Math 2263
Midterm 2WITH SOLUTIONS

Spring 2016
March 24, 2016
\qquad
\qquad

1. (16 points) Let D be the region $0 \leq x \leq 4,0 \leq y \leq \sqrt{x}$ in the (x, y)-plane. Find the double integral

$$
\iint_{D} x^{2} y d A
$$

ANSWER: $\iint_{D} x^{2} y d A=\int_{0}^{4} \int_{0}^{\sqrt{x}} x^{2} y d y d x=\int_{0}^{4} x^{2}\left[\frac{y^{2}}{2}\right]_{0}^{\sqrt{x}} d x=\frac{1}{2} \int_{0}^{4} x^{3} d x=32$.
2. (18 points) Let E be the triangular solid

$$
E=\{(x, y, z): x \geq 0, y \geq 0, x+y \leq 1,0 \leq z \leq 1\}
$$

Find the triple integral

$$
\iiint_{E} x y z d V
$$

ANSWER: $\iiint_{E} x y z d V=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1-y} x y z d x d y d z=\int_{0}^{1} \int_{0}^{1} \frac{1}{2}\left[x^{2} y z\right]_{0}^{1-y} d y d z=$ $\frac{1}{2} \int_{0}^{1} \int_{0}^{1} y(1-y)^{2} z d y d z=\frac{1}{2} \int_{0}^{1} z d z \int_{0}^{1}\left(y-2 y^{2}+y^{3}\right) d y=\frac{1}{4}\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)=\frac{6-8+3}{4 \cdot 12}=\frac{1}{48}$.
3. (16 points) Let R be the rectangle $-3 \leq x \leq 4,0 \leq y \leq 3$ in the (x, y)-plane. If a continuous function $f(x, y)$ satisfies

$$
-|x| y^{2} \leq f(x, y) \leq 2
$$

for all $(x, y) \in R$, what does this tell you about the value of $\iint_{R} f(x, y) d A$?
ANSWER: $A(R)=21$, and $\iint_{R}\left(-|x| y^{2}\right) d A=-[x|x| / 2]_{-3}^{4}\left[y^{3} / 3\right]_{0}^{3}=(-16 / 2-9 / 2)(27 / 3)=$ $-\frac{225}{2}$, so $-\frac{225}{2} \leq \iint_{R} f(x, y) d A \leq 42$.
4. (28 points) Suppose $x=X$ and $y=Y$ are random variables with joint density function

$$
f(x, y)=\alpha\left(x^{2}+y^{2}\right) \quad \text { if } \quad x^{2}+y^{2} \leq 1
$$

and

$$
f(x, y) \equiv 0 \quad \text { if } \quad x^{2}+y^{2}>1 .
$$

(a) (16 points) What does the constant α need to be?

ANSWER: We need $\iint_{\mathbb{R}^{2}} f(x, y) d A=1$. So in polar coordinates: $1=\int_{0}^{2 \pi} \int_{0}^{1} \alpha\left(x^{2}+y^{2}\right) r d r d \theta=$ $2 \pi \int_{0}^{1} \alpha r^{2} r d r d \theta=\frac{\pi}{2} \alpha$. This gives $\alpha=\frac{2}{\pi}$.
(b) (12 points) Find the "median" radius R, so that the probability that $X^{2}+Y^{2} \leq R^{2}$ is 50%.

ANSWER: We want to find R so that $\frac{1}{2}=\int_{0}^{2 \pi} \int_{0}^{R} \alpha\left(x^{2}+y^{2}\right) r d r d \theta=2 \pi \int_{0}^{R} \alpha r^{3} d r=R^{4}$. So $R=\frac{1}{2^{1 / 4}}$.
5. (28 points) A plate (or lamina) is in the shape of the triangle $D: 0 \leq x \leq 2,0 \leq y \leq 1-\frac{x}{2}$, with corners $(0,0),(0,1)$ and $(2,0)$. The plate has mass density at the point (x, y) equal to $\rho(x, y)=x y$ per unit area.
(a) (12 points) Find the total mass m of the plate.

