1. (15 points) Let B be the box, or rectangular solid: $0 \leq x \leq 2,0 \leq y \leq 1,0 \leq z \leq 3$. Find

$$
\iiint_{B}\left(x^{2}+y\right)\left(x-z^{2}\right) d V
$$

SOLUTION: $\iiint_{B}\left(x^{2}+y\right)\left(x-z^{2}\right) d V=\iiint_{B}\left(x^{3}+x y-x^{2} z^{2}-y z^{2}\right) d V=$ $\int_{0}^{3} \int_{0}^{1}\left[\frac{x^{4}}{4}+\frac{y x^{2}}{2}-\frac{x^{3} z^{2}}{3}-x y z^{2}\right]_{x=0}^{2} d y d z=\int_{0}^{3} \int_{0}^{1}\left[4+2 y-\frac{8}{3} z^{2}-2 y z^{2}\right] d y d z=\int_{0}^{3}\left(5-\frac{11}{3} z^{2}\right) d z=$ $\left[5 z-\frac{11}{9} z^{3}\right]_{z=0}^{3}=-18$.
2. (15 points) Let E be the cylindrical solid $x^{2}+y^{2} \leq 9,0 \leq z \leq 1$. Find

$$
\iiint_{E} z e^{x^{2}+y^{2}} d V
$$

SOLUTION: Use cylindrical coordinates: $0 \leq \theta \leq 2 \pi, 0 \leq r \leq 3,0 \leq z \leq 1$. Then $\iiint_{E} z e^{x^{2}+y^{2}} d V=\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{3} z e^{r^{2}} r d r d \theta d z=\int_{0}^{1} z d z \int_{0}^{2 \pi} d \theta \int_{0}^{9} e^{u} \frac{1}{2} d u=\frac{\pi}{2}\left(e^{9}-1\right)$.
3. (20 points) The set E in \mathbb{R}^{3} is described by the inequalities:

$$
\sqrt{x^{2}+y^{2}} \leq z \leq \sqrt{9-x^{2}-y^{2}}
$$

(a) (5 points) Write a description of E in spherical coordinates.

SOLUTION: E is described by $\rho^{2}=x^{2}+y^{2}+z^{2} \leq 9$ and $x^{2}+y^{2}=\rho^{2} \sin ^{2} \phi \leq z^{2}=\rho^{2} \cos ^{2} \phi$, so

$$
0 \leq \rho \leq 3 \text { and } 0 \leq \phi \leq \frac{\pi}{4}
$$

(b) (15 points) Compute the volume of E.

SOLUTION: The volume integrand in spherical coordinates is $d V=\rho^{2} \sin \phi d \rho d \theta d \phi$. So the volume of E is

$$
\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \pi} \int_{0}^{3} \rho^{2} \sin \phi d \rho d \theta d \phi=2 \pi \int_{0}^{\frac{\pi}{4}} \sin \phi d \phi \int_{0}^{3} \rho^{2} d \rho=9 \pi(2-\sqrt{2})
$$

4. (25 points) Let C be the circle $x^{2}+y^{2}=100$ in the (x, y)-plane, oriented counterclockwise. Find $\oint_{C}\left(2 x y+e^{x}\right) d x+\left(x^{2}-\sin y+3 x\right) d y$. Hint: try Green's theorem.

SOLUTION: Write $P(x, y)=2 x y+e^{x}$ and $Q(x, y)=x^{2}-\sin y+3 x$. Following the hint, we compute the other side of the formula for Green's Theorem:

$$
\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=(2 x+3)-(2 x)=3
$$

The circle C, travelling counterclockwise, is the positively oriented boundary of the disk D described by $x^{2}+y^{2} \leq 100$. By Green's Theorem,

$$
\oint_{C}(P d x+Q d y)=\iint_{D} 3 d A=300 \pi
$$

the area of D times 3 .
5. (25 points) C_{1} and C_{2} are oriented curves in the (x, y)-plane, each of which starts at $(0,0)$ and ends at $(2,2) . C_{1}$ is given by the parameterization $\vec{r}(t)=t \vec{i}+\left(3 t-t^{2}\right) \vec{j}, 0 \leq t \leq 2$; and C_{2} is given by the parameterization $\vec{r}(t)=t \vec{i}+\left(t^{2}-t\right) \vec{j}, 0 \leq t \leq 2$.
(a) (10 points) Find $\int_{C_{1}} x y d x+(y-3 x) d y$.

SOLUTION: $\int_{C_{1}} x y d x+(y-3 x) d y=\int_{0}^{2}\left[t\left(3 t-t^{2}\right)-\left(3 t-t^{2}-3 t\right)(3-2 t)\right] d t=\int_{0}^{2}\left(3 t^{2}-t^{3}-\right.$ $\left.3 t^{2}+2 t^{3}\right) d t=\left[\frac{t^{4}}{4}\right]_{0}^{2}=4$.
(b) (10 points) Find $\int_{C_{2}} x y d x+(y-3 x) d y$.

SOLUTION: $\int_{C_{2}} x y d x+(y-3 x) d y=\int_{0}^{2}\left[t\left(t^{2}-t\right)+\left(t^{2}-4 t\right)(2 t-1)\right] d t=\left[\frac{3 t^{4}}{4}-\frac{10}{3} t^{3}+2 t^{2}\right]_{0}^{2}=$ $-\frac{20}{3}$.
(c) (5 points) Is the vector field $\vec{F}(x, y)=x y \vec{i}+(y-3 x) \vec{j}$ conservative? Why or why not?

SOLUTION: \vec{F} is not a conservative vector field, because the integral along a curve from $(0,0)$ to $(2,2)$ of $\vec{F} \cdot d \vec{r}$ depends on the curve: for C_{1} it equals 4 , and for C_{2} it equals $-\frac{20}{3}$. In fact, if \vec{F} were conservative, then both would equal $f(2,2)-f(0,0)$ where $\vec{F}=\vec{\nabla} f$.

