Math 2263 Fall 2008 Midterm 3, WITH SOLUTIONS November 25, 2008

1. (15 points) Let B be the box, or rectangular solid: $0 \le x \le 2, 0 \le y \le 1, 0 \le z \le 3$. Find

$$\iiint_B (x^2 + y)(x - z^2) \, dV$$

 $\begin{aligned} & \textbf{SOLUTION: } \iint_B (x^2 + y)(x - z^2) \, dV = \iint_B (x^3 + xy - x^2 z^2 - yz^2) \, dV = \\ & \int_0^3 \int_0^1 \left[\frac{x^4}{4} + \frac{yx^2}{2} - \frac{x^3 z^2}{3} - xyz^2 \right]_{x=0}^2 \, dy \, dz = \int_0^3 \int_0^1 \left[4 + 2y - \frac{8}{3} z^2 - 2yz^2 \right] \, dy \, dz = \int_0^3 (5 - \frac{11}{3} z^2) \, dz = \\ & \left[5z - \frac{11}{9} z^3 \right]_{z=0}^3 = -18. \end{aligned}$

2. (15 points) Let E be the cylindrical solid $x^2 + y^2 \le 9, 0 \le z \le 1$. Find

$$\iiint_E z \, e^{x^2 + y^2} \, dV$$

SOLUTION: Use cylindrical coordinates: $0 \le \theta \le 2\pi$, $0 \le r \le 3$, $0 \le z \le 1$. Then $\iiint_E z e^{x^2 + y^2} dV = \int_0^1 \int_0^{2\pi} \int_0^3 z e^{r^2} r \, dr \, d\theta \, dz = \int_0^1 z \, dz \int_0^{2\pi} d\theta \int_0^9 e^u \frac{1}{2} \, du = \frac{\pi}{2} \left(e^9 - 1 \right).$

3. (20 points) The set E in \mathbb{R}^3 is described by the inequalities:

$$\sqrt{x^2 + y^2} \le z \le \sqrt{9 - x^2 - y^2}.$$

(a) (5 points) Write a description of E in spherical coordinates.

SOLUTION: *E* is described by $\rho^2 = x^2 + y^2 + z^2 \le 9$ and $x^2 + y^2 = \rho^2 \sin^2 \phi \le z^2 = \rho^2 \cos^2 \phi$, so $0 \le \rho \le 3$ and $0 \le \phi \le \frac{\pi}{4}$.

(b) (15 points) Compute the volume of E.

SOLUTION: The volume integrand in spherical coordinates is $dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$. So the volume of *E* is

$$\int_0^{\frac{\pi}{4}} \int_0^{2\pi} \int_0^3 \rho^2 \sin\phi \, d\rho \, d\theta \, d\phi = 2\pi \int_0^{\frac{\pi}{4}} \sin\phi \, d\phi \int_0^3 \rho^2 \, d\rho = 9\pi (2 - \sqrt{2}).$$

4. (25 points) Let C be the circle $x^2 + y^2 = 100$ in the (x, y)-plane, oriented counterclockwise. Find $\oint_C (2xy + e^x) dx + (x^2 - \sin y + 3x) dy$. *Hint:* try Green's theorem.

SOLUTION: Write $P(x, y) = 2xy + e^x$ and $Q(x, y) = x^2 - \sin y + 3x$. Following the hint, we compute the other side of the formula for Green's Theorem:

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = (2x+3) - (2x) = 3.$$

The circle C, travelling counterclockwise, is the positively oriented boundary of the disk D described by $x^2 + y^2 \leq 100$. By Green's Theorem,

$$\oint_C (P\,dx + Q\,dy) = \iint_D 3\,dA = 300\pi,$$

the area of D times 3.

- 5. (25 points) C_1 and C_2 are oriented curves in the (x, y)-plane, each of which starts at (0, 0) and ends at (2, 2). C_1 is given by the parameterization $\vec{r}(t) = t\vec{i} + (3t - t^2)\vec{j}, 0 \le t \le 2$; and C_2 is given by the parameterization $\vec{r}(t) = t\vec{i} + (t^2 - t)\vec{j}, 0 \le t \le 2$.
 - (a) (10 points) Find $\int_{C_1} xy \, dx + (y 3x) \, dy$.

SOLUTION: $\int_{C_1} xy \, dx + (y - 3x) \, dy = \int_0^2 [t(3t - t^2) - (3t - t^2 - 3t)(3 - 2t)] \, dt = \int_0^2 (3t^2 - t^3 - 3t^2 + 2t^3) \, dt = \left[\frac{t^4}{4}\right]_0^2 = 4.$

(b) (10 points) Find $\int_{C_2} xy \, dx + (y - 3x) \, dy$.

SOLUTION: $\int_{C_2} xy \, dx + (y - 3x) \, dy = \int_0^2 [t(t^2 - t) + (t^2 - 4t)(2t - 1)] \, dt = \left[\frac{3t^4}{4} - \frac{10}{3}t^3 + 2t^2\right]_0^2 = -\frac{20}{3}.$

(c) (5 points) Is the vector field $\vec{F}(x,y) = xy\vec{i} + (y-3x)\vec{j}$ conservative? Why or why not?

SOLUTION: \vec{F} is **not** a conservative vector field, because the integral along a curve from (0,0) to (2,2) of $\vec{F} \cdot d\vec{r}$ depends on the curve: for C_1 it equals 4, and for C_2 it equals $-\frac{20}{3}$. In fact, if \vec{F} were conservative, then both would equal f(2,2) - f(0,0) where $\vec{F} = \vec{\nabla}f$.