1. (15 points) Find an equation for the plane passing through the two points $\langle x, y, z\rangle=\langle 4,-2,2\rangle$ and $\langle 1,0,-2\rangle$ so that the vector $\vec{i}+\vec{j}+\vec{k}$ is tangent to the plane.

SOLUTION: A normal vector \vec{v} is the cross product of the vector $\langle 3,-2,4\rangle$ from one given point to the other and $\langle 1,1,1\rangle$.

$$
\vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
3 & -2 & 4 \\
1 & 1 & 1
\end{array}\right|=-6 \vec{i}+\vec{j}+5 \vec{k}
$$

Since $\langle 1,0,-2\rangle$ is in the plane, an equation for the plane is $-6(x-1)+(y-0)+5(z+2)=0$, or simplifying:

$$
-6 x+y+5 z=-16
$$

2. (15 points) Find an equation for the surface in (x, y, z)-space obtained by rotating the ellipse $x^{2}+4 y^{2}=1$ of the (x, y)-plane about the x-axis.

SOLUTION: The distance from the x-axis is $\sqrt{y^{2}+z^{2}}$, which replaces $|y|$ in the given equation. So the equation for the surface of revolution is $x^{2}+4 y^{2}+4 z^{2}=1$.
3. (15 points) The lines given parametrically by

$$
(x, y, z)=(7+2 t,-1-t,-2 t), \quad-\infty<t<\infty
$$

and

$$
(x, y, z)=(4-s,-1+2 s, 2+2 s), \quad-\infty<s<\infty
$$

intersect at the point $\langle x, y, z\rangle=\langle 3,1,4\rangle$. Find an equation for the plane which contains both lines.

SOLUTION: A vector in the direction of the first line is $\vec{u}=2 \vec{i}-\vec{j}-2 \vec{k}$, and for the second line $\vec{w}=-\vec{i}+2 \vec{j}+2 \vec{k}$. So a normal vector \vec{v} to the plane is the cross product:

$$
\vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & -1 & -2 \\
-1 & 2 & 2
\end{array}\right|=2 \vec{i}-2 \vec{j}+3 \vec{k} .
$$

An equation for the plane is $2(x-3)-2(y-1)+3(z-4)=0$, or simplifying:

$$
2 x-2 y+3 z=16 .
$$

4. (15 points) For the function $f(x, y)=e^{2 x+y} \sin y$, find the second partial derivatives

$$
f_{x x}, \quad f_{x y} \quad \text { and } \quad f_{y y} .
$$

SOLUTION: Compute $f_{x}=2 e^{2 x+y} \sin y$ and $f_{y}=e^{2 x+y}[\sin y+\cos y]$. Then

$$
\begin{aligned}
f_{x x} & =4 e^{2 x+y} \sin y, \quad f_{x y}=2 e^{2 x+y}[\sin y+\cos y] \\
\text { and } \quad f_{y y} & =e^{2 x+y}[\sin y+\cos y+\cos y-\sin y]=2 e^{2 x+y} \cos y .
\end{aligned}
$$

5. (10 points) Suppose $z=f(x, y)$ is a function with first partial derivatives $f_{x}(1,2)=3$ and $f_{y}(1,2)=5$. If x and y are both functions of $t: x=g(t)=-1-2 t$ and $y=h(t)=6+4 t$, find the derivative at $t=-1$:

$$
\frac{d z}{d t}=\frac{d}{d t} f(g(t), h(t))
$$

SOLUTION: The chain rule says that

$$
\frac{d z}{d t}=f_{x}(g(t), h(t)) \frac{d x}{d t}+f_{y}(g(t), h(t)) \frac{d y}{d t} .
$$

Compute that when $t=-1, x(-1)=1$ and $y(-1)=2$, so in the chain rule, both f_{x} and f_{y} are evaluated at $(1,2)$. We get:

$$
\frac{d z}{d t}(-1)=(3)(-2)+(5)(4)=14 .
$$

6. (15 points) The point $\langle x, y, z\rangle=\langle 1,-1,2\rangle$ lies on the surface S :

$$
x^{2}+z^{2}-2 x y-y^{2}=6 .
$$

Find the equation of the tangent plane to the surface S at $\langle 1,-1,2\rangle$. Write it in the form $a x+b y+c z=d$.

SOLUTION: Compute the gradient of $g(x, y, z)=x^{2}+z^{2}-2 x y-y^{2}: \vec{\nabla} g=(2 x-2 y) \vec{i}+$ $(-2 x-2 y) \vec{j}+2 z \vec{k}$. Then $\vec{\nabla} g(1,-1,2)=4 \vec{i}+4 \vec{k}$ is a normal vector to the surface S given by $g(x, y, z)=6$ at $\langle 1,-1,2\rangle$. The equation of the tangent plane to S at $\langle 1,-1,2\rangle$ is

$$
\vec{\nabla} g \cdot(\langle x, y, z\rangle-\langle 1,-1,2\rangle)=4(x-1)-0(y+1)+4(z-2)=0, \quad \text { or } \quad x+z=3 .
$$

7. (15 points) (a)Find the gradient of the function $f(x, y, z)=e^{x} \ln \left(x y+z^{2}\right)$ at the point $\langle x, y, z\rangle=\langle-1,1,2\rangle$.
(15 points) SOLUTION: $f_{x}=e^{x} \ln \left(x y+z^{2}\right)+\frac{y e^{x}}{x y+z^{2}} ; f_{y}=\frac{x e^{x}}{x y+z^{2}}$; and $f_{z}=\frac{2 z e^{x}}{x y+z^{2}}$. So the partial derivatives of f at $\langle x, y, z\rangle=\langle-1,1,2\rangle$ are $f_{x}=\frac{\ln 3}{e}+\frac{1}{3 e}, f_{y}=-\frac{1}{3 e}$ and $f_{z}=\frac{4}{3 e}$. The gradient of f is

$$
\vec{\nabla} f(-1,1,2)=\left[\frac{\ln 3}{e}+\frac{1}{3 e}\right] \vec{i}-\frac{1}{3 e} \vec{j}+\frac{4}{3 e} \vec{k} .
$$

(b) Find the directional derivative of the function $f(x, y, z)=e^{x} \ln \left(x y+z^{2}\right)$ at the point $\langle x, y, z\rangle=\langle-1,1,2\rangle$ in the direction of the unit vector

$$
\vec{u}=\frac{1}{3}(2 \vec{i}-2 \vec{j}+\vec{k}) .
$$

SOLUTION: Since \vec{u} is a unit vector, we know that $D_{\vec{u}} f(-1,1,2)=\vec{u} \cdot \vec{\nabla} f(-1,1,2)=$ $\frac{1}{3}(2 \vec{i}-2 \vec{j}+\vec{k}) \cdot\left(\left[\frac{\ln 3}{e}+\frac{1}{3 e}\right] \vec{i}-\frac{1}{3 e} \vec{j}+\frac{4}{3 e} \vec{k}\right)=\frac{1}{3}\left(2\left[\frac{\ln 3}{e}+\frac{1}{3 e}\right]-2 \frac{1}{3 e}+\frac{4}{3 e}\right)=\frac{2}{3 e} \ln 3+\frac{4}{9 e}$.

