PCA with Outliers and Missing Data

Sujay Sanghavi

Electrical and Computer Engg. University of Texas, Austin

Joint w/ C. Caramanis, Y. Chen, H. Xu

Outline

PCA and Outliers

- Why SVD fails
- Corrupted features vs. corrupted points

Our idea + Algorithms

Results

- Full observation
- Missing Data

Framework for Robustness in High Dimensions

Principal Components Analysis

Given points that lie on/near a Lower dimensional subspace, find this subspace.

Classical technique:

- 1. Organize points as matrix
- 2. Take SVD
- 3. Top singular vectors span space

Data Points

Fragility

Gross errors of even one/few points can completely throw off PCA

Reason: Classical PCA minimizes ℓ_2 error, which is susceptible to gross outliers

Two types of gross errors

Corrupted Features

- Individual entries corrupted

.. and missing data versions of both

Outliers

-Entire columns corrupted

PCA with Outliers

Points

Objective: find identities of outliers

(and hence col. space of true matrix)

Outlier Pursuit - Idea

Points

Standard PCA $\min_{L} \|M - L\|_{F}$ s.t. rank(L) = r

$$\min_{L,C} \|M - L - C\|_F$$

s.t. $rank(L) = r$
 $col(C) = c$

Outlier Pursuit - Method

Points

When does it (not) work ?

Results

Assumption: Columns of true L^* are incoherent:

 $\max_{i} \|V'e_i\|^2 \leq \frac{\mu r}{n}$

Note: $r \leq \mu r \leq n$

First consider: Noiseless case

$$\min_{L,C} \|L\|_* + \lambda \|C\|_{1,2}$$

s.t.
$$L + C = M$$

Results

Proof Technique

A point x is the optimum of a convex function f

Zero lies in the (sub) gradient $\,\partial f(x)$ of $f\,$ at $\,x\,$

Steps: 1. guess a "nice" point, -- oracle problem

2. show it is the optimum by showing zero is in subgradient

Proof Technique

Guessing a "nice" optimum

(Note: in "single structure" problems like matrix completion, compressed sensing etc., this is not an issue)

Oracle Problem:

$$\min_{L,C} \|M - L - C\|_F + \lambda_1 \|L\|_* + \lambda_2 \|C\|_{1,2}$$

s.t. $ColSupp(C) \subset ColSupp(C^*)$

 $ColSpace(L) \subset ColSpace(L^*)$

 $(\widehat{L},\widehat{C})$ is, by definition, a nice point. Rest of proof: showing it is the optimum of original program, under our assumption.

Performance

 $\frac{21}{19} = \frac{11}{17} = \frac{11}{13} = \frac{11$

L + C formulation

L + S formulation (from [Chandrasekaran et. al.], [Candes,et. al.])

Another view...

Mean is solution of

$$\min_{x} \sum_{i} (x_i - x)^2$$

Fragile: Can be easily skewed by one / few points

Median is solution of

$$\min_{x} \sum_{i} |x_i - x|$$

Robust: skewing requires Error in constant fraction of pts Standard PCA of M is solution of

$$\sum_{j} \|M_{j} - L_{j}\|^{2}$$
$$rank(L) \le r$$

Our method is (convex rel. of)

$$\sum_{j} \|M_{j} - L_{j}\|$$
$$rank(L) \le r$$

Collaborative Filtering w/ Adversaries

Collaborative Filtering w/ Adversaries

Users

Our setting:

Low-rank matrix that

- Is partially observed
- Has some corrupted columns
- == outliers with missing data !

- Good users == random sampling of incoherent matrix (as in matrix completion)
- Manipulators == completely arbitrary sampling, values

Outlier Pursuit with Missing Data

$$\label{eq:stable} \begin{split} \min & ||L||_* + \gamma ||C||_{1,2} \\ s.t. \quad l_{ij} + c_{ij} = m_{ij} \quad \text{for observed} \quad (i,j) \end{split}$$

Now: need row space to be incoherent as well

- since we are doing matrix completion and manipulator identification

Our Result

Theorem:

Convex program optimum $(\widehat{L}, \widehat{C})$ is such that \widehat{L} has the correct column space and the support of \widehat{C} is exactly the set of manipulators, whp, provided $n \ge p$ Sampling density $\rho \ge c_1 \frac{\mu^2 r^2 \log^3(4n)}{p}$ Fraction of users that $\frac{\eta}{1-\eta} \le c_2 \frac{\rho^2}{(1+\frac{\mu r}{\rho\sqrt{p}})\mu^2 r^2 \log^6(4n)}$

Note: no assumptions on manipulators

Robust Collaborative Filtering

More generally ...

Yields robustness + flexibility in several settings.

Today: PCA wit Outliers + missing data

