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1. INTRODUCTION

In this paper we shall study the behavior for large values of the time variable #
of the semilinear diffusion equation

oufot = Adu + f(u), (1.1)
where
n &2
4= L%

is the Laplace operator in R”. Throughout this work we assume that f0) =
- /(1) = O and consider only solutions u(x, t) with values in [0, 1]. We are primari-
lv interested in the propagation of perturbations from the rest state u = Q
and in certain threshold phenomena. The problems which we consider are
suggested by the classical theory of population genetics. In an earlier paper
~ [1] we have discussed the genetic background in some detail and have studied
- propagation and threshold phenomena for diffusions in one space dimension.
- Here we are mainly concerned with diffusions in R* for n = 2. Although
many of the arguments employed in Ref. [1] are valid only for the case n — 1,
we shall show that the essential features of the one-dimensional diffusions
described in [1] are also present in the multidimensional case. In reference [1]
we considered both the pure initial value problem and the initial-boundary
_ value problem in a quarter-space; here we shall consider only the initial value
. problem.
. Before describing our results in more detail we briefly summarize the back-
- ground from population genetics.

* This work was supported by the National Science Foundation through grants
- MPS 75-05074 and GP 37660X. Much of the work was done while one of us (D.G.A.)
- wir ut Rice University on leave from the University of Minnesota.
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34 ARONSON AND WEINBERGER

Consider a population of diploid individuals distributed, for example, on
a planar habitat. Suppose that the gene at a specific locus in a specific chromo-
some pair occurs in two allelic forms denoted by a and 4. The population
is thus divided into three classes. The individuals in two of these classes, called
homozygotes, have genotypes aa or 44, while those in the third class, called
heterozygotes, have genotype aA. Assume that the population mates at random,
producing offspring with a birth rate 7, and that it diffuses through the habitat
with diffusion constant equal to one. Moreover, assume that the death ratc
depends only on the genotype with respect to the alleles @ and 4. Let 7, 7,
and 7, denote the death rates of the genotvpes aa, a4, and AA4, respectively.
In general these death rates will be different so that some genotypes are morc
viable than others.

Let ¢(«x, 7) denote the relative density of the allele 4 at the point x of the
habitat at time 7. In [1] it is shown that if the derivatives of the densities of
the various genotypes are initially small, if 7 is very large, and if e = 7, — 7,
| 7o — 75 18 very small, then for times which are small relative to e~ the relative
density ¢ is close to the solution of (1.1) with the same initial values as ¢ and
with

fu) = u(l —u){(ry — 75) — (73 — 273 — 75)uj. (1.7

The use of Eq. (1.1) with f given by (1.2) in this context was first sugpcsted
by Fisher [3] on the basis of a heuristic argument.

Regardless of the values of the parameters 7;, the function f(u) eiven b
(1.2) has the properties

fe CI[O’ ]]’ f(O) :f(]) = 0. (1.3

Throughout this paper we shall always assume that (1.3) holds for the forcing
term f(u) in Eq. (1.1). Additional assumptions on f(u) in (1.1) are sugpested
by the genetic model (1.2) for various relative values of the paramicten s,
Since we can interchange the labels of ¢ and 4 and hence the values of 5, and
7y , there is no loss of generality in assuming that

T - -

1>
We shall be mainly concerned with the following cases.

Heterozygote Intermediate. Here v, < 7, < 7; so that the viabilin ol i
heterozygote lies between the viabilities of the homozygotes. The relevais
properties of the function f(u) are

f0)>0, flu)>0 for ue(0,1) (1 4)

This is the case which is considered in the classical studies of Ticher [ 1] saud
Kolmogoroff, Petrovsky, and Piscounoff [13].
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Heterozygote Superior. In this case 7, < 7, < 7; so that the heterozygote
1s more viable than either homozygote. The relevant features of f are

Jae(0,1)sf(u) >0 for ue(0,a) and f(u) <O for ue(a 1)
fO >0 f(1)>o0. (1-3)

Heterozvgote Inferior. In this case 7, < 7, < 7, so that the heterozygote
is less viable than either homozygote. The relevant features of f in this case are

Jae(0,1)af(u) <0 for ue(0,a) and f(u) >0 for wue(al)

J’lfdu >0 (1.6)

9

£10) < 0.

Certain flame propagation problems in chemical reactor theory also lead
to an equation of the form (1.1) where the forcing term f satisfies (1.3) and the
generalization

Zac(0, )=f(u) <0 for ue(0,a) and f(u) >0 for wue(a 1)
: (1.6")
[ fdu> 0.
vo
of (1.6). We shall refer to this as the combustion case (cf. [6, 8-11]).

In terms of the genetic model we are motivated by the following problem.
How does a given initial distribution of the allele 4 evolve in time: Is the
allele A4 ultimately wiped out or does it persist f In the latter case, is the allele @
ultimatelv eliminated or do both alleles coexist in an equilibrium distribution ?
In mathematical terms the problem is to determine the nature of the stability
of the equilibrium states u = 0, ¥ = |, and anyv others which may occur.

In Section 3 we give a condition which guarantees that the rest state u = 0
1+ unstable with respect to any nontrivial perturbation. We shall refer to this
n picturesque language as the hair-trigger effect. Specifically, we show that if

(1) > 0in (0, o) for some « € (0, 1) and

lim inf %= 3=2/7f(4) > 0
ux 0
then for any solution u(x, t) € [0, 1] of (1.1), u(x, 0) = O implies

lim inf u(x, 1) = a.

=0t
A consequence of this result is the existence of the hair-trigger effect when
/ 1+ in either the heterozygote intermediate case (1.4) or the heterozygote
superior case (1.5). The hair-trigger effect in these cases for one-dimensional
diflusions was established by different methods in [1]. If f(u) = O(u®) for
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B > 1-2/n, then the rest state u =0 is stable with respect to suitably
restricted perturbations and there is no hair-trigger effect. For example, suppose
that f is given by (1.2). If 7, = 7, > 7, then the mere presence of the allele a
confers a fixed selective disadvantage and f(u) = (1, — 75) 4*(1 — ). In this
case we have the hair-trigger effect for n = 1 and 2 but not for n > 3. To
derive these results we make essential use of results due to Fujita [5], Hayakawa
[7], and others [12] concerning the existence and nonexistence of global solutions
of the initial value problem for the semilinear equation

oplet = Adp — kph.

A proof of the main nonexistence result is given in the appendix to this paper.
In Section 4 we investigate the existence of plane wave solutions of Eq. (1.1),
that is, the existence of solutions of the form u(x, t) = g(x v — ct) for some
ce R and arbitrary unit vectors v e R*. This problem is formally equivalent
to one whose solution we outlined in Ref. [1], namely, the problem of finding
traveling wave solutions of (1.1) when n = 1. Here we shall solve these problems
in full detail. One of the main results in Section 4 is the existence of a minimal
wave speed ¢* € R~ which is completelv determined by the forcing term f(u).
As in the one-dimensional case [1], ¢* is an asvmptotic speed of propagation
of disturbances. For example, we show that if u € [0, 1] is a solution of (1.1)
in B* % R~ such that u(x, 0) has bounded support then u(x, 1) — Oast — — o
uniformly in the region | & = ¢t when ¢ > ¢*. On the other hand, if u(x, 0)
is such that
li:n'ipf u(x, 1) 2a >0 (1)
uniformly on compact subsets of R”, where a = 1 in the heterozygote superior
case and o = | in the other cases, then

lim infu(x. 1) = a

==

uniformly in the cone ' x < cf, provided c€ [0, ¢¥). In view of the result:
established in Section 3 the condition (1.7) is automatically satisfied in the
heterozygote intermediate and superior cases. However, in the heterozyvgots
inferior and combustion cases there are threshold effects. For example, in the
heterozvgote inferior case u(x,?) — 0 as t — o for some nontrivial data of
bounded support, while for other data of bounded support u(x, 1)y— 1 m
{ — Lo, In Section 6 we derive threshold criteria in both the heterozypot
inferior and combustion cases. Throughout Sections 3 and 6 the results coincids
with the one-dimensional results proved in [1]. The proofs are, howcver
different.

We are indebted to Professor B. F. Jones Jr. of Rice University for scveral
enlightening discussions which resulted in some important improvements
the presentation.
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2. PRELIMINARIES

Throughout this paper we will be concerned with solutions of the initial
value problem

oulet = Adu — f(u) in R" x R~ (2.1a)
u(x, 0) = uy(x) in R", (2.1b)

where the forcing term f satisfies the conditions (1.3) and u,(x) is a given bounded
C(Rn) function. A solution u(x,t) of problem (2.1) is a C(R" x [0, +0))
function satisfving (2.1b) and possessing derivatives ou/dt, ou/ox; , ¢*ultx; ox;
which are continuous in R” x R* and satisfy (2.1a).

Since we shall only deal with solutions # with values in [0, 1], f need not
be defined in R'[0, 1]. However, it will be convenient to assume temporarily
that f is defined in all of R in such a way that f€ CR) and f = 0 in R\[—1, 2].
Suppose that u, is bounded. Then by a standard application of the method
of successive approximations one can construct a solution u(x, 7) of problem
(2.1) which has the following properties. For every T'e R* and 8¢ (0, T)
there exist numbers 4(T) e R~ and B(8, T') € R~ such that

u(x,t) < A(T)in BR* < [0, T]
and
Vou(x,t) < B(8, T)in R™ x [8, T]. (2.2)

Here both A(T) and B(8, T') depend on sup u, and sup f' . The solution
constructed in this manner is unique in the class of functions which are bounded
in R* x [0, T] for arbitrary T e R~.

To obtain additional information about the solution of the problem (2.1)
we will need the following comparison result. Since this result is used often
in what follows we state it in sufficient generality to cover all of the applications
which occur in this paper. To this end, let Q2 denote a subdomain of R™ which
mav be all of B” itself. In the statement of the following proposition the ¢;
are constants and ¢ denotes a function which is defined and uniformiv Lipschitz
continuous on B’{.

ProposiTiON 2.1. Let u(x, t) and ©(x, t) denote bounded continuous functions
defined in £ » [0, T which satisfv the inequality

Lo i 0t .

L du— glu) = — Az g — gle)in Q < (0, T).
I u(x,0) = ‘L(\,O) m Q and u{x, t) = v(x, 1) in €2 < [0, T in case Q = R™,
then 2 T ._(-? [0 TV If, in addmon u(x, 0) > L(\ 0) in an open subset
of Q thenu > v in 2 » (0, T}
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Proof. Setw = u — ©. Then
ow ow .
— — dw — Z G > p(u) — g(v)in 2 x (0, T).

