Math 2263 Fall 2009 Midterm 2, WITH SOLUTIONS November 5, 2009

1. (7 points) Let R be the rectangle $0 \le x \le 3, 0 \le y \le 1$. Find the double integral

$$\iint_R \frac{xy}{(y^2+1)^2} \, dA.$$

SOLUTION: The iterated integral is $\int_0^1 \int_0^3 \frac{xy}{(y^2+1)^2} dx dy$. The inside integral is $\int_0^3 x dx = \frac{9}{2}$, so the double integral is

$$\frac{9}{2} \int_0^1 \frac{y}{(y^2 + 1)^2} \, dy.$$

Make the substitution $u = y^2 + 1$, so du = 2y dy and the answer is

$$\frac{9}{2}\frac{1}{2}\int_{1}^{2}\frac{du}{u^{2}} = \frac{9}{4}[-u^{-1}]_{1}^{2} = \frac{9}{8}.$$

2. (8 points) Let R be the rectangle $0 \le x \le 5$, $0 \le y \le 2$ in the (x, y)-plane. If a continuous function f(x, y) satisfies

$$-1 \le f(x, y) \le xy^2$$

what does this tell you about the value of $\iint_R f(x, y) dA$?

SOLUTION: Evaluate

$$\iint_{R} xy^{2} dA = \int_{0}^{2} \int_{0}^{3} xy^{2} dx dy = [x^{2}/2]_{x=0}^{3} [y^{3}/3]_{y=0}^{2} = \frac{9}{2} \frac{8}{3} = 12.$$

Also,

 \mathbf{SO}

$$\iint_R (-1) \, dA = -A(R) = -6,$$

$$-6 \le \iint_R f(x, y) \, dA \le 12$$

3. (20 points) Suppose x = X and y = Y are random variables with joint density function

$$f(x,y) = \frac{\alpha}{1+x^2+y^2}$$
 if $x^2 + y^2 \le 1$,

and

$$f(x,y) \equiv 0$$
 if $x^2 + y^2 > 1$.

(a) (10 points) What does the constant α need to be? (Your answer will involve ln 2. Do not evaluate ln 2.)

SOLUTION: Compute in polar coordinates, and substitute $u = 1 + r^2$: $\iint f(x, y) dA = \int_0^{2\pi} \int_0^1 \frac{\alpha}{1+r^2} r \, dr \, d\theta = 2\pi \int_1^2 \frac{\alpha}{u} \frac{1}{2} du = \alpha \pi \ln 2$. The constant α is determined by the requirement that $\iint f(x, y) \, dA = 1 = 100\%$, so $\alpha = \frac{1}{\pi \ln 2}$.

(b) (10 points) Find the "median" radius R, so that the probability that $X^2 + Y^2 \leq R^2$ is 50%. For full credit, your answer should **not** involve ln 2.

SOLUTION: For each radius R, the probability that $X^2 + Y^2 \leq R^2$ is

$$\iint_{r \le R} f(x, y) \, dA = 2\pi \int_0^R \frac{\alpha}{1 + r^2} r \, dr \, d\theta = \pi \int_1^{1 + R^2} \frac{\alpha}{u} \, du = \frac{1}{\pi \ln 2} \pi \ln(1 + R^2).$$

To make this equal to $50\% = \frac{1}{2}$, we need $1 + R^2 = e^{\frac{\ln 2}{2}}$, so

$$R = \sqrt{\sqrt{2} - 1}.$$

4. (15 points) A plate is in the shape of the triangle $D: 0 \le y \le 2 - |x|$, with corners (-2, 0), (0, 2) and (2, 0). The plate has mass density at the point (x, y) equal to $\rho(x, y) = y + |x|$ per unit area.

(a) (5 points) Find the total mass m of the plate.

SOLUTION: Let *T* denote the triangle. The total mass $m = \iint_T \rho(x, y) dA = \int_{-2}^2 \int_0^{2-|x|} y + |x| dy dx = \int_{-2}^2 \left[\frac{y^2}{2} + |x|y|_{y=0}^{2-|x|} dx = \int_{-2}^2 \left[\frac{(2-2|x|)^2}{2} + (2-2|x|)|x|\right] dx = 2 \int_0^2 \left[\frac{(2-2x)^2}{2} + (2-2x)x\right] dx = 2 \int_0^2 \left[-fracx^2 2 + 2\right] dx = 2\left[-\frac{x^3}{6} + 2x\right]_0^2 = -\frac{8}{3} + 8 = \frac{16}{3}.$

(b) (10 points) Find the center of mass $(\overline{x}, \overline{y})$ of the plate.

