PCA with Outliers and Missing Data

Sujay Sanghavi

Electrical and Computer Engg. University of Texas, Austin

Joint w/ C. Caramanis, Y. Chen, H. Xu

Outline

PCA and Outliers

- Why SVD fails
- Corrupted features vs. corrupted points

Our idea + Algorithms
Results

- Full observation
- Missing Data

Framework for Robustness in High Dimensions

Principal Components Analysis

Fragility

Gross errors of even one/few points can completely throw off PCA

Reason: Classical PCA minimizes ℓ_{2} error, which is susceptible to gross outliers

Two types of gross errors

Corrupted Features

- Individual entries corrupted
.. and missing data versions of both

Outliers

-Entire columns corrupted

PCA with Outliers

Points

Objective: find identities of outliers
(and hence col. space of true matrix)

Outlier Pursuit - Idea

Points

Standard PCA
$\min _{L}\|M-L\|_{F}$
s.t. $\operatorname{rank}(L)=r$

$\min _{L, C}\|M-L-C\|_{F}$

$$
\text { s.t. } \operatorname{rank}(L)=r
$$

$$
\operatorname{col}(C)=c
$$

Outlier Pursuit - Method

Points

We propose:

Convex surrogate for Rank constraint

Convex surrogate for Column-sparsity

When does it (not) work ?

When certain directions of column space of L^{*} poorly represented

This vector has large inner product with some coordinate axes

$$
\max _{i}\left\|V^{\prime} e_{i}\right\| \quad \text { is large }
$$

Results

Assumption:

Columns of true L^{*} are incoherent:

$$
\max _{i}\left\|V^{\prime} e_{i}\right\|^{2} \leq \frac{\mu r}{n}
$$

Note: $\quad r \leq \mu r \leq n$

First consider: Noiseless case

$$
\begin{array}{cl}
\min _{L, C} & \|L\|_{*}+\lambda\|C\|_{1,2} \\
\text { s.t. } & L+C=M
\end{array}
$$

Results

Assumption:

Columns of true L^{*} are incoherent:

$$
\max _{i}\left\|V^{\prime} e_{i}\right\|^{2} \leq \frac{\mu r}{n}
$$

$$
\text { Note: } \quad r \leq \mu r \leq n
$$

Theorem: (noiseless case)
Our convex program can identify upto a fraction γ of outliers as long as

$$
\frac{\gamma}{1-\gamma} \leq \frac{c}{\mu r}
$$

$$
\lambda=\frac{3}{7 \sqrt{\gamma n}}
$$

Outer bound: $\gamma>\frac{1}{r+1}$ makes the problem un-identifiable

Proof Technique

A point x is the optimum of a convex function f

Steps: 1. guess a "nice" point, -- oracle problem
2. show it is the optimum by showing zero is in subgradient

Proof Technique

Guessing a "nice" optimum

(Note: in "single structure" problems like matrix completion, compressed sensing etc., this is not an issue)

Oracle Problem:

$$
\begin{gathered}
\min _{L, C}\|M-L-C\|_{F}+\lambda_{1}\|L\|_{*}+\lambda_{2}\|C\|_{1,2} \\
\text { s.t. } \operatorname{ColSupp}(C) \subset \operatorname{ColSupp}\left(C^{*}\right) \\
\operatorname{ColSpace}(L) \subset \operatorname{ColSpace}\left(L^{*}\right)
\end{gathered}
$$

(\widehat{L}, \widehat{C}) is, by definition, a nice point.
Rest of proof: showing it is the optimum of original program, under our assumption.

Performance

$L+C$ formulation

L + S formulation (from [Chandrasekaran et. al.], [Candes,et. al.])

Another view...

Mean is solution of

Fragile: Can be easily skewed by one / few points

Median is solution of

Robust: skewing requires
Error in constant fraction of pts

Standard PCA of M is solution of

$$
\sum_{j}\left\|M_{j}-L_{j}\right\|^{2}
$$

$$
\operatorname{rank}(L) \leq r
$$

Our method is (convex rel. of)

$$
\sum_{j}\left\|M_{j}-L_{j}\right\|
$$

$$
\operatorname{rank}(L) \leq r
$$

Collaborative Filtering w/ Adversaries

Collaborative Filtering w/ Adversaries

Users

Low-rank matrix that

- Is partially observed
- Has some corrupted columns
$==$ outliers with missing data !

Our setting:

- Good users == random sampling of incoherent matrix (as in matrix completion)
- Manipulators == completely arbitrary sampling, values

Outlier Pursuit with Missing Data

$$
\begin{aligned}
\min & \|L\|_{*}+\gamma\|C\|_{1,2} \\
\text { s.t. } & l_{i j}+c_{i j}=m_{i j} \quad \text { for observed } \quad(i, j)
\end{aligned}
$$

Now: need row space to be incoherent as well

- since we are doing matrix completion and manipulator identification

Our Result

Theorem:

Convex program optimum $(\widehat{L}, \widehat{C})$ is such that \widehat{L} has the correct column space and the support of \widehat{C} is exactly the set of manipulators, whp, provided $n \geq p$

Sampling density $\quad \rho \geq c_{1} \frac{\mu^{2} r^{2} \log ^{3}(4 n)}{p}$

Fraction of users that are manipulators

$$
\frac{\eta}{1-\eta} \leq c_{2} \frac{\rho^{2}}{\left(1+\frac{\mu r}{\rho \sqrt{p}}\right) \mu^{2} r^{2} \log ^{6}(4 n)}
$$

Note: no assumptions on manipulators

Robust Collaborative Filtering

Algo: Partially observed
Low-rank + Column-sparse

Algo: Partially observed
Sparse + Low-rank

More generally ...

Several methods in High-dim. Statistics

$$
\begin{array}{ccc}
\min _{X} & \mathcal{L}(y, \mathcal{A} ; X)+ & \lambda r(X) \\
& \text { Loss function } & \text { regularizer }
\end{array}
$$

Our approach:

$$
\begin{array}{cc}
\min _{X_{1}, X_{2}} & \mathcal{L}\left(y, \mathcal{A} ; X_{1}+X_{2}\right)+\lambda_{1} r_{1}\left(X_{1}\right)+\lambda_{2} r_{2}\left(X_{2}\right) \\
& \text { Weighted sum of regularizers }
\end{array}
$$

Yields robustness + flexibility in several settings.
Today: PCA wit Outliers + missing data

Latent factors in time series (ICML'12)

Matrix completion from Errors and Erasures (ISIT 2011, SIAM J. Optim. 2011)

Graph clustering (ICML 2011)
Robust Recommender Systems (ICML 2011)

Multiple Sparse Regression (NIPS 2010)
PCA that is robust to Outliers (NIPS 2010, Trans IT)

All papers on my website, Arxiv.