Define the function

((g °© u)(x7 t) - (g © 'v)(x, t) foi
k(x, 1) = ¢ u(x, t) — o(x, t)
lo for (x, 1) such that u(x, 1) = o(x, ).

(x, 1) such that u(x, t) = o(x, t)

Then since g is uniformly Lipschitz continuous on R, k(x, t) is bounded in

Q x [0, T]. Moreover, g(u) — g(v) = kw. Thus

P n .
ow ow

— —Au‘-—E(-, —kw>0inQ2 x (0, T
at =7 = 0, T]

H

and the assertion follows from the strong maximum principle for linear parabolic
inequalities [4, p. 39].

Remark. In Proposition 2.1 the requirement that u and © be bounded
is much stronger than necessary. However, if © is unbounded some growth
condition as x — —oc is needed. For example, it suffices to assume that
u and © are O(e ? ") in 2 x [0, T for some ¢ > 0.

In view of (1.3) both # = 0 and u = ] are solutions of Eq. (1.1). If in the
initial value problem (2.1) one has uy(x)€ [0, 1] in R” then it follows from
Proposition 2.1 that the solution satisfies u(x, ?)€[0,1] in R™ x R~. Nou
that in this case the solution is independent of the continuation of f into R'[0, 1].
From here on we shall restrict our attention to solutions with values in [0, 1]
and therefore no longer need to assume that f is defined outside [0, 1].

The next result is a version of the basic lemma in Ref. [1]. We include the
detailed proof for the sake of completeness.

ProrosiTioN 2.2. Let g(x) € [0, 1] denote a solution of the ordinary differential
equation
¢~ —flg=0 (2.3)

in B~ with g(0) = 1 and let v(«, t) denote the solution of the initial value problem

v % P .
S =t fR)InR X R
ot ox cx -~
(2.4)
o(x,0) = 1 in R\RT,

= g(x) n R
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In Egs. (2.3) and (2.4), c denotes a nomnegative constant. Then o(x, t) 15 a non-
increasing function of t for each x € R. Moreover,

lim o(x, 1) = 7(x)

uniformly on each bounded interval, where (x) € [0, 1] is the largest solution of
Eq. (2.3) in R which satisfies the inequality

(x) <1 i R\R-
< g(x) in R~

Proof. Since w(x,0)€[0, 1], Proposition 2.1 implies that o(x, t)e [0, 1]
in R x R-. In particular, ©(0,#) < 1 = ¢(0). Therefore, by Proposition 2.1,
o(x, 1) < g(x) in R~ x R*. It follows that o(x, #) < ©(x, 0) holds in R for any
h > 0. We now apply Proposition 2.1 to «(x,?— h) and o(x, 1) to obtain
o(x, 1 — h) < o(x,7) in R x R~ for any & > 0. Thus for each x, the function
©(x, 1) is nonincreasing in 7 and bounded below by zero. Therefore

tl_igﬁ_ o(x, 1) = 7(x)

exists. Note that 7 € [0, 1] since © € [0, 1]. Moreover, o(x, 1) < g(x) in R* % R+
implies 7(x) < g(x) in B~
For arbitrarv v > O and (v, 1) e R ~ R~

(a1 — ) = | glx — & 1) o€, ) de
R

[T e - et eeE d @)

Sy

where

. 1 P
gx, 1) = ——=— expi—(x — 1) 41,

_2_(771)

1 the fundamental solution of the linear equation

o BB 2

ou [€ha74 (&7

s — g ,u . (2.6)
at ox cx

By means of the substitution s = v — 7 in the second integral on the right-
hand side of (2.5), ¢(x, t — 7) can be rewritten in the form

o+ 7) = [ glx— £ 1)e(¢,7) de
R

ot

= [ e — = o one s+ maeas
L]
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and

»

0 = - r(x) = IR REGE:

[ et — &1 = 98 ) de ds (7<)

valid for arbitrary ¢ > 0. Since g(x, ) is a solution of (2.6) for t > 0 it follows
that 7" - ¢7" -+ f(7) = 0 in R.

If o(x) is any solution of Eq. (2.3) with ¢ < 1 in R and o(x) < ¢(x) in R+,
Proposition 2.1 implies that o(x, ) > o(x). Hence 7(x) > o(x) so that 7 is the
largest solution with these properties.

3. THE HAIR-TRIGGER EFFECT
In this section we shall derive a sufficient condition for the instability of
the rest state » = O with respect to every nontrivial nonnegative perturbation.

Specifically, we shall prove the following result.

THeorEM 3.1. Let f(u) satisfy (1.3) together with the conditions

f(u) > 0in(0,a)  for some a € (0, 1] (3.1)
and
lim\i&}f w12 Wf () > 0. (3.2

If ue0, 1] is a solution of (1.1) in R" % R~ with u = 0 then
Iminfu(x, 1) = o
t—+o

uniformly in bounded subsets of R”.

In the proof of Theorem 3.1 we use a known result on the nonexistence
of global solutions of certain semilinear parabolic equations. The first results
i this direction are due to Fujita [5]. The result we use is an extension of a
result of Fujita which is due to Hayakawa [7] in the case n = 1 or 2. For general n
s a special case of a theorem proved by Kobayashi, Sirac, and Tanaka [12, 16].

Livva 3.1, Consider the initial value problem

¢ . A
__&f = Adp — kp-27 m R B

P(x.0) = polx) in R,




po(x) = 0 and py(x) = O then there exists a Te R+ and a nonnegat;'ve functio;z
plx, 1) such that for each T' € (0, T) p(x, t) is the unique solution of problem (3.3)
which is bounded i R™ % [0, T'] and

lim sup p(x, t) = -+ oo. (3.4)
t7 T aeR"

To avoid interrupting the main flow of ideas in the proof of Theorem 3.1,
we present the rather technical proof of Lemma 3.1 in the appendix to this
paper. The next lemma provides the linkage between our instability problem
and the nonexistence of global solutions of problem (3.3).

Levma 3.2.  Under the hypotheses of Theorem 3.1.

hm sup sup u(x, 1) = a. (3.5)

t=+oc  geR”

Proof. To prove (3.5) it suffices to show that

hm sup sup u(x, 1) > n* (3.6)
t—=o  xeR"

for every 7™ € (0. o). Suppose that (3.6) does not hold for some 7”& (0, a).
Then for any 7 € (v, a) these exists a 7. € B~ such that

sup u(x, 1) < 7 i 1, +oo). (3.7)
rel”

In view of (3.1) and (3.2) there exists a number k(r) > 0 such that
F(u) = ki) u=eim

for u € [0, 5] and hence for (x, 1) € B" « [t,, +cC

Let p(x, t) denote the solution of problcm (3.3) with & = k(n) and py(x)
u(x, 1,). Since u = 0 it follows from Proposition 2.1 that po(x) = u(x, t,) > 0
Moreover, Proposition 2.1 implies that u(x, 1 — 1,) = p(x, 1) in R® > [0, T')
Thus, in view of (3.4),

):

Im sup u(x, 7 - 1,) = +
t7 T aeR™

in contradiction to (3.7). Thus (3.6) holds for every 7* € (0, «) and the lemmn
1s proved.

The next lemma is an extension of a result due to Kanel’ [11] and is the mun
step in the proof of Theorem 3.1. For § > 0 define

r <1
1.

ge(r) = 8(1 — 1?)3 for 0
=0 for r

VoA
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Lemma 3.3 Suppose that f*(v) satisfies (1.3) and (3.1), and that
f¥@) = ke+2m for wel0,b),

where k€ R* is a constant and be (0, o). If o(x, t) denotes the solution of the
initial value problem

ovjot = dv + f*v) in R" x R+

_ (3.8)
o(x,0) = g5(| x |) i R”
with 0 < & < min{b, (3n/k)"/2), then
lim ©(0,1) > o (3.9)

Proof. The second partial derivatives of the initial data o(x, 0) are Lipschitz
continuous in R*. By the Schauder-type theory for parabolic equations [4, p. 86]
it follows that ¢, ov/ét, grad, ¢, and 4dv are continuous in R* X [0, + o).
Moreover, the fact that ©(x, 0) depends onlv on the distance | x | from the origin
implies that o(x, t) depends only on | x | for each 7.

Set ©(x, 1) = V(r, t), where r = | x |. Then

n—1
7

I'jt = V’rf -+

Vie+f*(V) in R xR,

and, in view of the smoothness of ¢, V,(0,1) = 0 for all 7€ [0, —oc). Let
W(r,t) = 1,(r, 1). Then W(0,t) = 0 for € [0, +0oc), W(r,0) < 0 in R+ and

n—1
7

n—1
r? |

W, =W, + W, - j W) — W in R x R

Note that the coefficient of W is bounded above. Hence the maximum principle
|4, p. 38] applies and we conclude that W =V, < 0 in R- X R-. Thus,
for cach t, the function V(r, t) attains its maximum at r = (. Therefore

0 < o(x, 1) <o(0,1) < 1inR" x R~ (3.10)

Next we shall show that (0, ¢) is ultimately a monotonic function of 7 and
hence that lim,_ ., ©(0, t) exists. To this end we set z = e-f ovjot, where

| = max f*'(u).
[ijf (u)

Then 2 satisfies the equation

=

cz/ot = Az + H(x, )z in R* x R+,
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where H(x, 1) = (f* co)(a,1) — 1 < 0. Since 0 < gg(x) < & < b,
(651 — | x[B){(4+ ) |x F—

2(x%,0) = Z(x )=+ [KE6I1 — xR for x|
(0 for |«

AYA/A\

Note that z depends only on | x | and ¢.

It is easily verified that since 8 < (3n/k)"/?, there exists an r;€(0, 1) such
that Z(r) is an increasing function in [0,7,], with Z(r) < O in [0,7;) and
Z(r) = 0 in [rs, +oc). Then the set

o= {t: 1[0, +x), (0, 1) < 0]
contains the point 7 = 0 and, in view of the continuity of z, all sufficiently
small 7 > 0. We shall show that either ., = [0, - ) or & = [0, t,) for some

heR
In order to determine the structure of .%;, we first prove that

lim =z(x,7) =0 (3.11)

&L=+

uniformly in every bounded t-interval.
Let /1 be a constant with the property

[ Z(r) < Aes,
Since H < 0, the function
wo=A(— 1) exp{— x[24(t — 1)
atisfies the inequality
(éw/cty — dew — Huw = 0 R* »x R-.
Moreover w is positive and
w(x, 0) = A 14 for [x! < 1.

