Math 2263 Fall 2008 Midterm 2, WITH SOLUTIONS October 30, 2008

1. (10 points) Let R be the rectangle $-2 \le x \le 2, 0 \le y \le 1$. Find the double integral $\iint_R \frac{x^2}{y+1} dA$.

SOLUTION:
$$\iint_R \frac{x^2}{y+1} dA = \int_{y=0}^1 \int_{x=-2}^2 \frac{x^2}{y+1} dx dy = \int_{y=0}^1 \left[\frac{x^3}{3(y+1)}\right]_{x=-2}^2 dy = \frac{16}{3} \left[\ln(y+1)\right]_{y=0}^1 = \frac{16}{3} \ln 2.$$

2. (10 points) Let R be the rectangle $0 \le x \le 5$, $0 \le y \le 2$ in the (x, y)-plane. If a continuous function f(x, y) satisfies $-1 \le f(x, y) \le 3 - y^2$, what does this tell you about the value of $\iint_R f(x, y) dA$?

SOLUTION: Since $-1 \le f(x, y) \le 3 - y^2$, the only information we have is that

$$\iint_{R} (-1) \, dA \le \iint_{R} f(x, y) \, dA \le \iint_{R} 3 - y^2 \, dA$$

So since $\iint_R 3 - y^2 dA = \int_{-2}^2 \int_0^5 (3 - y^2) dx dy = 5 \left[3y - \frac{y^3}{3} \right]_{-2}^2 = \frac{100}{3}$, and since *R* has area 10, this only tells us that

$$-10 \le \iint_R f(x, y) \, dA \le \frac{100}{3}.$$

3. (10 points) Let D be the region $0 \le x \le 2$, $0 \le y \le x^2$ in the (x, y)-plane. Find the double integral $\iint_D xy \, dA$.

SOLUTION:
$$\iint_D xy \, dA = \int_0^2 x \int_0^{x^2} y \, dy \, dx = \int_0^2 x \frac{x^4}{2} \, dx = \left[\frac{x^6}{12}\right]_0^2 = \frac{16}{3}.$$

4. (15 points) A plate is in the shape of the triangle $D: 0 \le y \le 1 - |x|$, with corners (-1, 0), (0, 1) and (1, 0). The plate has mass density at the point (x, y) equal to $\rho(x, y) = y$ per unit area.

(a) (5 points) Find the total mass m of the plate.

SOLUTION: $m = \iint_D \rho(x, y) \, dA = \int_0^1 \int_{-(1-y)}^{1-y} y \, dx \, dy = \left[y^2 - \frac{2y^3}{3}\right]_0^1 = \frac{1}{3}.$

(b) (10 points) Find the center of mass $(\overline{x}, \overline{y})$ of the plate.

SOLUTION: $m\overline{x} = \iint_D x\rho(x,y) \, dA = \int_0^1 \int_{-(1-y)}^{1-y} xy \, dx \, dy = \int_0^1 y \left[\frac{(1-y)^2}{2} - \frac{(1-y)^2}{2} \right] \, dy = 0.$ So $\overline{x} = 0.$ Meanwhile, $m\overline{y} = \iint y\rho(x,y) \, dA = \int_0^1 \int_{-(1-y)}^{1-y} y^2 \, dx \, dy = \int_0^1 2y^2(1-y) \, dy = \left[\frac{2}{3}y^3 - \frac{1}{2}y^4 \right]_0^1 = \frac{1}{6}.$ So $\overline{y} = \frac{1}{2}$, Thus the center of mass of the plate is $(0, \frac{1}{2})$.

5. (10 points) Let D be the circular disk of radius R and center (0,0) in the (x, y)-plane. Find $\iint_D \sin(x^2 + y^2) dA$. (*Hint:* polar coordinates.)

SOLUTION:
$$\iint_D \sin(x^2 + y^2) \, dA = \int_0^{2\pi} \int_0^R \sin(r^2) r \, dr \, d\theta = 2\pi \int_0^{R^2} \sin u(\frac{1}{2}) \, du = \pi [1 - \cos(R^2)]$$

6. (15 points) Find the **maximum** and **minimum** values of f(x, y) = xy - x subject to the **constraint** $g(x, y) = x^2 + 4y^2 = 4$. (*Hint:* Lagrange multipliers.)

SOLUTION: $\vec{\nabla}f = (y-1)\vec{i} + x\vec{j} = \lambda\vec{\nabla}g = \lambda(2x\vec{i} + 8y\vec{j})$. This says that $y-1 = 2\lambda x$ and $x = 8\lambda y$, so $4y(y-1) = 8\lambda xy = x^2$. Substituting in g(x, y) = 4, we get $8y^2 - 4y = 4$, so y = 1 or $y = -\frac{1}{2}$ which implies x = 0 or $x = \pm\sqrt{3}$, respectively: there are three points (x, y) = (0, 1), $(\sqrt{3}, -\frac{1}{2})$ or $(-\sqrt{3}, -\frac{1}{2})$ which satisfy the Lagrange multiplier condition. Evaluate f(0, 1) = 0; $f(\sqrt{3}, -\frac{1}{2}) = -\frac{3\sqrt{3}}{2}$ which is the minimum; and $f(-\sqrt{3}, -\frac{1}{2}) = +\frac{3\sqrt{3}}{2}$ which is the maximum.

7. (25 points) Let f(x, y) = 3y³ - x²y + x² + ⁹/₂y².
(a) (5 points) Compute the first and second partial derivatives of f(x, y).

SOLUTION: $\frac{\partial f}{\partial x} = f_x = -2xy + 2x$; $f_y = 9y^2 - x^2 + 9y$; differentiating again, $\frac{\partial^2 f}{\partial x^2} = f_{xx} = -2y + 2$; $f_{xy} = -2x$; and $f_{yy} = 18y$.

(b) (10 points) Find all the critical points of f(x, y).

SOLUTION: $f_x = -2xy + 2x = 0$ when x = 0 or y = 1; if x = 0, then $f_y = 9y^2 + 9y = 0$ when y = 0 or y = -1, so (0, 0) and (0, -1) are critical points. if y = 1 then $f_y = 18 - x^2$, so there are two more critical points $(3\sqrt{2}, 1)$ and $(-3\sqrt{2}, 1)$.

(c) (10 points) For each critical point, state whether it is a local minimum point, a local maximum point or a saddle point.

SOLUTION: The four critical points are (0,0), (0,-1), $(3\sqrt{2},1)$ and $(-3\sqrt{2},1)$; the respective values of $f_{xx}f_{yy} - f_{xy}^2$ are 18 (positive), -36 (negative), -72 (negative) and -72 (negative), so since $f_{xx}(0,0) = 2$ (positive), they are respectively a local minimum, a saddle point, a saddle point and a saddle point.