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Data analysis: massive data sets and high dimensions
Image denoising and blind inpainting

Data analysis: massive and high-dimensional data sets

Massive automatic data collection, systematically obtaining many
measurements. e.g.,

I Satellite images;
I Web data;
I Gene expression.

Difficult in high dimensions. e.g.,
I (1/ε)D measurements needed for an approximation of precision ε in

D-dimensional space.

Can work with low-dimensional and sparse structures. e.g.,
I Low rank;
I Sparsity.
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Ways to model data appropriately

Single subspace, or low rank matrix.

Mixture of subspaces (hybrid linear modeling)

.

Single manifold.

Mixture of manifolds.

And more...

(a) A single
subspace

(b) Mixture of
subspaces

(c) Manifold (d) Mixture of
manifolds
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Data analysis: massive data sets and high dimensions
Image denoising and blind inpainting

Natural image represented by multiple subspaces [Yu, Sapiro and
Mallat 2010]

(a) House

(b) Clustered patches (c) Projection on 3D

Data matrix formed by stacking overlapping patches into columns:

→
X =

 | | |
· · · Xi · · · Xj · · · Xk · · ·

| | |
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Data analysis: massive data sets and high dimensions
Image denoising and blind inpainting

Real problems to solve

Restore images from very noisy inputs which are corrupted with

1 i.i.d. additive Gaussian noise

2 impulsive noise (random values at a portion of random pixels)

3 and for blind inpainting, further degraded by scratches.

(a) Gaussian noise (σ = 30) (b) Impulsive noise (30%) (c) Sctraches + Impls noise
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Recover a single subspace from corrupted data
Recover multiple subspaces from corrupted data

Outline

1 Introduction
Data analysis: massive data sets and high dimensions
Image denoising and blind inpainting

2 Algorithms

3 Mathematical Analysis

4 Applications
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Recover a single subspace from corrupted data
Recover multiple subspaces from corrupted data

Recover a single subspace from data with corruptions

Definition

Given data sampled from a low-dimensional subspace, possibly corrupted
with Gaussian noise and impulsive noise, the goal is to recover the
underlying low-dimensional subspace.

from Nuit Blanche
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Recover a single subspace from corrupted data
Recover multiple subspaces from corrupted data

Existing methods

Principle component pursuit(PCP) [Candès, Li, Ma and Wright.
2009]

I X = L + S:
min
L,S
‖L‖∗ + λ‖S‖1 (1)

F ‖ · ‖∗: nuclear norm, i.e. sum of singular values.
F ‖A‖1 =

∑
|Aij |.

I Including a tolerance for Gaussian noise:

min
L,S
‖L‖∗ + λ‖S‖1 + µ‖X− L− S‖2

F . (2)

A variant of PCP: Low Rank Matrix Fitting(LMaFit) (Wen, Yin and
Zhang. 2010)

I X ≈ Bm×dCd×n + S:

min
B,C,S

‖S + BC− X‖2
F + λ‖S‖1. (3)
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Recover a single subspace from corrupted data
Recover multiple subspaces from corrupted data

Solution via alternating least squares(ALS)

X ≈ Bm×dCd×n + S.

I: indices of corruptions.

Minimize energy:

min
B,C,I

J(B,C, I) :=
∑

(i ,j)/∈I

|(BC− X)ij |2 (4)

s.t.
|I| ≤ N0 (5)

I Non-convex fixing I.
I Convex w.r.t. B and C, closed-form solution w.r.t. I.
I ALS iterates between solving for B,C and I.

Yi (Grace) Wang Robust Locally Linear Analysis with Applications 9
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Recover a single subspace from corrupted data
Recover multiple subspaces from corrupted data

Recover multiple subspaces from data with corruptions

min
I1, · · · , IK
B1, · · · ,BK

C1, · · · ,CK

X1, · · · ,XK , s.t.
X = [X1, · · · ,XK ]

K∑
k=1

∑
(i ,j)/∈Ik

|(BkCk − Xk)ij |2 (6)

K -ALS (alternating least squares) algorithm iterates between
clustering and subspace estimation.

I Clustering is done by assigning to each data point its ”nearest”
subspace.

I Subspace estimation is done by ALS within each cluster.

K -ALS algorithm converges.

Yi (Grace) Wang Robust Locally Linear Analysis with Applications 10
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Main Theorem

For simplicity, we denote ({Bk}Kk=1, {Ck}Kk=1, {Ik}Kk=1, [X1, · · · ,XK ]) by
Ω and J(Ωt) is the objective function for K -ALS at step t.

An iterative algorithm φ (a mapping at each iteration):
x ∈ X 7→ P(X ).
x is a fixed point if φ(x) = x.