Since Z(r) = 0 for » > 1, it follows from Proposition 2.1 applied to w and
— 2 that’

L2(x, 1) < w o= A1+ 1) "2 exp{—]x |2/4(t & 1)].

This proves (3.11).
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Next we shall show that &, is an interval. Suppose that for some t* € R~
we have 2(0,7*) < 0. For convenience we extend the domain of 2 to all of
R by setting z(x, 1) = 2(x, —1) for (x,1)eR™ x R~. We set e =
—2(0,#*) > 0. Let A" denote the component of the open set

S ={(x1): (x, 1) € R™1, 3(x, 1) < —e/2)

which contains the point (0,t*). For each oce R the set o= N{t=aq}
is either empty or else it is open, spherically symmetric and, in view of (3.11),
bounded. We shall show that

N # 2 in [0, %], (3.12)

By hypothesis, A, == ¢ and, by the continuity of z, ] % & for all
sufficiently large 1 < t*. Suppose there exists a o € [0, t*) such that A#; %= ¢
in (6, #*] and A, = ¢. Then 4" C R" x (0, —c). Define the set

M= {(x,1): (x, 1) e NR" K (0, t*], 2(x, 1) < —e).

Then (0,1%) € M so that 4 = ¢ and, according to (3.11), 4 is bounded.
Suppose that (v, s) is a limit point of . Then 2(v,s) < —e and (2, 5) belongs
to some component, say A", of .&. Since A" is an open set, there exists a neigh-
borhood % of (3, 5) such that  C 4. On the other hand, since (, 5) is a limit
point of .4, % contains points of # and hence of . Thus / N = ¢
and consequently A~ = A", Therefore 4 is closed and . is a compact subset
of A =A"NR" x (o, t*].

Let A=inf,.z. Then %(0,1%) = —e implies that A < —e < 0 and hence
A = 1nf , 2. Since 4 is a compact subset of 4" there exists a point (¢, 7) € M
such that 2(¢,7) = A. Note that 7€ (0, 1*] so that A = ¢ . By the strong
maximum principle [4, p. 38; or 15, P- 174], 2(x, 7) = A < —«¢ for all x in the

component of A7 which contains ¢. However, this contradicts the fact that

2(x,7) = —¢/2 on the boundary of any component of A7 . Therefore we
conclude that (3.12) holds.
In view of the choice of §, Ao ={a: x < 1. for some 7. € (0, r5). Moreover,

mnee we have extended 2 by reflection in the hyperplane ¢ = 0 it follows
that A% = £ for te[—1~, t*]. Let € denote the intersection of A4 with any
planc through the 7-axis. Because of the radial svmmetry of 47, € is a connected
open subset of the two-dimensional (7, 2)-space and € is symmetric about
the 7-axis. Therefore there exists 2 peivgonal arc I'C ¢ which joins (0, 0)
to (0, 7%} If I is a subarc of I lving in the half-space 1 < 0 with endpoints
on the r-axis then, since ¢ N {t =0 = (—r., 7o), I can be replaced by the
scpment of the r-axis Joining its endpoints. Thus we may assume without
e of generality that I lies in the upper half-plane ¢+ > 0.
W now show that t* € & N R+ implies

2(0,1) < Oin [0, *]. (3.13)

;
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Since 2(0, 0) < 0, 2(0, 1*) < 0, and = is continuous, it follows that 2(0,¢) < 0
for all sufficiently small # > 0 and all sufficiently large ¢ < 1*. Suppose for
contradiction that (3.13) does not hold. Then there exists a o € (0, 1*) such that

2(0, o) = 0. (3.14)

If (x,1) is such that (| x|, t)e T then z(x,1t) < —¢/2. Thus, in view of
(3.14), (0,0) ¢ I'. Since I joins (0,0) to (0,7*) and lies in the half-space
R x [0, +cc) there exist real numbers s; for j = 1 and 2 such that 0 <5; <
o < s, (0,5;)eT for j =1 and 2, and the subarc I" of I joining (0, s;) to
(0,5,) lies completely in one of the quarter-spaces R+ x [0, +o0) or
R~ x [0, —<c). Let ¢’ denote the open subset of R X R* bounded by I"
and its reflection with respect to the f-axis, and define

P ={(x,1): (x,)eR" X R, ((x},1)e ).

Note that Z is a bounded open set and (0, o) € Z.

Let p = supiz(x, t): (x,1)€ Z). Then (3.14) and (0,0)€Z imply that
p = 0. Since Z is compact, there exists a point (£, 7) € Z such that 2(¢, 7) = u.
By the construction, 2 << —e/2 on the boundary of #. Therefore (&, 7) belongs
to the open set Z. According to the strong maximum principle, 2(x, 7) =p = 0

for all x in the component of the open set Z N {1 = =} which contains ¢. This
contradicts the fact that z(x, 7) < —e/2 on the boundary of every component
of # N {t = . We conclude that (3.13) holds.

In view of (3.13), % = [0, ;) for some ¢, € (0, —oc]. Thus either 2(0, 1) < O
for all 1 > 0 or there exists a t; € R* such that 2(0,7) = 0 for all t > 1,
In either event, ©(0, 7) is ultimately a monotonic function of t and it follow:
from (3.10) that

7* = lim ©(0,1)

ts-bor

exists. Suppose that 7> €[0.a). For each 7€ (7™, ) there exists a 7, € [
such that ©(0, 1) < 7 for all 1 > 1, . Therefore, according to (3.10),

0 < o(x, 1) < o(0,1) <minR* x [t,, —x)

Since this contradicts the conclusion of Lemma 3.2, it follows that * © o

Proof of Theorem 3.1. Since f(u) satisfies (1.3), (3.1), and (3.2), it is not
difficult to construct a function f *(u) which satisfies (1.3) and (3.1), and which
is such that f*(u) < f(u) in [0, 1] and /*(u) = ku'~2" in [0, ] for some k- ©
and be (0, a). By Proposition 2.1, u = 0 implies u(x, h)y > 0 in R" for any
fixed € R~. Thus

m(c) = inf{u(x, h): xeR", x| <o— 1, >0
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for each o € R~. Fix ¢ and let § — min{b, (3n'k)*", m(0)}. If v(x, ¢) denotes the
solution of problem (3.8) corresponding to this 8 and the f* defined above,
then it follows from Proposition 2.1 that ux, 1+ h) = o(x — v, 1) for any
» € R* such that | v ' < 6. Therefore, by Lemma 3.3,

liminfu(y, t + k) > lim ©(0,1) > o
t=s-+cc - =+

uniformly for all v € R” such that (v <o

Remark. The results of Kobayashi, Sirao and Tanaka [12, 16] can be used
to extend Theorem 3.1. Specifically, the condition (3.2) can be replaced by

lim xg]ff(u)«h(u) >0
where, for example,
h(u) = u'+2/"/(log 1/u)(log log 1/u).
If, in addition to (1.3), the forcing term f(u) in (1.1) satisfies the condition

(1.4) of the heterozvgote intermediate case or (1.5) of the heterozygote superior
case then
lim u=if () = 7'(0} > 0.

ux 0

Thus conditions (3.1) and (3.2) are satisfied and Theorem 3.1 applies to vield
the following extension to 7 > 1 of results proved in [1].

CoroLLARY 3.1. Let f(u) satisfv (1.3) and let u € [0, 1] be a solution of (1.1)
m R% > R~ such that u = 0.

(1) If f(u) satisfies (1.4) then
E{T‘i ux,t) =1

uniformly on bounded subsets of R*.
(1) If f(u) satisfies (1.5) and u = 1 then

im wu(x, 1) = «
==
wniformly on bounded subsets of R”.
Fujita [5] has observed that if £ > 1 4 2/n, the initial value problem

apict = Ap — kpt in R* x R+
P, 0 = pofx) in R

ol 107144
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admits global solutions for suitably restricted nontrivial initial data. For

example, let
n 1 1\ JIME-D
1)/ (kt + a)s e ¥ixl*/4(kt+a)

27 B—1
where f > 1 + 2/n,a > 0, and & > 0. Then

w(x, t;a,B, k) = :(

(6wlct) — dw — kwf > 0in R” X R+
and
tlix_n w(x, t;a,B,k) =0

uniformly for x € R". Let p(x,?) denote a solution of problem (3.15) with
po(x) = 0 satisfying 0 < po(x) < w(x, 0; a, B, k) for some suitable value of a.
By Proposition 2.1, 0 << p(x, 1) < w(x, 1; a, B, k) in R” X R+ and, in particular,
p(x, 1) - —-0 as t — 4+ oo uniformly in R* Another simple application of
Proposition 2.1 vields the following condition for the stability of the rest state

u = 0 for Eq. (1.1).
THEOREM 3.2. Let f(u) satisfy (1.3), and
fu) < kuf in [0, 1] (3.16)
Jor some constants k > 0 and f > 1 — 2/n. If ue[0,1] s a solution of (1.1)
m R < R™withu(x, 0) < w(x, 0; a, £, k) 1n R" for some a > 0, then
,]linq u(x, 1) =0
uniformly in R™.

In the genetic cases f(u) 1s given by (1.2). If 7, = 7, > 7, then f(u)
ku*(1 — u) with k = 7y — 7. This will occur if the advantageous allele 4
is recessive. Here

iizr% uf(u) =k >0

and
f(u) < ku*1n [0, 1].

Thus we can apply Theorems 3.1 and 3.2 to obtain the following resuit

CoroLLARY 3.2. Let f(u) = ku*(1 — u) for k > 0 and let ue[0,1] br @
solution of (1.1) in R" X R~ such that u = 0.

(1) Ifn=1o0r2then

ll_irf; u(x, t) =1

uniformlyv on bounded subsets of R".
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() Ifn> 3and u(x, 0) < w(x, 0; a, 2, k) in R” for some a > 0 then

,I_-iin wx, 1) =0

uniformly in R*

4. PLANE Wave SoLuTiOoNS

A plane wave solution of Eq. (1.1) is a solution of the form
where v is an arbitrary unit vector in Rr

qx-v— a),
» € 2 nonnegative number and

n
¥ov = xp

i=1

The function g(x - » — ct) is a solution of (1.1)

if and only if 9(¢) satisfies the
ordinary differential equation

9" +eq +f(g)=0 4.1)

n R. We shall be interested only
9(€)€ [0, 1], 9(¢) = 0, and

In waves which satisfv the auxilary conditions

Jim g(¢) = 0. (4.2)

For a given forcin

g term f(u) the problem of finding plane wave solutions
of Eq. (1.1) is ide

ntical to the problem of finding traveling wave solutions of
Up = Upy — f(l{)

The solution of this problem was outlined in
it in full detail.