SOLUTION: $\overline{x} = \iint_T x \rho(x, y) dA = 0$, because $\rho(x, y) = \rho(-x, y)$, and T is symmetric, so the contribution from $-2 \le x \le 0$ equals minus the contribution from $0 \le x \le 3$. And $m\overline{y} = \iint_T y \rho(x, y) dA = \int_{-2}^2 \int_0^{2-|x|} y^2 + |x|y \, dy \, dx = \int_{-2}^2 [\frac{y^3}{3} + |x|\frac{y^2}{2}]_{y=0}^{2-|x|} dx = 2 \int_0^2 [\frac{y^3}{3} + x\frac{y^2}{2}]_{y=0}^{2-x} dx = 2 \int_0^2 \frac{1}{6} [16 - 12x + x^3] \, dx = \frac{1}{3} (32 - 24 + \frac{8}{2}) = \frac{10}{3}$. So

$$\overline{y} = \frac{\frac{10}{3}}{\frac{16}{3}} = \frac{5}{8}$$

5. (10 points) Let D be the circular disk of radius R and center (0,0) in the (x,y)-plane. Find

$$\iint_D e^{x^2 + y^2} \, dA$$

(*Hint:* polar coordinates.)

SOLUTION: This integral is not possible as an (x, y) iterated integral. But in polars, substituting $u = r^2$: $\iint_D e^{x^2 + y^2} dA = \int_0^{2\pi} \int_0^R e^{r^2} r \, dr \, d\theta = 2\pi \int_0^{R^2} \frac{1}{2} e^u \, du = \pi (e^{R^2} - 1).$

6. (15 points) Find the **maximum** and **minimum** values of

$$f(x,y) = xy - y$$

subject to the side condition

$$g(x, y) = 4x^2 + y^2 = 4.$$

(*Hint:* Lagrange multipliers.)

SOLUTION: By Lagrange multipliers, a maximum or minimum point (x, y) must satisfy

 $\vec{\nabla}f = \lambda\vec{\nabla}g$

fo some scalar λ . But this means $\vec{\nabla}f = y\vec{i} + (x-1)\vec{j} = \lambda(8x\vec{i}+2y\vec{j})$, so $y = 8\lambda x$ and $x-1=2\lambda y$. Then $y^2 = 8\lambda xy = 4x(x-1)$. Using g(x,y) = 4 gives $8x^2 - 4x = 4$, so x = 1 or $x = -\frac{1}{2}$. If x = 1, then y = 0. If $x = -\frac{1}{2}$, then $y^2 = 3$. Check f(x,y) at these three points: f(1,0) = 0; $f(-\frac{1}{2},\sqrt{3}) = -\frac{3}{2}\sqrt{3}$ which is the **minimum**; and $f(-\frac{1}{2},-\sqrt{3}) = +\frac{3}{2}\sqrt{3}$ which is the **maximum**.

7. (25 points) Let f(x, y) = 3x³ - xy² + yx² + ⁷/₂x².
(a) (5 points) Compute the first and second partial derivatives of f(x, y).

SOLUTION:
$$\frac{\partial f}{\partial x} = f_x = 9x^2 - y^2 + 2xy + 7x;$$

 $f_y = -2xy + x^2;$
 $f_{xx} = 18x + 2y + 7;$
 $f_{xy} = -2y + 2x;$
 $f_{yy} = -2x.$

(b) (10 points) Find all the critical points of f(x, y).

SOLUTION: $f_y = 0$ requires either x = 0 or x = 2y. If x = 0 then $f_x = -y^2 = 0$ only for y = 0: (0, 0) is a critical point. If x = 2y, then $f_x = 36y^2 - y^2 + 4y^2 + 14y = 0$ requires y = 0 or $y = -\frac{14}{39}$. So there are only two critical points: (x, y) = (0, 0) or $(-\frac{28}{39}, -\frac{14}{39})$.

(c) (10 points) For each critical point, state whether it is a local minimum point, a local maximum point or a saddle point.

SOLUTION:At (x, y) = (0, 0), the second partial derivatives are $f_{xx} = 7$, $f_{xy} = 0$, and $f_{yy} = 0$. So the origin (0, 0) is a degenerate critical point.

At $(x,y) = \left(-\frac{28}{39}, -\frac{14}{39}\right)$, the second partial derivatives are $f_{xx} = 7$, $f_{xy} = 0$, and $f_{yy} = 0$.