Math 2263
Spring 2008
Midterm 1, WITH SOLUTIONS
February 21, 2008
Time Limit: 50 minutes
\qquad
Name (Print):
Student ID:
Section Number:
Teaching Assistant:
Signature:

1	15 pts	
2	15 pts	
3	15 pts	
4	15 pts	
5	10 pts	
6	15 pts	
7	15 pts	
TOTAL	100 pts	

1. (15 points) Find an equation for the plane passing through all three points $\langle x, y, z\rangle=\langle 3,-2,-2\rangle,\langle 2,0,1\rangle$ and $\langle 1,0,0\rangle$.

SOLUTION: A normal vector \vec{v} is the cross product of $\langle 3,-2,-2\rangle-\langle 1,0,0\rangle$ and $\langle 2,0,1\rangle-$ $\langle 1,0,0\rangle$. So

$$
\vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & -2 & -2 \\
1 & 0 & 1
\end{array}\right|=-2 \vec{i}-4 \vec{j}+2 \vec{k} .
$$

We can divide \vec{v} by -2 , so an equation for the plane is $(x-1)+2(y-0)-(z-0)=0$, equivalently

$$
x+2 y-z=1 .
$$

2. (15 points) Find an equation for the surface in (x, y, z)-space obtained by rotating the hyperbola $x^{2}-4 z^{2}=1$ of the (x, z)-plane about the x-axis.

SOLUTION: $|z|$ is the distance form the x-axis in the (x, z)-plane; we want to replace it with the distance to the x-axis in space, namely $\sqrt{y^{2}+z^{2}}$. The equation of the surface of revolution is

$$
x^{2}-4 y^{2}-4 z^{2}=1 .
$$

3. (15 points) The lines given paramerically by

$$
(x, y, z)=(7+2 t,-1-t,-2 t), \quad-\infty<t<\infty
$$

and

$$
(x, y, z)=(4-s,-1+2 s, 2+2 s), \quad-\infty<s<\infty
$$

intersect at the point $\langle x, y, z\rangle=\langle 3,1,4\rangle$. Find an equation for the plane which contains both lines.

SOLUTION: A normal vector \vec{v} to the plane is the cross product of the vector multiplied by t in the first line and the vector multiplied by s in the other line:

$$
\vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & -1 & -2 \\
-1 & 2 & 2
\end{array}\right|=-6 \vec{i}-6 \vec{j}+3 \vec{k} .
$$

Divide \vec{v} by 3 . So the plane is given by the equation $-2(x-3)-2(y-1)+(z-4)=0$, or

$$
-2 x-2 y+z=-4
$$

4. (15 points) For the function $f(x, y)=e^{-2 y} \sin 2 x$, find the second partial derivatives

$$
f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}
$$

and

$$
f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}
$$

SOLUTION: $f_{x}=2 e^{-2 y} \cos 2 x$, so $f_{x x}=-4 e^{-2 y} \sin 2 x$. For the y ipartial derivatives, $f_{y}=$ $-2 e^{-2 y} \sin 2 x$ and $f_{y y}=+4 e^{-2 y} \sin 2 x$.
5. (10 points) Suppose $z=f(x, y)$ is a function with partial derivatives $f_{x}(3,1)=5$ and $f_{y}(3,1)=$ 2. If x and y are both functions of $t: x=5-2 t$ and $y=2+t-2 t^{2}$, find

$$
\frac{d z}{d t}
$$

at $t=1$.

SOLUTION: $x=g(t)=5-2 t$ so $x=g(1)=3$ at $t=1$, and fracdxdt $=g^{\prime}(t)=-2$. Meanwhile, $y=h(t)=2+t-2 t^{2}$, so $y=h(1)=1$ at $t=1$. $\frac{d y}{d t}=h^{\prime}(t)=1-2 t$, so $h^{\prime}(1)=-1$. The chain rule says that

$$
\frac{d z}{d t}=f_{x}(3,1) g^{\prime}(1)+f_{y}(3,1) h^{\prime}(1)=(5)(-2)+(2)(-3)=-16 .
$$

6. (15 points) The point $\langle x, y, z\rangle=\langle 2,1,0\rangle$ lies on the surface S :

$$
x^{2}-y^{2}+x z+x y-4 z^{2}=5 .
$$

Find the equation of the tangent plane to the surface S at $\langle 2,1,0\rangle$, in the form $a x+b y+c z=d$.

SOLUTION: The normal vector to the tangent plane to the surface $g(x, y, z)=0$ is the gradient $\vec{\nabla} g$. But $g_{x}=2 x+z+y=2+0+1=3 ; g_{y}=-2 y+x=-2+2=0$; and $g_{z}=x-8 z=2-0=2$. So $\vec{\nabla} g(2,1,0)=\langle 3,0,2\rangle$. The equatopn of the tangent plane is $3(x-2)+0(y-1)+2(z-0)-0$ or equivalently:

$$
3 x+2 z=6 \text {. }
$$

7. (15 points) (a)Find the gradient of the function $f(x, y, z)=e^{z} \ln (x+2 y)$ at the point $\langle x, y, z\rangle=\langle e, 0,1\rangle$. (b) Find the directional derivative of f at the point $\langle e, 0,1\rangle$ in the direction

$$
\vec{u}=\frac{1}{3}(\vec{i}-2 \vec{j}+2 \vec{k}) .
$$

(15 points) SOLUTION: $f_{x}=\frac{e^{z}}{x+2 y}=1 ; f_{y}=2$ frace $e^{z} x+2 y=2$; and $f_{z}=e^{z} \ln (x+2 y)=e$.
So the gradient is

$$
\operatorname{vec} \nabla f(e, 0,1)=\vec{i}+2 \vec{j}+e \vec{k} .
$$