Equation (4.1} is equivalent to the svstem

Ref. [1]; here we shall present

of first-order €equations

’

9 =2

’ X (4.3)
P =—p—f(g
The functions 9(é), p(¢) corresponding to a solution of

n the g, p-plane or, as it is usually called, the phas
has slope

(4.3) trace out a trajectory
e plane. Such a trajectory

dpldg = —c — f(g)p (4.4)

- ®! uny point where ?»#0.
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Assume that f satisfies (1.3). Then the points (0,0} and (1. 0) are critical
points for the svstem (4.3). Of course there may be other critical points, but
they must all be of the form (g, 0) with f(a) = 0. A nontrivial (plane or traveling)
wave solution with values in [0, 1] which satisfies (4.2) corresponds to a trajectory
in the strip {(¢,$): 0 < ¢ < 1, pe R} which joins (0, 0) to another critical
point (a, 0) with a € (0, 1]. Actually, as we shall see below, the nontrivial waves
which we seek correspond to trajectories in the semistrip

S={gp):0<g<l,p<0.

If ¢ = 0 then the coordinates of a point on anv trajectory through (0, 0)
are related by the first integral of (4.1}

Pt —Flg) =0,
where

~l
F(q) = | f(u) du.

dy
In particular. if F(g) > 0 for all sufficiently small ¢ > 0 then there is no
trajectory in S through (0, 0). The same is true if £/(0) > 0 and ce B~ is
such that 0 < ¢* < 4/'(0) since in this case the origin is either a center o1 &
spiral point []4].

Fix ¢ = 0. For each v > 0 there is 2 unique trajectory of (4.3} through

the regular point (0, —v). As long as it remains in the half-space p <0 th
trajectory has the representation p = p(g: 1), where Po(g; v) 15 the solution

of (4.4) with p(0; v) = —». Let
gc, = sup{n: n € (0, 1], pdgiv) <Oforge [0, n);.

Then ¢, €(0,1] and the trajectorv through (0, —v) is in S for ge (0,4,
We shall use R, to denote the curve p = p.(g; v) for g€ (0, Ge.r). For con
venience, if ¢, < I we extend the domain of p,(g; ») to [0, 17 by sctimy
pclg; vy = Oforgelq.,, 1].

Every point in S is a regular point for (4.3} so that, for fixed ¢ > 0. thr
is at most one curve R, through any point of S. Thus 0 < v < p imphes
pclg: 1) < polgir) < 0foreach ge[C, 11 and

pelg) = lmiplg: )
exists in [0, 1. Define
To=Sn{(gpr0<g< L p = plg):-

Note that it is possible to have T, = =. On the other hand, supposc that
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there exists a ¢, € (0, 1] such that p(¢) < 0 in (0, ¢,) and ?:g9.) = 0 in case
gc = 1. Then it follows from (4.4) and the monotone convergence theorem
that p(¢) is a solution of (4.4) in (0, ¢.) and

lim p.(g) = 0.

Thus, in this case, the set T, is a trajectory of (4.3) through (0, 0). We redefine
?. outside the interval [0, ¢.], if necessary by setting p.(q) = O for ge(g., 1]
if g. < 1.

The critical value of ¢ for which there exist wave solutions will be defined
in terms of the behavior of the trajectories 7, . To study this behavior we shall
need the following elementary technical lemma.

Lemma 4.1. Forj = 1 and 2, let p;(q) denote real valued continuous functions
defined on [a, b] which satisfy the differential equations

?; =Fi(q, p)
i (a. b). If py(a) > po(a) and if either

Fi(g, p2(9)) > Fulq. polg)) (4.5)

or
Fi(g: 21(9)) > Filg, pi(9)) (4.6)
m (a, b), then py(q) = po(q) in [a, b].

Progf. Suppose there is a § € (a, b] such that p,(§) < 22(4). Since py(a) >
Po(a) there exists a ¢* € (a, §) such that p,(g) > py(q) in [a, g*) and p,(¢™) =
P:(g™). Consequently pi(¢*) < p3(¢*). On the other hand, if (4.5) holds then

Pg7) = Fi(g” palg7) = Falg™. 1297 )) = Falg™. pa(g™)) = pilg”).
A similar computation vields the same result in case (4.6) holds. In both cases

we have a contradiction and it follows that p, = p, in [a, b].

ProposiTioN 4.1. For each c € R~ with ¢ > 4f'(0) the set T, is a trajectory

¢
of (4.3) i S through (0, 0) and 1t is extremal in the sense that no other irajectory
through (0. 0) has points in S below T, . Moreover
Polg) = (1 ¢) min f(u) — 2¢q (4.7)

m (0. 1] and there exists a p, € (0, 1] suck that

Pdg) < —(c/2)g (4.8)
|0, ’u,].




52 ARONSON AND WEINBERGER

Proof. Set py(q) = —(c/2)q. Then p; = Fy(g, p;) = —c/2 and p,(0) = 0.
Set py(q) = p.(g; v) for an arbitrary v € R*. Then p, = Fy(q, po) = —c — f{(q)/p
and p,(0) = —v. By hypothesis, f'(0) < ¢*/4 and fe C'[0, 1]. Hence there
exists p, € (0, 1] such that u € [0, p.] implies f'(u) < c®/4. If g € (0, p,) then by
the theorem of the mean

Fyl9, 7:1(9)) = —¢ + 2f(g)/cqg = —c + (2/c) f'(6g)

for some 8 € (0, 1). In particular, 6q € (0, p.) and

Fy(q, p1(9)) < —¢/2 = Fy(q, p1(9))-

It therefore follows from Lemma 4.1 that p(g; v) < —(¢/2)g in [0, p,] and
(4.8) is obtained by letting » “x 0. Moreover, it follows that T, is a trajectory
in S through (0, 0) with g, > p. . The extremal property of T, is an immediate
consequence of its definition as the limit of the R, , and the regularity of points

of S.
To prove that (4.7) holds let € R~ be an arbitrary number such that

—cp < %?Hf(u).

For any 1 €(0, u) set py(q) = pg; v) and py(g) = —u — 2¢q. Then f(q) >
—ep = cpo(q) — 2¢2q > cpo(q) and ps(¢) < 0 in (0, 1) imply that

Fy(g, 2s9)) = —¢ — 1()/polg) > —2¢ = Fi(g, polq))
in (0, 1). Thus, by Lemma 4.1,
plgiv) = —p—2¢q
in (0, 1) for all v € (0, u). It follows that
Pd9) = —p — 2¢q
in (0, 1) and we obtain (4.7) by letting —u — (1/c) mingg 3 f(%).
ProPosiTION 4.2.  Suppose that ¢ € R~ and & > 4o where
o = sup!f(u)/u: ue(0,11}.

Then g. = 1 and p.(1) < 0.

Taking into account the lower bound for p.(g) given by (4.7) we can rephruse
Proposition 4.2 as follows. The trajectory T, connects (0, 0) with a point on the
negative half-line ¢ = 1.
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Proof. Set py(q) = —3(c + (¢ — 40,)!/%)q for arbitrary ¢, such that 4¢ <
40y < ¢ and py(q) = p.(g; v) for arbitrary v € R*. It is easilv verified that

P= g p1) = —c — 009/P1 -

Since f(g) < go < gog and py(g) < 0 in o, 1],

Fol: 21(9)) = —c — f(@)lpalg) < —c — oyglps(g) = Fig, p4(q))-
Thus, according to Lemma 4.1,
Pg; v) < —He + (2 — 4oy)t2)g
Now let o, ¢ and » \x 0 to obtain
PA9) < —Hc + (¢ — 4o)2)g
in [0, 1].

In view of Proposition 4.2 the number
¢* = inflc:c > 0, > 4f'(0), g, = I, p(1) < 0}
is well defined and satisfies
4'(0) < (c*)? < 4.
If 6 = f'(0) as in the classical work of Kolmogoroff, Petrovsky, and Piscounoff

[13] then c* = 2{ f'(O)1%2.

Since ¢* > 0 it follows that ¢* > provided that f'(0) > 0. More generally,
we have the following result.

ProposiTiON 4.3, If
[
m= ?3%’](1:(9) = max “; f)du >0
then c* > (.
Proof.  Since F'(0) = f(0) = 0, the line s — sg does not intersect the graph

of 2 - F(g) on (0, 1] if se R+ is sufficiently large. On the other hand, since

» - 0 the line and the graph do intersect for all sufficiently small values of s.
L

So = inf{s: s€ R*, sg > F(q) for g € (0, 113

~ The graphs of 2 = F(g) and z = Sog intersect in (0,1) and, in particular,

-~ there exists g € (0, 1) such that F(g) < s,¢ in (0, 90) and syg, = F(g,). Note
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that Flg) < Flgq) in [0,4,), F(g0) > 0, and s, = F'(g,) = f(g,) > 0. For
¢ = 0 the trajectory through (g, , 0) satisfies

29%(9) — Flg) = F(qo)-

In particular, it is in S for g€ (0, 90)- Moreover §p*0) = F(g,) > 0 so that
this trajectory connects the regular point (¢,,0) to a regular point on the
negative p-axis. By continuity, the same is true of the trajectories through
(9o » 0) for all sufficiently small ¢ > 0. Since there is a unique trajectory through
each point of S, for such values of ¢ no trajectory in S through (0, 0) can
intersect the negative half-line ¢ = 1. Thus, in view of ite definition, ¢* > 0.

COROLLARY. If, in addition to (1.3), f(u) satisfies one of the conditions (1.4),
(1.5), (1.6), or (1.6"), then c* > 0.

In the next section we shall show that > is an asymptotic speed of propagation
of disturbances. The main result of this section is the existence of plane wave
solutions of (1.1) with wave speed ¢*. For this purpose we shall need more
information about the extremal trajectories T, .

