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Challenges of large-scale clustering 

Identifying fiber-bundles in the brain   

Diffusion spectral imaging (DSI) 
250,000 fiber micro-tracks 

Pairwise similarities 
between fiber microtracks 

(Brun et al MICCAI’04) 

Collaborator: Schneider Lab at Univ. Pittsburgh, Center for Neural Basis of Cognition at CMU 

Ø  Lot of fibers 

Ø  Multiple Scales 

Ø  Noisy 
similarities 

Ø  Computation is 
expensive 



 

Ø Robustness:    How much noise can a clustering algorithm tolerate while  
     recovering all clusters up to a desired resolution? 

Ø  Efficiency:      How many similarity measurements and/or computation are 
     necessary for robust clustering? 

Goal: Given a noisy and incomplete pairwise similarity matrix, re-order rows/columns 
to infer groups with high within-cluster similarity and low between-cluster similarity. 
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Robust and Efficient Clustering 



Spectral clustering 

W =  

Balanced ratio-cut  - Partition the graph into approximately equal size clusters 
            such that weight of edges between them is minimized.  

NP Hard to solve! 

Spectral Clustering – solves a relaxed version of the balanced graph cut. 



Spectral clustering 

W =  

Spectral Clustering – Second smallest eigenvector of the Graph Laplacian L 
              approximates balanced cut 

         W : symmetric similarity matrix (n x n)   

 D : diagonal degree matrix   

             L = D – W : Graph Laplacian (unnormalized)      

Dii =
nX

j=1

Wij

Note:  L1 = D1 - W1 = 0     smallest eigenvector 1 if graph is connected. 



Spectral clustering Algorithm 

•  Hierarchical Binary Spectral Clustering  
  Compute L = D – W    
                   second smallest eigenvector of L 
  
  Repeat  on each cluster    

 

W =  

What is the price of solving this relaxation of the balanced 
ratio-cut problem? 



Prior Justification 

Stochastic Block Model/ Planted Partition Model    
 
 

                 McSherry (2001), Rohe-Chatterjee-
                  Yu (2010), Sussman et al (2011) 0 
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E[W] =   W =   

probability of within-cluster edge, p         probability of between-cluster edge, q >  

High-level justifications: Connection to graph cut, random walks on graph, 
electric network theory, Laplace-Beltrami operator on manifold 
-  don’t translate to cluster recovery guarantees 
 
Perturbation analysis:                       Eigenvectors are stable in      norm under small 
similarity perturbations 
-  Fraction of misclusterings        0  Ng et al (2001), Huang et al (2009) 
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Ultrametric: Noiseless constant block similarities. 
 
 
 
 
 
           W =                                
 
 
 
 
Not low-rank or compressible! 

Laplacian eigenvectors of Ultrametrics 

Why should Laplacian eigenvectors of hierarchically block matrices reveal 
cluster structure? 

Sharpnack, Singh (NIPS 2010) 

Eigenvectors of Laplacian L  
= Unbalanced Haar wavelets  



Signal+Noise model for Hierarchical Clustering 

Signal µ  =  

Range of between 
cluster similarities 

Cluster balance 
factor 

Within vs between 
cluster similarities 

Signal-to-Noise Ratio, SNR = 
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Noise Thresholds for Spectral Clustering, NIPS 2011. 

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

R ~ i.i.d. zero mean, subgaussian(σ2) perturbation   
       (includes Bernoulli)  

Observed Hierarchical Similarity matrix:   
 

 W = A + R 



Robustness of Spectral Clustering 

Spectral clustering limit: If 
 
 
then, with probability > 1-1/n, hierarchical binary spectral clustering 
will exactly recover all clusters of size at least |C| in a binary hierarchy. 
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Ø  Similar result for k-way partitional clustering  
  

Ø  SNR depends on the size of smallest cluster we want to resolve.  

