1. (10 points) Let B be the rectangular solid $0 \leq x \leq 4,1 \leq y \leq 2,0 \leq z \leq 2$. Find

$$
\iiint_{B} \frac{x z^{2}}{y^{2}} d V
$$

SOLUTION: $\frac{x z^{2}}{y^{2}}=x y^{-2} z^{2}$, so $\iiint_{B} \frac{x z^{2}}{y^{2}} d V=\int_{0}^{4} x d x \int_{1}^{2} y^{-2} d y \int_{0}^{2} z^{2} d z=$ $=\left[\frac{x^{2}}{2}\right]_{x=0}^{4}\left[-\frac{1}{y}\right]_{y=1}^{2}\left[\frac{z^{3}}{3}\right]_{x=0}^{2}=\frac{32}{3}$.
2. (20 points) Let \vec{F} be the vector field

$$
\vec{F}(x, y)=\left(y^{2}+e^{x}\right) \vec{i}+2 x y \vec{j} .
$$

(a) (10 points) Find a real-valued function $f(x, y)$ so that

$$
\nabla f(x, y)=\vec{F}(x, y)
$$

SOLUTION: We have $\frac{\partial f}{\partial x}=y^{2}+e^{x}$ and $\frac{\partial f}{\partial y}=2 x y$. The formula for $\frac{\partial f}{\partial y}$ implies that $f(x, y)=x y^{2}+g(x)$ for some function g of one variable. Differentiating this formula with respect to x yields $\frac{\partial f}{\partial x}=y^{2}+g^{\prime}(x)$, so we need $g^{\prime}(x)=e^{x}$ and so $g(x)=e^{x}+C$. Therefore

$$
f(x, y)=x y^{2}+e^{x}+C .
$$

(b) (10 points) Let C be the curve given by $x=\cos \left(t^{2} \pi\right)$ and $y=t, 0 \leq t \leq 2$. Find the line integral

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

SOLUTION: The curve C starts at $x=1, y=0$ and ends at $x=\cos 4 \pi=1, y=2$. So by the Fundamental Theorem of Calculus for Line Integrals,

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} \vec{\nabla} f \cdot d \vec{r}=f(1,2)-f(1,0)=(4+e+C)-(0+e+C)=4
$$

3. (15 points) Find the surface area of the portion of the paraboloid $z=x^{2}+y^{2}$ which lies below the plane $z=2$ (Hint: you might want to compute the double integral in polar coordinates.)

SOLUTION: $A(S)=\iint_{R} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A$, where R is the circle $x^{2}+y^{2} \leq 2$ of radius $\sqrt{2}$. So

$$
A(S)=\iint_{R} \sqrt{1+4 x^{2}+4 y^{2}} d A=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \sqrt{1+4 r^{2}} r d r d \theta=\frac{2 \pi}{8} \int_{1}^{9} \sqrt{u} d u=
$$

$$
\frac{\pi}{4}\left[\frac{u^{3 / 2}}{3 / 2}\right]_{1}^{9}=\frac{\pi}{6}(27-1)=\frac{13 \pi}{3}
$$

4. (20 points) Under the linear transformation $x=4 u+v, y=5 u+3 v$ from the (u, v)-plane to the (x, y)-plane, the circular disk D given by the inequality $u^{2}+v^{2} \leq 4$ is transformed into the elliptical region E given by $34 x^{2}-46 x y+17 y^{2} \leq 156$. Compute the area of E as an integral over D.

SOLUTION: D is a circular disk of radius 2 , so $A(D)=4 \pi$. The Jacobian determinant

$$
\frac{\partial(x, y)}{\partial(u, v)}=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}=4 \cdot 3-1 \cdot 5=7
$$

a constant. So $A(E)=\iint_{D} 7 d A=7 A(D)=28 \pi$.
5. (20 points) An oriented curve C in the (x, y)-plane consists of four pieces $C_{1}, C_{2}, C_{3}, C_{4}$: C_{1} is the upper semicircle from $(2,0)$ to $(-2,0)$, given by $x=2 \cos t, y=2 \sin t, 0 \leq$ $t \leq \pi ; C_{2}$ is the segment of the x-axis from $(-2,0)$ to $(-1,0) ; C_{3}$ is the upper semicircle from $(-1,0)$ to $(1,0)$, given by $x=-\cos t, y=\sin t, 0 \leq t \leq \pi$; and C_{4} is the segment of the x-axis from $(1,0)$ to $(2,0)$. Let \vec{F} be the vector field

$$
\vec{F}(x, y)=\left[e^{x^{2}}+\sin y\right] \vec{i}+[x \cos y+3 x+\ln (y+1)] \vec{j}
$$

Find $\int_{C} \vec{F} \cdot d \vec{r}$. (Hint: Green's Theorem makes this much easier! You may use what you remember about areas inside circles.)

SOLUTION: The curve C is the oriented boundary of a region D which can be described as the upper semi-circle of radius 2 centered at $(0,0)$ minus the semi-circle of radius 1 centered at $(0,0)$. In polar coordinates, D is described by $1 \leq r \leq 2,0 \leq \theta \leq \pi$. Write $\vec{F}(x, y)=P \vec{i}+Q \vec{j}$, so $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\cos y+3-\cos y=3$. By Green's Theorem,

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{D}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d A=\int_{0}^{\pi} \int_{1}^{2} 3 r d r d \theta=3 \pi\left[\frac{r^{2}}{2}\right]_{1}^{2}=\frac{9 \pi}{2}
$$

6. (15 points) The portion of the ball of radius 2 with center at $(0,0,0)$, which lies above the cone

$$
z=\frac{1}{2} \sqrt{x^{2}+y^{2}+z^{2}}
$$

is described in spherical coordinates by $0 \leq \rho \leq 2,0 \leq \phi \leq \pi / 3,0 \leq \theta \leq 2 \pi$. Find the volume of this figure by computing an integral in spherical coordinates. (Hint: Recall that $\sin \pi / 3=\frac{1}{2} \sqrt{3}$ and $\cos \pi / 3=\frac{1}{2}$.)

SOLUTION: The volume is $V=$

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta=2 \pi \int_{0}^{\frac{\pi}{3}} \sin \phi d \phi \int_{0}^{2} \rho^{2} d \rho=2 \pi[-\cos \phi]_{0}^{\frac{\pi}{3}} i\left[\frac{\rho^{3}}{3} i\right]_{0}^{2}=\frac{8 \pi}{3} .
$$