—

PrROPOSITION 4.4, If ce R~ is such that > 47°(0) then T. has siope
s

Se = H(—e — {¢" — 4F" (02
at (0.0} and any other trajectory of (4.3) in S through (0, 0) has slope

re = H—c = {¢ — 47(0)1 %),

If ¢ = 4f'(0) then everv nontrivial trajectory of (4.3} in S through (0, 0) ha:

slope s, = —c2 =7,
Progf. Assume that ce R~ with ¢ == 4¢(0). From the general theory o

two-dimensional autonomous systems as developed, for example, in Petrovski
book it follows that everv trajectorv in the strip 1(g: £): 0 < g < 1,pc i
through (0, 0) approaches (0, 0) with slope 7, or s [14, pp. 178-179].% An
immediate consequence of this statement is the second assertion of the Propos.
tion. Suppose that ¢® > 47(0). Then, again by the general theorv, there
at most ene trajectory in .S through (0, 0) with slope s, at (0, 0) [14, pp. 180 1¥1]
According to Proposition 4.1, p.(¢) < —cg?2 in [0, p] for some p, € (0. 1]
so that p (0} < —¢/2. Since r, > —¢'2 it follows that 20) = s, and th
T, is the unique trajectory in S through (0. 0) with slope s, at the origin.

* As presented in reference [14] the resuits cited in this paragrapl: apply only i1 i

case ¢* > 477(0). However it is not difficult to check that the argument is also valid b
¢* = 4f'(0) when the trajectories are constrained to lie in the strip @ < ¢ < 1.

ﬂw R
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We shall use Proposition 4.4 together with the next lemma to establish the
continuity of the trajectories T, with respect to the parameter c.

Lemma 4.2, If ¢, de R~ are such that O <E<d®and T, = ¢ then

Pa(9) < plq) in (0, g¢.].

Proof. In view of (4.4) we have the “pseudo first integral” relations

d ‘ . . .
d—q {%Pc2 - F(g): = —cp, 1n (0, qc)
and
d 5 | . o
_dq {#p + Flg); = —dp,in (0, ga)-

Since ¢ < d implies s, > g, it follows from Proposition 4.4 that p,(q) < ?49)
for all sufficiently small ¢ > 0. Suppose there exists a ¢* € (0, 9.] such that
Pd@) < ) in (0. ¢*) and py(¢*) = p.(¢*). Then

g

0= Hpe") = p2a )i = [ fepdle) — dputa) dg (4.9)

On the other hand, p,(¢) < Pdg) < 0 1n (0,¢%) and ¢ < d implies p. —
dps > 0 in (0, ¢*) which contradicts (4.9). Therefore py(q) < p.(q) in (0, 9c)
as asserted.

ProrosiTiON 4.5. If de R~ is such that d* > 47°(0) then

lim pe(q) = pal9)

m [0, 1].

Proof. We consider onlv values of ¢e R~ such that 41'(0) < & < 4>
In view of Lemma 4.2, for each fixed g € (0. 1] the family { p.(¢); is nonincreasing
and bounded below by p4(g). Therefore

r(g) = lim p.(g)
onstsin [0, 1] and satisfies
pdg) = 7(q) = polg).

Thus, in particular, p = 7(g) represents a trajectory of (4.3) in £ through
(0, 0). Moreover, by Proposition 4.4.

e 2 r'(0) = lim{r(g) g1 > <.

Jathing ¢ 7 d, one sees that (0} = «, so that r(g) = pa(q).
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Remark. A similar argument shows that
lim p(q) = palg)-

Thus the family {T,} of extremal trajectories varies continuously with ¢ for
c€ R~ such that 4f'(0) < 2.

We come now to the main result of this section, namely, the existence of
plane wave solutions. Before stating it we introduce some notation.

Suppose that 5 € (0, 1) and f(m) £ 0. Then there exists a unique trajectory
of (4.3) through the regular point (7, 0). For this trajectory ¢(0) = 7, P(0) =0
and p'(0) = —f(x) = 0. It follows from (4.3) that a component of this trajectory
is in S fer ¢ in a one-sided neighborhood of % and we shall denote this com-
ponent by U_ .
In the remainder of the paper we shall use the following notation:

1 if  f(u) satisfies (1.4), (1.6) or (1.6')
a if  f(u) satisfies (1.5).

o=

I

THEOREM 4.1.  Suppose that f(u) satisfies (1.3) and one of the conditions
(1.4), (1.5), (1.6). or (1.6"). Then therc exists a strictly decreasing function g*(&)
such that

(a1dE) g* — c¥(d/dE) g* — f(g*) = 0

m R,
1% s ¢
m gT(¢) = a,
2 g7,
and
Iim ¢*(¢) = 0.
E—tx
Moreover, for any unit wector ve B7. the Sunction u(x, 1) = ¢*(x v — ¢ 1)

15 a plane wave solution of (1.1).

Proof. It suffices to show that for ¢ — = there exists a trajectory in
which leaves S at (0, 0) and («, 0. To this end we distinguish two cases.

Case 1. (c*)? > 4f'(0). In this case the following three assertions. win
are proved below, imply that 7. is the required trajectory.

(a) pelge) = 0.
(€}  gc is not the right hand end point of an interval in which 10
If (a) does not hold then ¢,. = | and pe(1) = —y < 0. By Proposition 4 *
29} s per(q)in [0, 1] as ¢ ~ ¢*. Thus for all sufficiently large ¢ < ¢ !

and p (1) < —y/2. Since this contradicts the definition of ¢* it follows tiar
(a) must hold.
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Suppose that f(g..) # 0. Then g,.€(0, 1). Since 7,. approaches (gces, 0)
from S with ¢ < g., it follows from (4.4) that f(g..) > 0. By continuity,
there exists an 7 € (¢ , 1) such that f(g) > 0 in [qg,., n]. Thus the trajectory
U, isin S for g € [g.. , 7). Moreover, because of the extremal property of T,.
the trajectory U.., lies strictly below T,. for ge [0, g..]. Therefore U..
leaves S through a point on the negative p-axis. By the continuity with respect
to parameters of trajectories which consist entirely of regular points, for all
sufficiently small ¢ > c* the trajectories U, , in S through (y, 0) also leave S
at a point on the negative p-axis. For any such value of ¢ the trajectory T,
cannot intersect the negative half-line ¢ = 1 since in order to do so it would
have to cross U, in S. This contradicts the definition of ¢* and hence (b)
must hold.

Finally suppose that (c) does not hold. Then there exists an 7 € [0, gex)
such that f(5) = 0 and f(g) < 0 in (7, g,.). In view of (4.4)

d — —c¥ M S 3
G P = Ty S

bl

n (7, ¢.») o that

Pc*(Qr*) < Per(m) — (g — 1) < 0.

Since this contradicts (a) it follows that (c) holds.

Case 2. (c™)* = 4f'(0). By the Corollarv to Proposition 4.3, ¢* = 0.

Thus f'(0) > 0 and f(u) satisfies either (1.4) or (1 .5).- If n€(0, a) then f(g) > 0

in (0, n]. Hence the trajectory U,., cannot leave S through any point of the

g-axis. By the argument used in Case | to prove (b), U, cannot leave S at

any point of the negative p-axis. Therefore U,. , is a trajectorv which leaves S

at (0,0) and (n, 0). The family {U,.,} decreases as n » « and it is bounded
below by the trajectory in S through (a, —v) for every v > 0. Hence

i T = hm U

("J

: exists and is a trajectory which leaves S at (0, 0) and («, 0).

COROLLARY.  Under the hvpotheses of Theorem 4.1
Jim {gr(@e = e
L where % = s

o> -

Proof. By Proposition 4.4, the slope at (0, 0) of the trajectory corresponding
L 10 ¢*(£) is 7. The assertion follows from L’Hopital’s rule since

97(€ _ .
g7 (&) 7

1 s
ST glog g(€) = Jim
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Remark 1. In Case 2 of the proof the condition (™) = 47/(0) is used
only to conclude that J(u) satisfies (1.4) or (1.5). Thus the argument actually
shows that if f(u) satisfies (1.4) or (1.5) then there exist plane waves for all
¢ = ¢*. Note that, in view of the definition of c*, the plane wave solutions
for ¢ > ¢* cannot correspond to the extremal trajectory T, .

Remark 2. If (¢*)2 = 4f'(0) then
T.=IlmR,.,
0 ’

is a trajectory in S through (0, 0). The proof is similar to the proof of Proposi-
tion 4.1 with U,._ for any 7 €(0, a) serving as the upper bound in place of
the line p = —¢g/2. The trajectory 7., is again an extremal trajectory so that
T™ either coincides with T.. or lies strictly above it. Both cases can occur so
that the plane wave does not necessarily correspond to the extremal trajectory.

We conclude this section with a result which will be used in the next section
to construct comparison functions. In stating it we shall use the following
notation. For ¢ > 0 define

Ye =20 if there exists no trajectory in S through (0, 0),
= q,. if the extremal trajectory 7, in S through (0, 0) exists.

We again let o = | if f satisfies (1.4). (1.6). or (1.6") and a = ¢ if f satisfies
(1.5).

Levma 4.3 Suppose that f (u) satisfies (1.3) and one of the conditions (1.4),
(1.5), (1.6), or (1.6"). If c€ (0, c*) then 7 € [0, o) and for every m e (v, . a) the
trajectory U, | leaves S at (7, 0) and a point on the negative p-axis.

Proof. 1If y, = 0 then ¢2 < 4/'(0). Since ¢ > 0 it follows that f(0) ~ 0
so that f(u) satisfies (1.4) or (1.5). Therefore, in this case, f(u) > 0 in (v, 0)

Suppose now that Ye=¢.> 0. If ¢ =1 then, in view of Lemma 4.2,
9a = l'and py(1) < Oforall d > ¢. Since ¢ < ¢ this contradicts the definition
of ¢ and we conclude that 9. <<1.If a = a < 1 then J(u) satisfies (1.5) and,
In particular, f(«) < 0 in (a, 1). Thus, in view of (44), 9. €(a, 1). If g, - @
then, by Lemma 4.2, d > ¢ implies that p,(a) < 0. Since Ju) < 0in (a 1),
it follows that Pa(1) < 0 for all d > ¢ which again contradicts the definition
of ¢*. Thus ce (0, ¢*) implies that ¢, € (0, a). If f(u) satisfies (1.6) or (1.6')
then p.(g) < —cq in (0, 4] so that ¢, > 4. Thus whenever 5, = ¢4, 0,
¥c€(0,a) and f(u) > 0 in [ve, a).