Ø  Popular greedy merging strategies for hierarchical clustering such as single 
linkage, complete linkage or average linkage fail under this level of noise.  



 
 
 
Information Theoretic limit: If 
 
then, for any clustering procedure, the probability of failing to recover 
clusters of size |C| remains bounded away from zero by a constant. 
 

 
Balanced ratio-cut limit: If  
 

      
then, with probability 1−1/n, the combinatorial minimum balanced-
cut procedure exactly recover all clusters of size |C|. 
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Spectral Clustering 
Price for relaxation ? 
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n = 256
n = 512
n = 1024
n = 2048
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n = 256
n = 512
n = 1024
n = 2048

Noise threshold – two balanced clusters Robustness: comparison with other 
hierarchical clustering algorithms 

HS Hierarchical Spectral 
SL Single Linkage 
AL Average Linkage 
CL Complete Linkage 

Simulation Results 



Efficiency of Clustering 

Phylogenetics 

 Similarity = genome 
sequence alignment 

Similarities are costly to 
compute or measure 
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Our work: Can resolve all clusters of size up to Ω(log n) in a hierarchy using 
O(n log2n) selective similarities 

Identify network topology 

Similarity = delay 
covariance 

Prior work: Can resolve clusters of size Ω(n) using O(n log n) randomly chosen 
similarities (fraction of misclusterings        0)    Hunter-Strohmer’10, Shamir-Tishby’11 
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q  Pick m objects at random 
q  Split into two (or k) clusters 
e.g.  Compute Lm = Dm – Wm                   

       second smallest evec   
 
 
 
 
 

q  Assign each remaining object to the 
cluster with higher average similarity 

q  Repeat on each cluster   
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Active Hierarchical Clustering 

Efficient Active Algorithms for Hierarchical Clustering, ICML 2012 (To appear). 
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Active Hierarchical Clustering 

q  Pick m objects at random 
q  Split into two (or k) clusters 
e.g.  Compute Lm = Dm – Wm                   

       second smallest evec   
 
 
 
 
 

q  Assign each remaining object to the 
cluster with higher average similarity 

q  Repeat on each cluster   
       



Measurement Efficiency: 
 

#similarities needed on each iteration = nm 

      

If clusters approx balanced,  
total # similarities = nm + 2 nm + 4 nm + … 

                        
        = O(nm log n)  

         = O(n log2n)    if m = log n 
          minimum possible 

 
Computational Efficiency: 

 only need to compute eigenvectors of m x m 
matrices (log n x log n)   

     O(nm2)            = O(n log2 n) if m = log n 
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Active Hierarchical Spectral Clustering 



Robustness Analysis:  
 

Let m = log n 

•  Each split succeeds with high probability 

     if  
 

  

•  Each round of object assignments  
     succeeds with high probability 

     if  
 
          max of n subgaussians  
             with scale factor 
 

•  Union bound over all splits   
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Active Hierarchical Spectral Clustering 
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Simulation Results 



Robustness 

Measurement 
Efficiency 

Computational 
Efficiency 

Robustness vs Efficiency Tradeoffs 

(SNR, similarities, runtime) 

Recursive 
Spectral 

log n , n2 , n3 

|C| 

Single 
Linkage  log n , n2, n2 

Active Spectral 
log n , nm log n , nm2 

m 

Active Spectral 
(const, n log2 n , n log3 n) 



Application to Evolutionary tree reconstruction 

Active Spectral Clustering 

Runtime 600s,  # similarities 3.5% 

Non-active: Runtime 15000s, all similarities 

 2048 genome sequences  
with 2000 base pairs (phyClust) 

 Similarity = genome sequence alignment 
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Ø  Noise Thresholds for Spectral Clustering, NIPS 2011. 

Ø  Efficient Active algorithms for Hierarchical Clustering, ICML 2012. 
 

 

Hierarchically-structured high-rank matrices can be completed using  
O(n log2 n) selectively sampled entries! 


