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Challenges of large-scale clustering

|dentifying fiber-bundles in the brain

(Brun et al MICCAI'04)
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Collaborator: Schneider Lab at Univ. Pittsburgh, Center for Neural Basis of Cognition at CMU




Robust and Efficient Clustering

Goal: Given a noisy and incomplete pairwise similarity matrix, re-order rows/columns
to infer groups with high within-cluster similarity and low between-cluster similarity.
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» Robustness: How much noise can a clustering algorithm tolerate while
recovering all clusters up to a desired resolution?

> Efficiency:  How many similarity measurements and/or computation are
necessary for robust clustering?



Spectral clustering

Balanced ratio-cut - Partition the graph into approximately equal size clusters
such that weight of edges between them is minimized.
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NP Hard to solve!

Spectral Clustering — solves a relaxed version of the balanced graph cut.




Spectral clustering

Spectral Clustering - Second smallest eigenvector of the Graph Laplacian L
approximates balanced cut

W : symmetric similarity matrix (n x n)

D : diagonal degree matrix Dy = Y Wy,
j=1

L = D - W : Graph Laplacian (unnormalized)

Note: L1=D1-W1=0 smallest eigenvector 1 if graph is connected.



Spectral clustering Algorithm

 Hierarchical Binary Spectral Clustering
Compute L=D-W
Vo <— second smallest eigenvector of L
Cr = {i:va(i) >0}, Co = {i:vs(i) <0}
Repeat on each cluster

What is the price of solving this relaxation of the balanced
ratio-cut problem?



Prior Justification

High-level justifications: Connection to graph cut, random walks on graph,
electric network theory, Laplace-Beltrami operator on manifold
- don’t translate to cluster recovery guarantees

Perturbation analysis: Eigenvectors are stable in £5norm under small
similarity perturbations
- Fraction of misclusterings —> 0  Ng et al (2001), Huang et al (2009)

Stochastic Block Model/ Planted Partition Model

McSherry (2001), Rohe-Chatterjee-
Yu (2010), Sussman et al (201 1)
E[W] =

probability of within-cluster edge, p > probability of between-cluster edge, q



Laplacian eigenvectors of Ultrametrics

Why should Laplacian eigenvectors of hierarchically block matrices reveal
cluster structure?

Ultrametric: Noiseless constant block similarities.

Eigenvectors of Laplacian L
= Unbalanced Haar wavelets

Sharpnack, Singh (NIPS 2010)

Not low-rank or compressible!



Signal+Noise model for Hierarchical Clustering

Observed Hierarchical Similarity matrix:

W=A+R

R ~i.i.d. zero mean, subgaussian(c?) perturbation
(includes Bernoulli)

Signal 4 = min_ A;; — c Max Ai, — max A,z — min A
gnat it (‘i,j)ec 7 ieCkgc | f icC.keC " ieC.kgCc
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Within vs between  Cluster balance Range of between
cluster similarities factor cluster similarities

Signal-to-Noise Ratio, SNR = K
o

Noise Thresholds for Spectral Clustering, NIPS 2011.



Robustness of Spectral Clustering

(
Spectral clustering limit: If
1\ 2
SNR-(£)

then, with probability > 1-1/n, hierarchical binary spectral clustering

Kwill exactly recover all clusters of size at least |C| in a binary hierarchy. )

» Similar result for k-way partitional clustering
» SNR depends on the size of smallest cluster we want to resolve.

» Popular greedy merging strategies for hierarchical clustering such as single
linkage, complete linkage or average linkage fail under this level of noise.



Minimax SNR for Clustering

min max Pr(C(W) # C)
all clusterings, C(W) Wwith SNR u/o

f R
Information Theoretic limit: If g\ < (‘)an
o \/

then, for any clustering procedure, the probability of failing to recover
\clusters of size |C| remains bounded away from zero by a constant.
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Spectral Clustering

/_> Price for relaxation ?
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Balanced ratio-cut limit: If hé 1
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then, with probability 1-1/n, the combinatorial minimum balanced-
\cut procedure exactly recover all clusters of size |C|.




Simulation Results

Noise threshold — two balanced clusters Robustness: comparison with other
1 hierarchical clustering algorithms
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Efficiency of Clustering

Similarities are costly to
compute or measure

Side-striped jackal
Black-backed jackal &)

;;:enjacka\ by

Dhole x_h 2l ; |
Similarity = genome Similarity = delay
sequence alignment covariance

Prior work: Can resolve clusters of size Q(n) using O(n log n) randomly chosen
similarities (fraction of misclusterings —> 0) Hunter-Strohmer’ |0, Shamir-Tishby’[ |

Our work: Can resolve all clusters of size up to Q(log n) in a hierarchy using
O(n log?n) selective similarities



Active Hierarchical Clustering

- T __,F'.E.'  Pick m objects at random

_.-‘H"ﬁ ":-I"-".. o .. J-'. M#

O Split into two (or k) clusters

e.g. ComputelL =D,—-W

m
v, < second smallest evec

T i"’az._',-_' '.t:i i . :
. # T R EN CQI{Z:VQ(Z) <O}

O Assign each remaining object to the
cluster with higher average similarity

m O Repeat on each cluster

Efficient Active Algorithms for Hierarchical Clustering, ICML 2012 (To appear).



Active Hierarchical Clustering

O Pick m objects at random

O Split into two (or k) clusters

e.g. ComputeL =D, - W,
vy < second smallest evec
Cr={i:vy(i) >0}
Co = {i:va(i) <0}

O Assign each remaining object to the
cluster with higher average similarity

U Repeat on each cluster




Active Hierarchical Spectral Clustering

Measurement Efficiency:

#similarities needed on each iteration = nm

If clusters approx balanced,

total # similarites =nm + 2 nm + 4 nm + ...
2 4
= O(nm log n)
=0(nlog?n) ifm=logn
minimum possible

Computational Efficiency:

only need to compute eigenvectors of m x m
matrices (log n x log n)

O(nm?) =0O(nlog?n)if m=logn




Active Hierarchical Spectral Clustering

Robustness Analysis:

Letm =logn

« Each split succeeds with high probability

2
if (ﬁ) ~ log = B constant
o m g

e —
ooe tagHle i L St e ]

« Each round of object assignments

succeeds with high probability
logn

if o < = £ — constant
| m o o
i

max of n subgaussians
with scale factor o/v/m

* Union bound over all splits




Simulation Results
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Robustness vs Efficiency Tradeoffs

Robustness (SNR, similarities, runtime)
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Application to Evolutionary tree reconstruction
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Active Spectral Clustering
Similarity = genome sequence alignment

Runtime 600s, # similarities 3.5%

2048 genome sequences
with 2000 base pairs (phyClust)



Thanks

Hierarchically-structured high-rank matrices can be completed using
O(n log? n) selectively sampled entries!
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