For arbitrary c€(0,c*) and 7€ (y, . a) consider the trajectory L, . On
Uy ¢(0) = 7, #(0) = 0 and p'(0) = —J/(m) < 0. Thus U, is in S fur
sufficiently large ¢ < 7. Indeed, U, cannot leave S through any point of
the segment (5, | 7) on the g-axis since f(u) > 0 there. Moreover, 1, | cannus
leave .S at the point (vc,0) since either v, — O and there are no trajectories

]
|
< ]
]




in S through the origin or else f(y,) > 0. Finally, if y, > 0 then by Lemma 4.2
and the extremal property of T, the trajectorv U, , must le strictly below
T, for ¢ €0, y.].

Remark. Suppose that ¢ € (0, ¢*) and that 7', is nontrivial. Then, as shown
in the proof of Lemma 4.3, ¢,€(0, o) and f(g.) > 0. If f(u) satisfies (1.4)
or (1.5) then f(x) > 0 in (0, ¢.]. If f(u) satisfies (1.6) or (1.6") then on any
trajectory in S through the origin, p{g) < —cg in [0, a]. Thus in all cases,
no trajectory in S through (0, 0) can leave .S via another critical point. Therefore
¢* is the minimal wave speed.

3. PROPAGATION OF DDISTURBANCES

In this section we shall investigate the propagation of disturbances from
the rest state ¥ = 0. Roughly speaking, we shall show that any disturbance
which is initially of bounded support and which becomes sufficiently large
as t — o¢ will be propagated with asymptotic speed ¢*. In view of what we
proved in Section 3, it follows that all disturbances of bounded support are
propagated with asymptotic speed ¢* if f(u) satisfies the conditions of either
the heterozvgote intermediate case (1.4) or the heterozygote superior case
(1.5). In the heterozygote inferior and combustion cases there are also threshold
effects so that a given disturbance may not propagate at all. These effects are
discussed in detail in the next section.

We begin by showing that for any f which satisfies the general hypothesis
(1.3), a disturbance with bounded support cannot be propagated with a speed
greater than ¢*.

THeOREM 5.1. Let u€[0,1] be a solution of (1.1) in R™ X R™ such that
.~ u(x,0) = 0 outside the ball | x| < p, for some pe R*. Then for any ¢ > c*
and any ve R"

him max #({ t)=0.
t=+oc {[—y|=ct
Proof. 1f ¢ > ¢* then, by the definition of ¢*, the trajectory T, leaves the

semistrip S at the origin and at a point on the negative halfline ¢ = 1. Let
w(f) denote the corresponding solution of Eg. (4.1) defined in R* and
parametrized so that w,(0) = 1. Note that w, < 0 in B~ and w/(¢) — 0 as
{ —p ~=~CO0,
Let o(¢, t) denote the solution of the initial value problem

v, =7 + v, + f(o)in R < RT
o(¢,0) = 1 for ¢ <o,

[

—wlt—p) for £=p
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By Proposition 2.2, ©(¢, 1) s 7€) in R as t — —+oc, where 7(£) is the largest
solution of Eq. (4.1) in R with values in [0, 1] which satisfies

(€) Swlé—p) for £€>p. (5.1)

Suppose that #(¢) = 0. Then since 7(£)€[0, 1] and 7(¢) — 0 as £ — +ac,
7(£) corresponds to a trajectory ¢ in the strip {(¢, #): 0 < ¢ < 1, p € R} through
the point (0, 0). The slope of ¢ at (0,0) is either 7, or s, (cf. the proof of
Proposition 4.4). If the slope of ¢ is r, then, by L’Hépital’s rule,

Jim {(§)}¢ = e
But according to Proposition 4.4, the slope of T at (0, 0) is s, so that
Jim {w (£ = ev. (5.2)

Since s, < r. and 7(¢) < w (& — p) this shows that the slope of _¢ cannot
be r, . Hence the slope of ¢ at (0, 0) must be s, - It follows from Proposition 4.4
that ¢ = T, so that, in particular, 7(¢) is a translate of w.(€). Hence there
exists a £ € R such that ~(¢,) = 1 and (&) < 0. Then +(¢) > 1 for all
sufficiently large ¢ < ¢,. Since this contradicts the condition () e [0, 1]
in R we conclude that 7(€) = 0 and

lim o(¢, 1) = 0 (5.]
1—=To

N
)

in R.
For arbitrary fixed # > 0 define
& 1) = o€+ ht) — (¢, 1).
Then

~
=i

2ee — 2+ (f o) )2 in R x R+
for some £ € (¢, ¢ — h) and, because of the monotonicity of w,(§),
2(¢£,0) < 0in R.

By Proposition 2.1, 2(¢, 1) < 0in R and hence ¢(¢, t) is a nonincreasing function
of £ for each1e R-.
Let v be an arbitrary unit vector in R” and define

w(x, 1) = v(x - v — ¢, 1).
Then
w(x, 0) = o(x -, 0) = o(jx|,0) > u(x, 0) in R~

and
w, = dw -+ f(w) in R" x R-.
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Therefore, according to Proposition 2.1,

u(x, 1) < o(x v — ct, t) in R x R+,

Since v is arbitrary it follows that
u(x, 1) < o(|x| —ct, 1) in R* x R+.

Fix an arbitrary v € R”. Since ©(§, 1) is a nonincreasing function of ¢ and
[{—3| > ctimplies | {| — ¢t > — |y | it follows that

WX UG ) < max o[ L] — et 1) < o(—|y ), 1),

Thus the assertion of the theorem is a consequence of (5.3).
Remark. The condition u(x,0) =0 for [a| > p is used in the proof of
Theorem 5.1 only to obtain the inequality u(x, 0) < w(x, 0) in Rr. However,

since w,(§) satisfies (5.2) it suffices to assume that e*®lu(x, 0) is bounded for
some s such that s > —g_ .

If we impose more restrictive conditions on J(u) and u(x, 0) we can obtain
a result which is stronger than Theorem 5.]1. Specifically, we can estimate u
in terms of the plane wave ¢*(€) constructed in Section 4. In stating this result
we use the notation s* = 5., . We again let o be 1 if f(u) satisfies (1.4), (1.6),
or (1.6") and o = q if f satisfies (1.5).

THEOREM 5.2. Let u€[0,1] denote a solution of (1.1) in R* x R+, where
J(u) satisfies (1.3) and one of the conditions (1.4), (1.5), (1.6), or (1.6"). If w(x, 0)e
[0, o] and e*1*iu(x, 0) is bounded in R~ Jor some s > —s* then for each he R+
there exists a constant 6 such that

u(x, 1) < ¢*(jx | — ¥t - )
m R [k, +o0).
Proof. By hypothesis there exists a k€ R~ such that
u(x, 0) << ke—+i%|
i K", Let v be an arbitrary unit vector in R* and define

2(x,1) = kexp{(c + s2)1 — s(x - V)]
where
o = sup{f(u)u: 0 <u < 1).

bincex v < | x|,

2(x, 0) = ke=*@) > ke~'#l > y(x, 0).
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Moreover
Uy — Adu —ou < u;— du— f(u) =0 = 2, — 42 — oz,

Therefore, by the remark following Proposition 2.1, 2(x, ) > u(x, t)in R" x R+.
In particular, for arbitrary fixed h e R+

u(x, h) < ke=5= in R~
where & = k exp(o + s2)k. Since the unit vector v is arbitrary it follows that
u(x, h) < ke~ in R~ (5.4

The Corollary to Theorem 4.1 states that for any ee (0, 1) there is an
r = r(e) > 0 such that £ > r implies

g*(&) = (1 —e)f e, (55)

Set & = ¢* + s and € = (¢! — 1)/(¢* — 1). Then it follows from (5.4) and
(5.5) that .
¢ ( x ) = u(x, h) (5.6)

provided that

x| > r* = max{r, log k/log(1 - €)].

Define
p = max u(x, h).
By Proposition 2.1, 0 < u(x, h) << o so that pe(0,a). If ¢*(r*) = u then,
since ¢*(€) is a decreasing function of ¢, ¢*(| x|) > ufor all ' x < r*. There-
fore, in this case, (5.6) holds for all x € R". If ¢*(r*) < p there exists 6’ € R~
such that ¢*(r* — 6) = u. Morcover, | x| < 7* implies ¢*(lx| — 6') "
@ = u(x, h) while, on the other hand, u(x, k) < ¢*((x ) < g*( x| — €) fo
all x such that | & ' > 7*. Thus there exists a constant 6’ > 0 such that

u(x, h) < ¢*( ! — 6') in R™.

1f » is any unit vector in R"™ then ¢*(| x| — 6') < ¢™(x - v — 6') and it follows
from Proposition 2.1 that

u(x, 1) < g*(x v — ¥t — 6)
in R* X [h, +o0) where § = hc* — 6. Finally, since v is arbitrary
u(x, 1) < g*(| x| — ¢*t + 6) in R* x [k, —c0).

Remark. Fix y € R™. Then in view of the monotonicity of ¢*

[{—yi=

max tu(i_’, H<g¥((c—c*t— v+ 6.
<
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In particular, as in Theorem 5.1

lim max wu((, ) =20
cl

tmro —y|>

provided that ¢ > ¢*. A more precise statement is obtained by noting that the
Corollary to Theorem 4.1 implies

g*(€) = ofe="*)
for any ¢ such that ¢ < —s*. Therefore for ¢ > ¢* and o < —s*
Jmax  u({,t) = o(e~ole-eNt)
=y izet

ast — —aoC.

As we have seen, a disturbance with bounded support cannot be propagated
with a speed larger than ¢*. Because of the possibility of threshold effects
such a disturbance may not be propagated at all; that is, it is possible that

tl_i{n u(x, t) = 0.

However, our next result shows that if the disturbance is propagated with
sufficient strength, then its speed of propagation is no smaller than ¢*. Thus,
In particular, ¢* is the asymptotic speed of propagation.

