1. (7 points) Let R be the rectangle $0 \leq x \leq 3,0 \leq y \leq 1$. Find the double integral

$$
\iint_{R} \frac{x y}{\left(y^{2}+1\right)^{2}} d A
$$

SOLUTION: The iterated integral is $\int_{0}^{1} \int_{0}^{3} \frac{x y}{\left(y^{2}+1\right)^{2}} d x d y$. The inside integral is $\int_{0}^{3} x d x=\frac{9}{2}$, so the double integral is

$$
\frac{9}{2} \int_{0}^{1} \frac{y}{\left(y^{2}+1\right)^{2}} d y
$$

Make the substitution $u=y^{2}+1$, so $d u=2 y d y$ and the answer is

$$
\frac{9}{2} \frac{1}{2} \int_{1}^{2} \frac{d u}{u^{2}}=\frac{9}{4}\left[-u^{-1}\right]_{1}^{2}=\frac{9}{8} .
$$

2. (8 points) Let R be the rectangle $0 \leq x \leq 5,0 \leq y \leq 2$ in the (x, y)-plane. If a continuous function $f(x, y)$ satisfies

$$
-1 \leq f(x, y) \leq x y^{2},
$$

what does this tell you about the value of $\iint_{R} f(x, y) d A$?
SOLUTION: Evaluate

$$
\iint_{R} x y^{2} d A=\int_{0}^{2} \int_{0}^{3} x y^{2} d x d y=\left[x^{2} / 2\right]_{x=0}^{3}\left[y^{3} / 3\right]_{y=0}^{2}=\frac{9}{2} \frac{8}{3}=12 .
$$

Also,

$$
\iint_{R}(-1) d A=-A(R)=-6,
$$

so

$$
-6 \leq \iint_{R} f(x, y) d A \leq 12 .
$$

3. (20 points) Suppose $x=X$ and $y=Y$ are random variables with joint density function

$$
f(x, y)=\frac{\alpha}{1+x^{2}+y^{2}} \quad \text { if } \quad x^{2}+y^{2} \leq 1,
$$

and

$$
f(x, y) \equiv 0 \quad \text { if } \quad x^{2}+y^{2}>1
$$

(a) (10 points) What does the constant α need to be? (Your answer will involve $\ln 2$. Do not evaluate $\ln 2$.)

SOLUTION: Compute in polar coordinates, and substitute $u=1+r^{2}: \iint f(x, y) d A=$ $\int_{0}^{2 \pi} \int_{0}^{1} \frac{\alpha}{1+r^{2}} r d r d \theta=2 \pi \int_{1}^{2} \frac{\alpha}{u} \frac{1}{2} d u=\alpha \pi \ln 2$. The constant α is determined by the requirement that $\iint f(x, y) d A=1=100 \%$, so $\alpha=\frac{1}{\pi \ln 2}$.
(b) (10 points) Find the "median" radius R, so that the probability that $X^{2}+Y^{2} \leq R^{2}$ is 50%. For full credit, your answer should not involve $\ln 2$.

SOLUTION: For each radius R, the probability that $X^{2}+Y^{2} \leq R^{2}$ is

$$
\iint_{r \leq R} f(x, y) d A=2 \pi \int_{0}^{R} \frac{\alpha}{1+r^{2}} r d r d \theta=\pi \int_{1}^{1+R^{2}} \frac{\alpha}{u} d u=\frac{1}{\pi \ln 2} \pi \ln \left(1+R^{2}\right)
$$

To make this equal to $50 \%=\frac{1}{2}$, we need $1+R^{2}=e^{\frac{\ln 2}{2}}$, so

$$
R=\sqrt{\sqrt{2}-1}
$$

4. (15 points) A plate is in the shape of the triangle $D: 0 \leq y \leq 2-|x|$, with corners $(-2,0)$, $(0,2)$ and $(2,0)$. The plate has mass density at the point (x, y) equal to $\rho(x, y)=y+|x|$ per unit area.
(a) (5 points) Find the total mass m of the plate.

SOLUTION: Let T denote the triangle. The total mass $m=\iint_{T} \rho(x, y) d A=\int_{-2}^{2} \int_{0}^{2-|x|} y+$ $|x| d y d x=\int_{-2}^{2}\left[\frac{y^{2}}{2}+|x| y\right]_{y=0}^{2-|x|} d x=\int_{-2}^{2}\left[\frac{(2-2|x|)^{2}}{2}+(2-2|x|)|x|\right] d x=2 \int_{0}^{2}\left[\frac{(2-2 x)^{2}}{2}+(2-2 x) x\right] d x=$ $2 \int_{0}^{2}\left[-\right.$ fracx $\left.^{2} 2+2\right] d x=2\left[-\frac{x^{3}}{6}+2 x\right]_{0}^{2}=-\frac{8}{3}+8=\frac{16}{3}$.
(b) (10 points) Find the center of mass (\bar{x}, \bar{y}) of the plate.