ANSWER: $m=\iint_{D} \rho(x, y) d A=\int_{0}^{2} \int_{0}^{1-x / 2} x y d y d x=\int_{0}^{2}\left[x y^{2} / 2\right]_{0}^{1-x / 2} d x=\frac{1}{2} \int_{0}^{2} x(1-$ $x / 2)^{2} d x=\frac{1}{8} \int_{0}^{2}\left(4 x-4 x^{2}+x^{3}\right) d x=\frac{1}{8}\left[\frac{4 x^{2}}{2}-\frac{4 x^{3}}{3}+\frac{x^{4}}{4}\right]_{0}^{2}=\frac{1}{8}(16 / 2-32 / 3+16 / 4)=\frac{6-8+3}{6}=\frac{1}{6}$.
(b) (16 points) Find the center of mass (\bar{x}, \bar{y}) of the plate.

ANSWER: $\bar{x}=\frac{1}{m} \iint_{D} x \rho(x, y) d A=6 \int_{0}^{2} \int_{0}^{1-x / 2} x^{2} y d y d x=\frac{6}{4} \int_{0}^{2}\left(4 x^{2}-4 x^{3}+x^{4}\right) d x=\frac{3}{4}\left[\frac{4 x^{3}}{3}-\right.$ $\left.x^{4}+\frac{x^{5}}{5}\right]_{0}^{2}=3\left(\frac{8}{3}-4+\frac{8}{5}\right)=\frac{4}{5}$.
The other component of the center of mass is $\bar{y}=6 \int_{0}^{2} \int_{0}^{1-x / 2} x y^{2} d y d x=\frac{1}{4} \int_{0}^{2}\left(8 x-12 x^{2}+\right.$ $\left.6 x^{3}-x^{4}\right) d x=\frac{1}{4}\left[4 x^{2}-4 x^{3}+3 x^{4} / 2-x^{5} / 5\right]_{0}^{2}=4-8+6-\frac{8}{5}=\frac{2}{5}$.
An alternative computation is $\bar{y}=6 \int_{0}^{1} \int_{0}^{2(1-y)} x y^{2} d x d y=6 \int_{0}^{1} y^{2}\left[\frac{x^{2}}{2}\right]_{0}^{2(1-y)} d y=3 \int_{0}^{1} y^{2}[4(1-$ $\left.y)^{2}\right] d y=12\left(\frac{1}{3}-\frac{2}{4}+\frac{1}{5}\right)=\frac{-10+12}{5}=\frac{2}{5}$. So the center of mass of the plate is $(\bar{x}, \bar{y})=\left(\frac{4}{5}, \frac{2}{5}\right)$.
6. (22 points) Use the method of Lagrange multipliers to find the maximum and minimum values of

$$
f(x, y)=x y
$$

among points (x, y) which lie on the ellipse

$$
g(x, y)=x^{2}+x y+y^{2}=3 .
$$

ANSWER: At any extreme point, we have $\vec{\nabla} f=\lambda \vec{\nabla} g$ so $y \vec{i}+x \vec{j}=\lambda[(2 x+y) \vec{i}+(x+2 y) \vec{j}]$, so $\frac{y}{2 x+y}=\lambda=\frac{x}{x+2 y}$, which implies that $y= \pm x$. If $y=+x$, then $g(x, y)=g(x, x)=$ $x^{2}+x^{2}+x^{2}=3$, so $x= \pm 1$ and $f(x, y)=f(x, x)=x^{2}=1$. On the other hand, if $y=-x$, then $g(x, y)=g(x,-x)=x^{2}-x^{2}+x^{2}=3$, so $x= \pm \sqrt{3}$ and $f(x, y)=f(x,-x)=-x^{2}=-3$. That is, the maximum of f along the ellipse is $f(1,1)=f(-1,-1)=+1$, and the minimum is $f(\sqrt{3},-\sqrt{3})=f(-\sqrt{3}, \sqrt{3})=-3$.
7. (22 points) Compute the surface area $A(S)$ of the parabolic hyperboloid $S=\left\{(x, y, z): x^{2}+\right.$ $\left.y^{2} \leq 1, z=y^{2}-x^{2}\right\}$. (Hint: polar coordinates.)

ANSWER: Write $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ and $f(x, y)=y^{2}-x^{2}$. Then $A(S)=\iint_{D} \sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A$.
Compute $f_{x}=-2 x$ and $f_{y}=2 y$, so $A(S)=\iint_{D} \sqrt{1+4 x^{2}+4 y^{2}} d x d y$. In polar coordinates, this integral becomes computable: $A(S)=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{1+4 r^{2}} r d r d \theta=2 \pi \frac{1}{8} \int_{1}^{5} \sqrt{u} d u$, where $u=1+4 r^{2}$. This yields $A(S)=\frac{\pi}{6}(5 \sqrt{5}-1)$.