THEOREM 5.3. Let u€e(0,1] be a solution of (1.1) in R* x R~ where f(u)
satisfies (1.3) and one of the conditions (1.4), (1 .5), (1.6), or (1.6"). If
lim inf u(x, t) > « (5.7

t—=+oc /

uniformly on every compact subset of R" then Jor any ¢ €(0, c*) and any v e R*

WV

liminf min u({ t) > a.

tsto —yi<et

The proof of Theorem 5.3 is based on the following lemma which establishes
the existence of a special class of disturbances which travel with speeds arbitrarily
- ¢losc to ¢*. This special class of disturbances provides the comparison functions

. which are used in the proof of the theorem.
Liemma 4.3 states that for each ce (0,¢*) and 7€ (y.,a) the trajectory
I',, through (7, 0) leaves the semistrip S at a point on the negative p-axis.
The trajectory U, , corresponds to the solution ¢(§) of the initial value problem

9 +9) =0, ¢0)=n  ¢(0)=0. (5-8)
i view of the properties of U, , there exists a number b — b{c, 7) > 0 such that

q(b) =0 and g' < 0in (0, d]. (5.9)
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Given the parameters ¢ €(0,¢*), 7€ (y.,a) and p > (n — 1)/c let o(x, 1)
denote the solution of the initial value problem

vy = dv — f(v) in R* x R~

(5.10)
U, 0) = ([ x ) = 7 for x| <p,
=gq(lx' —p) for p<|x|<p-—+b,
=0 for pL+b<!al,

where g(¢) denotes the solution of (5.8) satisfving (5.9). Strictly speaking we
should indicate the dependence of b and ¢ on ¢ and 7, and of © on ¢, 7, and p.
However, we shall omit this to avoid excessive notation.

Lemma 5.1. For given c€ (0, c*), n€(y.,a) and pe((n — 1)jc, +o0) let
©(x, t) denote the solution of the corresponding problem (5.10). Then

lim o(x, 1) = o
1o

uniformly on compact subsets of R* and
v(x,t) = for x <p—(c—(n—1)p)tandteR.

Proof. Let {g4r)} denote a sequence of C;*[0, —-oc) functions such that
gl x )N eyl %)) as j— —cc and glx) > vllx]) for x <p-b
If v,(«, t) denotes the solution of the initial value problem

v = dv — f(v) in R* x R+
o, 0) = g, x ) in R”

then, as is easily verified, v;(x, 1) o(x, 7) in R" > R+asj— - oc. By Proposi-
tion 2.1, v; > 0 in R* x R-.
Choose an arbitrary ¢; €(0, ¢ — (n — 1)/p) and define

Wi(x, 1) = ¢o( x| — 1).

Then for every j, W(x,0) << ¢,(! « |) with the strict inequalitv for x| < p -+ b
Moreover

Wi =AW —f(W) = —f(n) for (x| <p—+at
— g% —at—ple—[(n— 1| ] — &)
for pLagt<ial<p-+b- gl
=0 for p—b-+ct <ixl

Since ¢; < ¢ — (n — 1)/p and ¢’ < O it follows that

W, — AW — f(W) <0 for (x| =p-—qtorp—+b—+ . (511)
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Also note that ¢'(0) = 0 implies that W is a continuously differentiable function
of x for la| < p—+ b+ qt.

Let u; = v; — W. Then u;e C(R" x [0, -~ 0)) and u,(x,0) = g;(| x|) —
vo(| & 1) > 0 for | x| < p + b. In view of (5.11)

(ou;joty — du; — f'u; = 0
for x| <p-+ b+ ¢t with | x| # p+ ¢t (5.12)

Here f' is evaluated somewhere between v,(x, ) and W(x, t). We shall show
that u; > 0 in R" X R*. Since uy(x, 1) = v(x,1) >0 for |x| = p+ b+ ¢t
and ¢ € B+, it suffices to consider only (x, 1) € R* x R* with x| < p + b + ¢t.
Suppose there exists a o€ R* and an x, € R” satisfying | x| < p + b + ¢,
such that u;(x,t) > 0 for all (x,1)eR" x [0,2,) with [x| <p+ b+t
and u(x,,1,) = 0. By the strong maximum principle [4, p. 38] applied to
the differential inequality (5.12) it follows that | x| = p 4 ¢, . According
to the boundary point lemma [4, p. 49] applied in the set | x | < p + ¢t for
t € [0, t,], the radial derivative du;/or is negative at (%, , {;). The same argument
applied in the set p + ¢, < | x| < p + b+ ¢t for 1 € [0, ty] yields ou;/or > 0
at (x, , 7,). Since both ¢; and W are continuously differentiable, this is a con-
tradiction and we conclude that u; = ¢, — W >0 in R” x R*. Now let

j — o to obtain
W(x,t) < o(x, t) in R™ x R, (5.13)

It follows from the definition of W that © > 7 for | x| <p + ¢t, te RT.
Since ¢, €(0, c — (n — 1)[p) is arbitrary this proves the second assertion of
Lemma 5.1.

In view of (5.13) and the definition of W, o(x, k) = W(x, h) = W(x,0) =
(x, 0) for any 2 > 0. By Proposition 2.1, o(x, t + h) = v(x, t) so that v is an
increasing function of # for each x € R”. Since v € [0, 1] there exists a function
7(x) such that o(«, ) # 7(x) as t — -+ oc. By the same argument as that used
in the proof of Proposition 2.2, it follows that 47 + f(7) = 0 in R” and that
the convergence of © to 7 is uniform on compact subsets. Moreover,

W(x, 1) < v(x, 1) < (%) in R" x R+

The fact that W(x, t) » 7 as t — -+ cc implies that 7(x) = 7 in R™. It remains
only to show that 7(x) = o
Let 2(x, t) denote the solution of the initial value problem

2z, = 4z + f(z) in R™ X R™,
2(x,0) = 7 in R".
. By Proposition 2.1, 2(x, ) < 7(x). On the other hand, = is independent of x
£ wo that 2(x, 1) = {(7) where {' = f({) and {(0) = 7. Therefore
k (*’ dA
O

=
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CoroLLARY 2. Let f(u) satisfy (1.3) and the conditions (1.5) of the heterozygote
superior case. If u€[0, 1] is a solution of (1.1) in R" x R* such that u = 0
then for any x € R" and c € [0, c*)

llrrP+l::]f Ilfxlrilgct ul, 2) > a.

Remark. By introducing the new dependent variable w = 1 — » we can
show that in the heterozygote superior case there is a ¢** > 0 such that if
u = 1, then

limsup max () <a
ot |x—|<ct
for all c€[0, c**). If, moreover, 1 — u(x, 0) has bounded support, then by
Theorem 5.1 applied to w,

lim min «({ t) =1

totoc x—{|>ct
for any ¢ > ¢**. There is no a priori information about the relative sizes of
¢* and c**. For example, if f(u) = u(1 — u)(a — u) for some a € (0, 1) then
¢* = 2a'? and ¢** = 2(1 — a)1/2 so that the relative sizes of c* and c**
depend upon the value of a.

6. THRESHOLD EFFECTS

In this section we investigate the stability of the rest state = 0 in the
heterozygote inferior case (1.6) and the combustion case (1.6'). We shall show
that the state = 0 is stable with respect to perturbations which are not too
large on too large a set, but is unstable with respect to some perturbations
with bounded support. Moreover, we shall show that if u — 1 as t — oo then
the disturbance is propagated with asymptotic speed ¢*.

We begin with a very simple stability result.

PROPOSITION 6.1.  Assume that f(u) < O for ue (0, a). Let ue |0, 1] be a
solution of (1.1) in R* x R~. If

uw = sup u(x,0) < a
&ﬂ

then

,]_Tl u(x,t) =0

- wmiformly in R™.

- &0%/10/1-6
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Proof. Let 2(x, t) denote the solution of the initial value problem
2z = dz + f(2) in R* x R+
%(x,0) = pin R™
Then z is independent of #; that is, 2(x, 1) = Y1) with ' = f(£) and {(0) = p.
Therefore

= [ 7o

and it follows that { — 0 as # — - 0. On the other hand, by Proposition 2.1,
u(x, t) < {(t), which proves the assertion.

We shall now show that the state u = 0 is stable with respect to a class of
perturbations which may be large on a small set. This theorem is an extension
of a result of Kanel’ [11]. In its present form it was first given in {1] for the
one-dimensional case. We assume that

f(u) < 0 for ue[0, a] and f(a’) > 0 for some @’ € (a, 1). 6.1)

For any 7 € [0, a) define

p=un) = SUP)f(u)/(u =)

ue(n,1
Note that u > 0. In what follows we shall use the notation
[¢]* = max(g, 0).

THEOREM 6.1.  Assume that f(u) satisfies (1.3) and (6.1). Let u(x, t)€[0, 1]
be a solution of (1.1) in R* x R+ such that for some 7 € [0, a).

. 2mn )n/z
fw [u(,0) — )" v < 0" (@ — ) (6.2)
Then
lim sup u(x, 1) < 5 (6.3)

t>tcc
uniformly in R*. If, moreover, f(u) < 0 for u € (0, ] then

lim w(x, t) = 0

t—=oo

uniformly in R".
Proof. In view of (6.1), f(u) < u[u — n]~. Let w(x, 1) denote the solution
of the initial value problem

w; = dw + pw in R* x R+

w(x, 0) = [u(x, 0) — 7]* in R, (64
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By Proposition 2.1, w > 0 in R® X R+. Therefore the function vx, t) =
7 + w(x, t) satisfies the differential inequality

'c,—Az'—f(v)>w,-Av—;4[v—7)]+=wt—Aw—;uw=0

in R" X R* together with the initial condition v(x, 0) > u(x,0) in R*. It
follows from Proposition 2.1 that o(x, ) > u(x, t) in R® x R*. From the stan-
dard formula for the solution of problem (6.4) we obtain

Wmn=n+75%mﬂgrmmmmgm—nrﬂ

eut r

—c s
<7+ @mtyn2 Jn‘ [u(¢, 0) — 7]+ d¢.
In particular, if (6.2) holds then
u(x, n2p) < v(x, nf2u) < a.

Applying Proposition 2.1 again, one finds that u(x,1) < ain R" X [n/2u, 4 o0).
Hence f(u) < 0 for t > n/2u.
Let 2(x, t) denote the solution of the initial value problem

2 = dzin R* X (n/2u, + o)
2(x, nf2u) = v(x, n/2u) in R".

Then since f(u) < 0 we can apply Proposition 2.1 to obtain u(x, t) < 2(x, )
in R* x [n2u, + o0). Note that

2(x, 1) = J G(x — £ 1 — n2u) (¢, n/2u) dé
R

=n+ [ Glx— &1 — n2u)w(t, n2u) de

‘R

=t et [ Gl — & Dlul¢, 0) — ) dt
L

<nt (g5)" [ o) — e

where G(x, 1) = (4mt)~"/2 exp{— | x 2/41). In particular, 2 —> % as t — L o0
uniformly in R”, and (6.3) follows.