SOLUTION: $\bar{x}=\iint_{T} x \rho(x, y) d A=0$, because $\rho(x, y)=\rho(-x, y)$, and T is symmetric, so the contribution from $-2 \leq x \leq 0$ equals minus the contribution from $0 \leq x \leq 3$. And $m \bar{y}=$ $\iint_{T} y \rho(x, y) d A=\int_{-2}^{2} \int_{0}^{2-\mid \overline{x \mid}} y^{2}+|x| y d y d x=\int_{-2}^{2}\left[\frac{y^{3}}{3}+|x| \frac{y^{2}}{2}\right]_{y=0}^{2-|x|} d x=2 \int_{0}^{2}\left[\frac{y^{3}}{3}+x \frac{y^{2}}{2}\right]_{y=0}^{2-x} d x=$ $2 \int_{0}^{2} \frac{1}{6}\left[16-12 x+x^{3}\right] d x=\frac{1}{3}\left(32-24+\frac{8}{2}\right)=\frac{10}{3}$. So

$$
\bar{y}=\frac{\frac{10}{3}}{\frac{16}{3}}=\frac{5}{8}
$$

5. (10 points) Let D be the circular disk of radius R and center $(0,0)$ in the (x, y)-plane. Find

$$
\iint_{D} e^{x^{2}+y^{2}} d A
$$

(Hint: polar coordinates.)
SOLUTION: This integral is not possible as an (x, y) iterated integral. But in polars, substituting $u=r^{2}: \iint_{D} e^{x^{2}+y^{2}} d A=\int_{0}^{2 \pi} \int_{0}^{R} e^{r^{2}} r d r d \theta=2 \pi \int_{0}^{R^{2}} \frac{1}{2} e^{u} d u=\pi\left(e^{R^{2}}-1\right)$.
6. (15 points) Find the maximum and minimum values of

$$
f(x, y)=x y-y
$$

subject to the side condition

$$
g(x, y)=4 x^{2}+y^{2}=4
$$

(Hint: Lagrange multipliers.)
SOLUTION: By Lagrange multipliers, a maximum or minimum point (x, y) must satisfy

$$
\vec{\nabla} f=\lambda \vec{\nabla} g
$$

fo some scalar λ. But this means $\vec{\nabla} f=y \vec{i}+(x-1) \vec{j}=\lambda(8 x \vec{i}+2 y \vec{j})$, so $y=8 \lambda x$ and $x-1=2 \lambda y$. Then $y^{2}=8 \lambda x y=4 x(x-1)$. Using $g(x, y)=4$ gives $8 x^{2}-4 x=4$, so $x=1$ or $x=-\frac{1}{2}$. If $x=1$, then $y=0$. If $x=-\frac{1}{2}$, then $y^{2}=3$. Check $f(x, y)$ at these three points: $f(1,0)=0 ; f\left(-\frac{1}{2}, \sqrt{3}\right)=-\frac{3}{2} \sqrt{3}$ which is the minimum; and $f\left(-\frac{1}{2},-\sqrt{3}\right)=+\frac{3}{2} \sqrt{3}$ which is the maximum.
7. (25 points) Let $f(x, y)=3 x^{3}-x y^{2}+y x^{2}+\frac{7}{2} x^{2}$.
(a) (5 points) Compute the first and second partial derivatives of $f(x, y)$.

SOLUTION: $\frac{\partial f}{\partial x}=f_{x}=9 x^{2}-y^{2}+2 x y+7 x$;
$f_{y}=-2 x y+x^{2}$;
$f_{x x}=18 x+2 y+7$;
$f_{x y}=-2 y+2 x$;
$f_{y y}=-2 x$.
(b) (10 points) Find all the critical points of $f(x, y)$.

SOLUTION: $f_{y}=0$ requires either $x=0$ or $x=2 y$.
If $x=0$ then $f_{x}=-y^{2}=0$ only for $y=0:(0,0)$ is a critical point.
If $x=2 y$, then $f_{x}=36 y^{2}-y^{2}+4 y^{2}+14 y=0$ requires $y=0$ or $y=-\frac{14}{39}$.
So there are only two critical points: $(x, y)=(0,0)$ or $\left(-\frac{28}{39},-\frac{14}{39}\right)$.
(c) (10 points) For each critical point, state whether it is a local minimum point, a local maximum point or a saddle point.

SOLUTION: At $(x, y)=(0,0)$, the second partial derivatives are $f_{x x}=7, f_{x y}=0$, and $f_{y y}=0$. So the origin $(0,0)$ is a degenerate critical point.
At $(x, y)=\left(-\frac{28}{39},-\frac{14}{39}\right)$, the second partial derivatives are $f_{x x}=7, f_{x y}=0$, and $f_{y y}=0$.

