1. (10 points) Let B be the box, or rectangular solid: $0 \leq x \leq 2,0 \leq y \leq 3,0 \leq z \leq 1$. Find

$$
\iiint_{B}\left(x y-2 y z+x^{2} z^{2}\right) d V .
$$

SOLUTION:

$$
\begin{gathered}
\iiint_{B}\left(x y-2 y z+x^{2} z^{2}\right) d V=\int_{0}^{1} \int_{0}^{3}\left[\frac{x^{2} y}{2}-2 y z x-\frac{x^{3} z^{2}}{3}\right]_{x=0}^{2} d y d z= \\
\int_{0}^{1} \int_{0}^{3}\left(2 y-4 y z+\frac{8 z^{2}}{3}\right) d y d z=\int_{0}^{1}\left[y^{2}-2 y^{2} z+\frac{8 z^{2} y}{3}\right]_{y=0}^{3} d z=\int_{0}^{1}\left(9-18 z+8 z^{2}\right) d z=9-9+\frac{8}{3}=\frac{8}{3}
\end{gathered}
$$

2. (15 points) Let E be the solid region bounded below by the cone $z^{2}=x^{2}+y^{2}$ and above by the plane $z=1$. Find

$$
\iiint_{E}\left(x^{2}+y^{2}\right) d V
$$

Hint: Try cylindrical coordinates.
SOLUTION: Use cylindrical coordinates: E is described by $0 \leq r \leq z \leq 1,0 \leq \theta \leq 2 \pi$. So

$$
\iiint_{E}\left(x^{2}+y^{2}\right) d V=\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{z} r^{2} r d r d \theta d z=2 \pi \int_{0}^{1} \frac{z^{4}}{4} d z=\frac{\pi}{10}
$$

3. (25 points) C_{1} and C_{2} are oriented curves in the (x, y)-plane, each of which starts at $(0,0)$ and ends at $(1,1)$. C_{1} is given by $y=x^{2}, 0 \leq x \leq 1$; and C_{2} is given by $x=y^{2}, 0 \leq y \leq 1$. Let the vector field \vec{F} be given by $\vec{F}(x, y)=2 x y \vec{i}+\left(x^{2}-y^{2}\right) \vec{j}$.
(a) (10 points) Find $\int_{C_{1}} \vec{F} \cdot d \vec{r}$.

SOLUTION:
$\int_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{C_{1}}\left(2 x y d x+\left(x^{2}-y^{2}\right) d y\right)=\int_{0}^{1}\left[2 x\left(x^{2}\right)+\left(x^{2}-x^{4}\right) 2 x\right] d x=\left[4 \frac{x^{4}}{4}-2 \frac{x^{6}}{6}\right]_{0}^{1}=\frac{2}{3}$.
(b) (10 points) Find $\int_{C_{2}} \vec{F} \cdot d \vec{r}$.

SOLUTION:

$\int_{C_{2}} \vec{F} \cdot d \vec{r}=\int_{0}^{1}\left[2\left(y^{2}\right) y(2 y)+\left(\left(y^{2}\right)^{2}-y^{2}\right)\right] d y=\int_{0}^{1}\left[4 y^{5}+y^{4}-y^{2}\right] d y=\left[4 \frac{y^{6}}{6}+\frac{y^{5}}{5}-\frac{y^{3}}{3}\right]_{y=0}^{1}=\frac{8}{15}$.
(c) (5 points) Is the vector field $\vec{F}(x, y)$ conservative? Why or why not?

SOLUTION: NO! $\frac{2}{3} \neq \frac{8}{15}$, so the integral from $(0,0)$ to $(1,1)$ depends on the path of integration connecting the two points.
4. (15 points) Under the transformation $x=4 u+v, y=5 u+2 v$ from the (u, v)-plane to the (x, y)-plane, the circular disk D given by the inequality $u^{2}+v^{2} \leq 9$ is transformed into the elliptical region E given by

$$
85 x^{2}-76 x y+17 y^{2} \leq 9
$$

Compute the area of E as an integral over D.
SOLUTION: First compute the Jacobian determinant:

$$
\frac{\partial(x, y)}{\partial(u, v)}=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}=(4)(2)-(1)(5) \equiv 3 .
$$

Also, the area of a circular disk of radius 3 is $A(D)=\pi(3)^{2}=9 \pi$. So

$$
A(E)=\iint_{D}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A_{u, v}=\iint_{D} 3 d A_{u, v}=27 \pi .
$$

5. (20 points) Let C be the circle $x^{2}+y^{2}=9$ in the (x, y)-plane, oriented counterclockwise. Find

$$
\oint_{C}\left(2 x y e^{x^{2}}+2 y^{2}-y\right) d x+\left(e^{x^{2}}+4 x y-3 x\right) d y .
$$

Hint: try Green's theorem!
SOLUTION: Write $P(x, y)=2 x y e^{x^{2}}+2 y^{2}-y$ and $Q(x, y)=e^{x^{2}}+4 x y-3 x$. Following the hint, C is the oriented boundary of the circular disk $D: x^{2}+y^{2} \leq 9$, so by Green's Theorem $\oint_{C} P d x+Q d y=\iint_{D}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d A$. But $\frac{\partial Q}{\partial x}=2 x e^{x^{2}}+4 y-3$ and $\frac{\partial P}{\partial y}=2 x e^{x^{2}}+4 y-1$. Subtracting, you get $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \equiv-2$ for all (x, y), so

$$
\oint_{C} P d x+Q d y=\iint_{D}(-2) d A=-18 \pi .
$$

6. (15 points) The portion E of the ball of radius 2 with center at $(0,0,0)$, which lies above the cone

$$
z=\sqrt{x^{2}+y^{2}}
$$

is described in spherical coordinates by $0 \leq \rho \leq 2,0 \leq \phi \leq \pi / 4,0 \leq \theta \leq 2 \pi$. Find the volume of this figure by computing an integral in spherical coordinates. (Hint: Recall that $\sin \pi / 4=\frac{1}{2} \sqrt{2}=\cos \pi / 4$.)

SOLUTION: Using spherical coordinates, the volume of E is

$$
\begin{gathered}
V(E)=\iiint_{E} d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{2} \rho^{2} \sin \phi d \rho d \theta d \phi=2 \pi \int_{0}^{\pi / 4}\left[\frac{\rho^{3}}{3}\right]_{\rho=0}^{2} \sin \phi d \phi= \\
2 \pi \frac{8}{3}[-\cos \phi]_{0}^{\pi / 4}=\frac{8 \pi}{3}(2-\sqrt{2})
\end{gathered}
$$