Theorem

For the regularized K -ALS algorithm, the following statements hold with
probability one:

1 Every accumulation point of the iterates {Ωt} produced by this
algorithm is one of its fixed points;

2 J(Ωt)→ J(Ω∗), where Ω∗ is a fixed point;

3 ‖Ωt − Ωt+1‖ → 0; and

4 either Ωt converges or the accumulation points form a continuum.

Yi (Grace) Wang Robust Locally Linear Analysis with Applications 12
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Sketch of the proof

Key steps:

The algorithm is strictly monotonic w.r.t. the energy function.
I Suffices to show the algorithm is monotone and single-valued.
I J(Ωt+1) ≤ J(Ωt).
I Regularized by: min

c
‖B̃c− x̃‖2

2 + λ‖c‖2
2. (x̃: uncorrupted elements in x;

B̃: the corresponding rows of B.)

The iterates produced by the algorithm lie in a compact set.
I ‖B‖2

F and ‖C‖2
F are bounded by J(Ω0).

The algorithm is closed.
I By continuity of J w.r.t. B and C.
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Outline

1 Introduction
Data analysis: massive data sets and high dimensions
Image denoising and blind inpainting

2 Algorithms

3 Mathematical Analysis

4 Applications
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Removing impulsive noise and blind inpainting

Recover images corrupted with

1 i.i.d. additive Gaussian noise with standard deviation σ,

2 a percentage of p0 random corruptions at random pixels (impulsive
noise).

3 and for blind inpainting (inpaint without info of locations), further
degraded by scratches.

Process images by:

1 Forming the actual data matrix X by stacking the vectors representing
overlapping 8× 8 patches as columns.

2 Transforming estimated X̃ back to the image (after enhancing it) by
averaging values of all coordinates representing the same pixel.

Yi (Grace) Wang Robust Locally Linear Analysis with Applications 15
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Examples revisit

(a) Impulsive noise denoising (b) Blind inpainting

Methods to compare with:
K -PCP(capped): learning K -subspaces by PCP(capped).

MF+SSMS: median filter + SSMS ([Yu, Sapiro and Mallat 2010]).
IMF: iterative median filter (with optimal number of interation).
NL-Median: a variant of non-local means ([Buades, Coll and Morel 2005]).
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Results of removing impulsive noise, PSNR on 100 images

(a) p0 = 5%, σ = 20

(b) p0 = 5%, σ = 30
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Results of removing impulsive noise, PSNR on 100 images

(a) p0 = 10%, σ = 20

(b) p0 = 10%, σ = 30
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Visualization for removing impulsive noise

Figure: From left to right: noisy images, IMF, MF+SSMS, NL-Median1, K -PCP(capped) and
K -ALS(2p0).
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Results of blind inpainting, PSNR on 100 images

(a) p0 = 0%, σ = 5

(b) p0 = 0%, σ = 10
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Visualization for blind inpainting

Figure: From left to right, from top to bottom: noisy images, IMF, MF+SSMS, NL-Median2,
PCP(capped) and K -ALS(2p0).
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Thank You!

Contact: wangx857@umn.edu

Preprint and code are available on
http://www.math.umn.edu/~wangx857/

Yi (Grace) Wang Robust Locally Linear Analysis with Applications 23

http://www.math.umn.edu/~wangx857/


Introduction
Algorithms

Mathematical Analysis
Applications

Problem description
Experimental results

Effect of d of K -ALS algorithm on denoising.

(a) House (b) Lena
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Effect of d of K -ALS algorithm on blind inpainting.

(a) House (b) Lena
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Initialization

(a) At direction 30◦
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Numerical simulations with a single subspace

(a) Relative fitting error (b) Computing time

Figure: The computing time of PCP is about 200 times that of ALS.

PCP(capped): PCP capped at d of rank for computational efficiency.
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Challenges in very noisy cases

It is difficult when data is largely corrupted by Gaussian noise, outliers,
impulsive noise (corrupted at coordinates), and etc.

(a) Clean (b) 40% outliers (c) 40% impulsive noise
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Results of removing impulsive noise, SSIM on 100 images

(a) p0 = 5%, σ = 20

(b) p0 = 5%, σ = 30
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Results of removing impulsive noise, SSIM on 100 images

(a) p0 = 10%, σ = 20

(b) p0 = 10%, σ = 30
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Results of blind inpainting, SSIM on 100 images

(a) p0 = 0%, σ = 5

(b) p0 = 0%, σ = 10
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Complexity

O(m2n) + O(Kdmn) + O(d4mn): where m is the number of pixels in each
patch, n is number of patches, K is the number of subspaces, and d is the
intrinsic dimension of the subspace.
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