1. (10 points) Let R be the rectangle $-2 \leq x \leq 2,0 \leq y \leq 1$. Find the double integral $\iint_{R} \frac{x^{2}}{y+1} d A$.

SOLUTION: $\iint_{R} \frac{x^{2}}{y+1} d A=\int_{y=0}^{1} \int_{x=-2}^{2} \frac{x^{2}}{y+1} d x d y=$ $\int_{y=0}^{1}\left[\frac{x^{3}}{3(y+1)}\right]_{x=-2}^{2} d y=\frac{16}{3}[\ln (y+1)]_{y=0}^{1}=\frac{16}{3} \ln 2$.
2. (10 points) Let R be the rectangle $0 \leq x \leq 5,0 \leq y \leq 2$ in the (x, y)-plane. If a continuous function $f(x, y)$ satisfies $-1 \leq f(x, y) \leq 3-y^{2}$, what does this tell you about the value of $\iint_{R} f(x, y) d A$?

SOLUTION: Since $-1 \leq f(x, y) \leq 3-y^{2}$, the only information we have is that

$$
\iint_{R}(-1) d A \leq \iint_{R} f(x, y) d A \leq \iint_{R} 3-y^{2} d A .
$$

So since $\iint_{R} 3-y^{2} d A=\int_{-2}^{2} \int_{0}^{5}\left(3-y^{2}\right) d x d y=5\left[3 y-\frac{y^{3}}{3}\right]_{-2}^{2}=\frac{100}{3}$, and since R has area 10 , this only tells us that

$$
-10 \leq \iint_{R} f(x, y) d A \leq \frac{100}{3} .
$$

3. (10 points) Let D be the region $0 \leq x \leq 2,0 \leq y \leq x^{2}$ in the (x, y)-plane. Find the double integral $\iint_{D} x y d A$.

SOLUTION: $\iint_{D} x y d A=\int_{0}^{2} x \int_{0}^{x^{2}} y d y d x=$ $\int_{0}^{2} x \frac{x^{4}}{2} d x=\left[\frac{x^{6}}{12}\right]_{0}^{2}=\frac{16}{3}$.
4. (15 points) A plate is in the shape of the triangle $D: 0 \leq y \leq 1-|x|$, with corners $(-1,0)$, $(0,1)$ and $(1,0)$. The plate has mass density at the point (x, y) equal to $\rho(x, y)=y$ per unit area.
(a) (5 points) Find the total mass m of the plate.

SOLUTION: $m=\iint_{D} \rho(x, y) d A=\int_{0}^{1} \int_{-(1-y)}^{1-y} y d x d y=$ $\left[y^{2}-\frac{2 y^{3}}{3}\right]_{0}^{1}=\frac{1}{3}$.
(b) (10 points) Find the center of mass (\bar{x}, \bar{y}) of the plate.

SOLUTION: $m \bar{x}=\iint_{D} x \rho(x, y) d A=\int_{0}^{1} \int_{-(1-y)}^{1-y} x y d x d y=$ $\int_{0}^{1} y\left[\frac{(1-y)^{2}}{2}-\frac{(1-y)^{2}}{2}\right] d y=0$. So $\bar{x}=0$. Meanwhile, $m \bar{y}=\iint y \rho(x, y) d A=\int_{0}^{1} \int_{-(1-y)}^{1-y} y^{2} d x d y=$ $\int_{0}^{1} 2 y^{2}(1-y) d y=\left[\frac{2}{3} y^{3}-\frac{1}{2} y^{4}\right]_{0}^{1}=\frac{1}{6}$. So $\bar{y}=\frac{1}{2}$, Thus the center of mass of the plate is $\left(0, \frac{1}{2}\right)$.
5. (10 points) Let D be the circular disk of radius R and center $(0,0)$ in the (x, y)-plane. Find $\iint_{D} \sin \left(x^{2}+y^{2}\right) d A$. (Hint: polar coordinates.)

SOLUTION: $\iint_{D} \sin \left(x^{2}+y^{2}\right) d A=\int_{0}^{2 \pi} \int_{0}^{R} \sin \left(r^{2}\right) r d r d \theta=2 \pi \int_{0}^{R^{2}} \sin u\left(\frac{1}{2}\right) d u=\pi\left[1-\cos \left(R^{2}\right)\right]$.
6. (15 points) Find the maximum and minimum values of $f(x, y)=x y-x$ subject to the constraint $g(x, y)=x^{2}+4 y^{2}=4$. (Hint: Lagrange multipliers.)

SOLUTION: $\vec{\nabla} f=(y-1) \vec{i}+x \vec{j}=\lambda \vec{\nabla} g=\lambda(2 x \vec{i}+8 y \vec{j}$. This says that $y-1=2 \lambda x$ and $x=8 \lambda y$, so $4 y(y-1)=8 \lambda x y=x^{2}$. Substituting in $g(x, y)=4$, we get $8 y^{2}-4 y=4$, so $y=1$ or $y=-\frac{1}{2}$ which implies $x=0$ or $x= \pm \sqrt{3}$, respectively: there are three points $(x, y)=(0,1)$, $\left(\sqrt{3},-\frac{1}{2}\right)$ or $\left(-\sqrt{3},-\frac{1}{2}\right)$ which satisfy the Lagrange multiplier condition. Evaluate $f(0,1)=0$; $f\left(\sqrt{3},-\frac{1}{2}\right)=-\frac{3 \sqrt{3}}{2}$ which is the minimum; and $f\left(-\sqrt{3},-\frac{1}{2}\right)=+\frac{3 \sqrt{3}}{2}$ which is the maximum.
7. (25 points) Let $f(x, y)=3 y^{3}-x^{2} y+x^{2}+\frac{9}{2} y^{2}$.
(a) (5 points) Compute the first and second partial derivatives of $f(x, y)$.

SOLUTION: $\frac{\partial f}{\partial x}=f_{x}=-2 x y+2 x ; f_{y}=9 y^{2}-x^{2}+9 y$; differentiating again, $\frac{\partial^{2} f}{\partial x^{2}}=f_{x x}=$ $-2 y+2 ; f_{x y}=-2 x$; and $f_{y y}=18 y$.
(b) (10 points) Find all the critical points of $f(x, y)$.

SOLUTION: $f_{x}=-2 x y+2 x=0$ when $x=0$ or $y=1$; if $x=0$, then $f_{y}=9 y^{2}+9 y=0$ when $y=0$ or $y=-1$, so $(0,0)$ and $(0,-1)$ are critical points. if $y=1$ then $f_{y}=18-x^{2}$, so there are two more critical points $(3 \sqrt{2}, 1)$ and $(-3 \sqrt{2}, 1)$.
(c) (10 points) For each critical point, state whether it is a local minimum point, a local maximum point or a saddle point.

SOLUTION: The four critical points are $(0,0),(0,-1),(3 \sqrt{2}, 1)$ and $(-3 \sqrt{2}, 1)$; the respective values of $f_{x x} f_{y y}-f_{x y}^{2}$ are 18 (positive), -36 (negative), -72 (negative) and -72 (negative), so since $f_{x x}(0,0)=2$ (positive), they are respectively a local minimum, a saddle point, a saddle point and a saddle point.

