a surface in (x, y, z)-space.
3. (15 points) Evaluate the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y+y^{2}}{x^{2}+x y+y^{2}}
$$

or state that it does not exist, giving reasons.
SOLUTION: First try plugging in $x=0$ and $y=0$: the numerator and the denominator of the quotient both converge to 0 . So it's not easy to tell what the limit is. Try approaching $(0,0)$ along the line $y=m x$ of slope m : the function is constant along that line and equal to

$$
\frac{x^{2}-m x^{2}+m^{2} x^{2}}{x^{2}+m x^{2}+m^{2} x^{2}}=\frac{1-m+m^{2}}{1+m+m^{2}}
$$

which depends on m. So the limit does not exist, because you get different limits along lines of different slope m.
4. (15 points) For the function

$$
f(x, y)=e^{3 y} \cos 2 x
$$

find the second partial derivatives

$$
f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}, \quad f_{x y}=\frac{\partial^{2} f}{\partial y \partial x} \quad \text { and } \quad f_{y y}=\frac{\partial^{2} f}{\partial y^{2}} .
$$

SOLUTION: Compute $f_{x}=\frac{\partial f}{\partial x}=-2 e^{3 y} \sin 2 x$ and $f_{y}=\frac{\partial f}{\partial y}=3 e^{3 y} \cos 2 x$. Then

$$
f_{x x}=-4 e^{3 y} \cos 2 x=-4 f, \quad f_{x y}=-6 e^{3 y} \sin 2 x \quad \text { and } \quad f_{y y}=9 e^{3 y} \cos 2 x=9 f .
$$

5. (10 points) Suppose $z=f(x, y)$ is a function with partial derivatives $f_{x}(3,4)=3$ and $f_{y}(3,4)=-2$. If x and y are both functions of $t: x=4-t^{2}$ and $y=3 t+t^{2}$, find

$$
\frac{d z}{d t}=\frac{d}{d t} f(x(t), y(t))
$$

at $t=1$.
SOLUTION: The chain rule says that

$$
\frac{d z}{d t}=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}
$$

Compute $x(1)=4-1=3, y(1)=3+1=4$ so f_{x} and f_{y} are to be evaluated at $x=3, y=4$. Compute $\frac{d x}{d t}=-2 t$ so $\frac{d x}{d t}(1)=-2$ and $\frac{d y}{d t}=3+2 t$ so $\frac{d y}{d t}(1)=5$. Finally,

$$
\frac{d z}{d t}(1)=(3)(-2)+(-2)(5)=-16 .
$$

6. (15 points) The point $\langle x, y, z\rangle=\langle-2,1,0\rangle$ lies on the surface S :

$$
x^{2}-y^{2}+x z+x y-4 z^{2}=1 .
$$

Find the equation of the tangent plane to the surface S at $\langle-2,1,0\rangle$, in the form $a x+b y+c z=d$.

SOLUTION: Compute the gradient of $g(x, y, z)=x^{2}-y^{2}+x z+x y-4 z^{2}: \vec{\nabla} g=(2 x+z) \vec{i}+$ $(-2 y+x) \vec{j}+(x-8 z) \vec{k}$. Then $\vec{\nabla} g(-2,1,0)=-4 \vec{i}-4 \vec{j}-2 \vec{k}$ is a normal vector to the surface S given by $g(x, y, z)=1$ at $\langle-2,1,0\rangle$. The equation of the tangent plane to S at $\langle-2,1,0\rangle$ is

$$
-4(x+2)-4(y-1)-2(z-0)=0, \quad \text { or } \quad 2 x+2 y+z=-2 .
$$

7. (15 points) (a)Find the gradient of the function $f(x, y, z)=\left(x+z^{2}\right) \sin (x y)$ at the point $\langle x, y, z\rangle=\left\langle 1, \frac{\pi}{2}, 2\right\rangle$.
(15 points) SOLUTION: $f_{x}=\sin (x y)+\left(x+z^{2}\right) y \cos (x y) ; f_{y}=\left(x+z^{2}\right) x \cos (x y)$; and $f_{z}=$ $2 z \sin (x y)$. So the partial derivatives of f at $\langle x, y, z\rangle=\left\langle 1, \frac{\pi}{2}, 2\right\rangle$ are $f_{x}=1+\frac{5 \pi}{2}(0)=1$, $f_{y}=(-2+1)(-2)(0)=0$ and $f_{z}=4(1)=4$. Together, the gradient

$$
\vec{\nabla} f\left(1, \frac{\pi}{2}, 2\right)=\vec{i}+4 \vec{k} .
$$

(b) Find the directional derivative of f at the point $\left\langle 1, \frac{\pi}{2}, 2\right\rangle$ in the direction of the unit vector

$$
\vec{u}=\frac{1}{3}(2 \vec{i}-\vec{j}-2 \vec{k}) .
$$

SOLUTION: We know that $D_{\vec{u}} f\left(1, \frac{\pi}{2}, 2\right)=\vec{u} \cdot \vec{\nabla} f\left(1, \frac{\pi}{2}, 2\right)=\frac{1}{3}(2 \vec{i}-\vec{j}-2 \vec{k}) \cdot(\vec{i}+4 \vec{k})=\frac{2-8}{3}=$ -2 .

