1. (10 points) Let R be the rectangle $0 \leq x \leq \ln 7,0 \leq y \leq \ln 3$. Find the double integral

$$
\iint_{R} e^{x+2 y} d A
$$

SOLUTION: $e^{x+2 y}=e^{x} e^{2 y}$, so $\iint_{R} e^{x+2 y} d A=\int_{0}^{\ln 3} e^{2 y} d y \int_{0}^{\ln 7} e^{x} d x=$ $=\left[\frac{1}{2} e^{2 y}\right]_{y=0}^{\ln 3}\left[e^{x}\right]_{x=0}^{\ln 7}=\frac{1}{2}(9-1)(7-1)=24$.
2. (10 points) Let R be the square $-2 \leq x \leq 2,-2 \leq y \leq 2$ in the (x, y)-plane. If a continuous function $f(x, y)$ satisfies

$$
0 \leq f(x, y) \leq|x|,
$$

what does this tell you about the value of $\iint_{R} f(x, y) d A$?
SOLUTION: In general, if $f(x, y) \leq g(x, y)$, then $\iint_{R} f(x, y) d A \leq \iint_{R} g(x, y) d A$. So use this twice, first with $f(x, y)=0$ and $g(x, y)=f(x, y)$, and second with $f(x, y)=f(x, y)$ and $g(x, y)=|x|$. You compute $\iint_{R}|x| d A=\int_{-2}^{2} \int_{-2}^{2}|x| d x d y=(4)(2) \int_{0}^{2} x d x=16$, and of course $\iint_{R} 0 d A=0$. So

$$
0 \leq \iint_{R} f(x, y) d A \leq 16
$$

3. (10 points) Let R be the triangle $0 \leq x \leq 1,0 \leq y \leq x$ in the (x, y)-plane. Find the double integral

$$
\iint_{R} e^{x^{2}} d A
$$

SOLUTION: $\iint_{R} e^{x^{2}} d A=\int_{0}^{1} \int_{0}^{x} e^{x^{2}} d y d x=\int_{0}^{1} x e^{x^{2}} d x=$ $-\frac{1}{2} \int_{0}^{-1} e^{u} d u=-\frac{1}{2}\left(e^{-1}-1\right)=\frac{e-1}{2 e}$.
4. (20 points) A plate is in the shape of the triangle $D: x \geq 0, y \geq 0, x+y \leq 1$. The plate has mass density at the point (x, y) equal to $\rho(x, y)=1-x-y$.
(a) (10 points) Find the total mass m of the plate.
(b) (10 points) Find the center of mass (\bar{x}, \bar{y}) of the plate.

SOLUTION: (a) $m=\iint_{D} \rho d A=\int_{0}^{1} \int_{0}^{1-y}(1-x-y) d x d y=\int_{0}^{1}\left[x(1-y)-\frac{(1-y)^{2}}{2}\right]_{0}^{1-y} d y=$ $\int_{0}^{1} \frac{(1-y)^{2}}{2} d y=\frac{1}{6}$.
(b) $m \bar{y}=\iint_{D} y \rho d A=\int_{0}^{1} \int_{0}^{1-y} y(1-x-y) d x d y=\int_{0}^{1} y \frac{(1-y)^{2}}{2} d y=\frac{1}{2} \int_{0}^{1}\left[y-2 y^{2}+y^{3}\right] d y=\frac{1}{24}$.

So $\bar{y}=\frac{6}{24}=\frac{1}{4}$. By symmetry, $\bar{x}=\bar{y}=\frac{1}{4}$. So the center of mass is $\left(\frac{1}{4}, \frac{1}{4}\right)$.
5. (20 points) (a) (5 points) Let D be the circular disk of radius 2 and center $(0,0)$ in the (x, y) plane. Write a double integral over the domain D with respect to area which represents the volume bounded above by the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$ and below by the (x, y)-plane.
(20 points) (b) (5 points) Convert this integral to polar coordinates.
(20 points) (c) (10 points) Evaluate this integral.
(20 points) SOLUTION: (a) $V=\iint_{D} \sqrt{4-x^{2}-y^{2}} d A$.
(b) $\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{4-r^{2}} r d r d \theta$.
(c) $\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{4-r^{2}} r d r d \theta=2 \pi\left(-\frac{1}{2}\right) \int_{4}^{0} \sqrt{u} d u=-\pi\left[\frac{u^{3 / 2}}{3 / 2}\right]_{4}^{0}=\frac{2}{3} \pi(8-0)=\frac{16 \pi}{3}$.
6. (25 points) Let $f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.
(a) (5 points) Compute the first and second partial derivatives of $f(x, y)$.
(b) (10 points) Find all the critical points of $f(x, y)$.
(c) (10 points) For each critical point, state whether it is a local minimum point, a local maximum point or a saddle point.

SOLUTION: (a) The first partial derivatives $f_{x}=6 x^{2}+y^{2}+10 x$ and $f_{y}=2 x y+2 y$; the second partial derivatives $f_{x x}=12 x+10, f_{x y}=2 y$ and $f_{y y}=2 x+2$.
(b) $f_{y}=2 x y+2 y=0$ requires either $y=0$ or $x=-1$. If $y=0$, then $f_{x}=6 x^{2}+10 x=0$ requires either $x=0$ or $x=-\frac{5}{3}$. If $x=-1$, then $f_{x}=y^{2}-4=0$ requires $y= \pm 2$. So there are four critical points: $(x, y)=(0,0) ;(x, y)=\left(0,-\frac{5}{3}\right) ;(x, y)=(-1,2)$; and $(x, y)=(-1,-2)$.
(c) The second partial derivatives at the four critical points are:
$\left(f_{x x}, f_{x y}, f_{y y}\right)=(10,0,2)$ at $(x, y)=(0,0)$, so the Hessian determinant $f_{x x} f_{y y}-f_{x y}^{2}=20>0$, while $f_{x x}=10>0$, indicating $(x, y)=(0,0)$ is a local minimum point;
$\left(f_{x x}, f_{x y}, f_{y y}\right)=\left(10,-\frac{10}{3}, 2\right)$ at $(x, y)=\left(0,-\frac{5}{3}\right)$, so $f_{x x} f_{y y}-f_{x y}^{2}=20-100 / 3<0$, indicating $\left(0,-\frac{5}{3}\right)$ is a saddle point;
$\left(f_{x x}, f_{x y}, f_{y y}\right)=(-2,4,0)$ at $(x, y)=(-1,2)$, so $f_{x x} f_{y y}-f_{x y}^{2}=0-16<0$, indicating $(-1,2)$ is a saddle point; and
$\left(f_{x x}, f_{x y}, f_{y y}\right)=(-2,-4,0)$ at $(x, y)=(-1,-2)$, so $f_{x x} f_{y y}-f_{x y}^{2}=0-16<0$, indicating a third saddle point at $(-1,-2)$.