If f(u) << 0 in (0, ] then, by continuity, the same holds on a slightly larger
L interval, say (0, 7+ ¢) for some € > 0. Since u(x, t) < 2(x, 1) < n + € for
~ sufficiently large 7, we can apply Proposition 6.1 to conclude that u — 0
uniformly in R” as 1 —» L og.



Remark. 1f f(u) satisfies (1.3) and the condition (1.6) of heterozygote
inferiority then the rest state u = 0 is stable with respect to any perturbation
which satisfies (6.2) for some 7 € [0, a). In the combustion case (1.6) the rest
state is stable if (6.2) holds with » = 0. This was proved by Kanel’ [11].

We now exhibit a class of perturbations with respect to which the state
u = (is unstable. In particular, the class in question includes some perturbations
of bounded support.

THEOREM 6.2.  Assume that f(u) satisfies (1.3) and either (1.6) or (1.6).
Let u(x, 1) € [0, 1] denote a solution of (1.1) in R" x R* and suppose that

u(x,0) = vyl — x ) (6.5)

Jor some member v(r) of the three-parameter family of functions defined in (5.10)
and some x, € R". Then for any vy € R" and c € (0, c*)

lim min u(( t) = 1.

tox |[—yi<ct
Proof. 1In view of (6.5), it follows from Proposition 2.1 that
u(x,t) = v(x — ay, 1) in R x R,

where ©(x, 7) denotes the solution of (5.10) with initial data (| x ). According
to Lemma 5.1

tl:ﬂ u(x, 1) =1

uniformly on compact subsets of R”. The assertion of the theorem now follows
directly from Theorem 5.3.

Remark 1. Theorems 6.1 and 6.2 show that a threshold phenomenon
occurs in the heterozygote inferior case. In particular, the advantageous allcle
A does not survive unless it is initially present with sufficient density in a
sufficiently large territory.

Remark 2. Assume that 0 < f(u) < kuf in (0,«) for some & > 0 and
B > 1- 2/n, and that f(u) < 0 in («, 1) if a € (0, 1). In view of Theorem 3.2
there are positive initial functions u(x, 0) for which u(x,t) — 0 as t — -
On the other hand, it is not difficult to verify that Lemma 4.3 holds also n
this case and that y, = ¢, 0 as ¢ x 0. In the proofs of Lemma 5.1, Theorem
5.3, and Theorem 6.2 the hypothesis on f is used only to assure the validity
of Lemma 4.3. Thus all of these results continue to hold in the present cam
In particular, if

u(x, 0) = vo(| ¥ — %))
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for some member v((r) of the three-parameter family of functions defined
by (5.10) and for some x, € R” then

hgx_]ﬁgxf Jmin, ux, 1) = «
for any c€(0, ¢*). Since y, x 0 as ¢ x 0, there exist arbitrarily small initial
data with compact support for which the solution of the initial value problem
grows. Thus in this case there are also threshold effects.

Remark 3. The gap between the conditions of Theorems 6.1 and 6.2
is in the nature of the problem. The function # = a is an unstable steady
state solution and an examination of the phase plane trajectories shows that
there also exist many periodic steady state solutions as well as traveling wave
solutions with values in (0, 1).

Remark 4. Theorem 6.2 can be regarded as a rather strong stability result
for the state » = 1. In particular, it states that 4 = 1 is stable with respect
to any perturbation with bounded support and, indeed, with respect to any
perturbation bounded above by one of the functions 1 — vy(| x — x5 ). A
different stability condition for this case (with n = 1) is due to Chafee [2].

Remark 5. It follows from the definition of 3, in Lemma 4.3 that as ¢
approaches zero y, approaches the number x > a defined by

J:f(u) du = 0.

Hence for any 7 € (k, 1) there is a member v, of the family of functions defined
(5.10) which satisfies ¢, << 7 and has bounded support. Thus the conclusion
of Theorem 6.2 holds if #(x,0) > 7 > « on a sufficiently large ball.

Remark 6. For n = 1, Fife and McLeod [The approach of solutions of
nonlinear diffusion equations to travelling front solutions, Arch. Rat. Mech.
Anal. 65 (1977), 335-361.] have obtained the following considerably stronger
result: If f satisfies (1.3) and (1.6) and if u, = v > a on a sufficiently large
interval there exist constants 6; and 6, and positive constants K and » so that

|u(x, 1) — ¢*(x — c*t — 6;) — ¢*(—x — ¢*t — 6,) + 1| < Ke™

Note that @ < « and that the solution approaches a sum of two traveling waves.

APPENDIX: Proor oF LemMma 3.1

Lemma 3.1 was first proved by Hayakawa [7], but only for n = 1 and 2.
For arbitrary # it is a special case of a more general result proved by Kobayashi,
Birao, and Tanaka [12, 16]. Here we shall give a somewhat simplified version
of Hayakawa’s proof which works for all n > 1.
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of p, one can use the method of successive approximations to solve (A.1) in
R* x (0, T"] for sufficiently small 7" e R+ subject to the initial condition

P(x, 0) = po(%). (A2)

The function p(x, t) is continuous in R” x [0, 7'] and is the unique bounded
solution of the initial value problem (A.1), (A.2) in R* x [0, 7"]. Moreover,
if p(§, 7) is continuous in R” X [0, #], then for any t,€ [0, t), p satisfies the
integral identity

P ) = [ Glx— &1 — 1) e, 10)

k[ dr [ Gt —pe P (A
Yt “R"

Here
G, 1) = (dmt) 22 et

is the fundamental solution of the equation of heat conduction. If p(x, T")
is again bounded, we can extend this solution to a strip R* x (7", T"] so that
the set of 7" with the property that p is a bounded solution in R” x [0, 7]
is open.

We assume that

Po(x) =0 and Po(x) = 0in R", (A.4)

and we shall prove that there exists a 7€ R+ such that p(x, t) is the solution
of problem (A.1), (A.2) in R" x [0, T') and

lim sup p(x, t) = 4+ oo. (A.5)

t7 T xeR™
Suppose, in contradiction to (A.5), that p(x, ¢) is bounded in R x [0, T’)
for every T'e R+. In view of (A.4), it follows from Proposition 2.1 that p > 0
in R X R+. By (A.3) with t, = 1 and # = 2,

Px2) > [ Gl — & 1) ple, 1) de.

v Rn
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Set v = min{p(¢, 1): | £| < 1}. Then » > 0 and
px,2) > v f G(x — ¢, 1) dt > c el

lel<a

where
¢ = v(dm)—"/? ele®2 g¢,
i J.|f|<1 .
Set 8 = k~1/2¢-1/" and define
p(x, t) = cp(bx, 6%t + 2).
Then p(x, t) is positive and bounded in R” X [0, T'] for every T'€ R+ and
plx, 0) > eIat’, (A6)

where y = 62/2. Moreover, since G(fx, 6°t) = 6-"G(x, t) it follows from (A.3)
that

o) = [ Gl — £,0p6,0)dt + [dr [ Gl — 10— ), ) de

(A7)
in R" x [0, + o0).
; We shall prove that for each integer N > 0
i v
p(x, 1) = Y oy(x, 1) in R* x [0, 4 c0), (A.8)

§=0

where

oy(x, 1) = B7i(1 + 4yt)—n/2 gﬁ;y 1 log(1 + 4,},,);”’ exp |— %—%:—; + {A9)

L w = (B —1)(E— 1) and

ny = 0 for j =0
i =1
=—G+1)TG-08  for j>1.
2 1=0
T'o prove (A.8) we first note the identity

J’ G(x — &,1) AR g¢ = (1 + 4A1)yn/2 - Alel¥/0+440 (A 10)
RrR" :




it follows from (A.6), (A.9), and (A.10) that

plx, 1) = fm G(x — £, 1) p(€, 0) dE = (1 + dyt)—/2 evIalt/0+4v) — g (x 1),
(A.11)

Thus (A.8) holds with N = 0. On the other hand, if (A.8) holds with N =
m > 0 then we conclude from (A.7), (A.11) and the elementary inequality

m B m
(£ = o
=0

=0

that

px, 1) = oglx, 1) + Z fo dr j G(x — &, t — 7){of¢, 7)) dE.
Therefore, (A.8) is valid for N = m + 1 provided that
J; ‘ar j Glax — &t — 7)o, )P dE > 0;44(x, 1) (A.12)
nﬂ

for all j > 0.
Let I; denote the integral on the left in (A.12). In view of (A.9)

1, = s (F2)™ [ 0 dyryrniog(t + dyripesds | Ge— g1 )

Bt

1+ 4yr aé.

* exp

Now apply (A.10) with 4 = yB+1/(1 + 4y7) to obtain

Bﬂﬂ,( ) J' (1 + dyr)nu-p1r2

{1+ dyr + B — ) "2log(1 + dyrje

v | 2|2

'°"P3 1+ dyr + &Pt — 1)

Recall that § =1+ 2/n > 1. For 7€ [0, t]

14 dyr < 1+ dy7 + 4yBHY(t — 7) < B + 4pt).
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Thus

— 1\Bw; ' s 2
I, > pem-nu+n)2 (54—?1) (1 + 4yt) "2 exp {— %g

[+ ) iog(t + e e

= BB m(i+1)/2 (B_;}_l)w’ (1 4 4yt)—n2

i+1 2
e z_ %g {4y(Bw; + 1)} {log(1 + 4y1)}pwitl,

} It is easily verified that fw; + 1 = wj,;, (Bw; + 1)1 > — 1)B-9+V, and
Br; — ((n2) + 1)(j + 1) = 7;,; . The estimate (A.12) follows immediately
from these observations together with the last estimate for 7, .

Since my = 0 and 1 + n/2 = B/(B — 1), the exponents in {A.9) are related
by the formula

Ty — m = —(1 + n/2) wy = —k(fH — 1)

for 1 > 0, where x = B/(8 — 1)2. Summing on / from 0 to j — 1 yields
m; = —PBkw; + Jk

and (A.9) can be rewritten in the form

o) = B0 + aytyo Joooe BT rog(r + )| exp |- HELEEL.

1+ 4yt

There exists a t* € R+ such that

log(1 + 4yt*) = {4y/(B — 1)] B*~.

05(0, ) = (1 + dyt*)~"/2
d it follows from {A.8) that
p(0, 1%) = (N + 1)1 + 4ypt*)—n2

every integer NV > 0. This contradicts the boundedness of p and hence
Ml p in R" x {0, T] for every T e R*. Therefore (A.5) holds and;the lemma
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