Robust Locally Linear Analysis with Applications to Image Denoising and Blind Inpainting

Yi (Grace) Wang

School of Mathematics University of Minnesota

May 21, 2012

Joint work with Arthur Szlam and Gilad Lerman

<ロ> (日) (日) (日) (日) (日)

Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

Data analysis: massive and high-dimensional data sets

- Massive automatic data collection, systematically obtaining many measurements. e.g.,
 - Satellite images;
 - Web data;
 - Gene expression.

Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

Data analysis: massive and high-dimensional data sets

- Massive automatic data collection, systematically obtaining many measurements. e.g.,
 - Satellite images;
 - Web data;
 - Gene expression.
- Difficult in high dimensions. e.g.,
 - $(1/\epsilon)^D$ measurements needed for an approximation of precision ϵ in *D*-dimensional space.

Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

Data analysis: massive and high-dimensional data sets

- Massive automatic data collection, systematically obtaining many measurements. e.g.,
 - Satellite images;
 - Web data;
 - Gene expression.
- Difficult in high dimensions. e.g.,
 - $(1/\epsilon)^D$ measurements needed for an approximation of precision ϵ in *D*-dimensional space.
- Can work with low-dimensional and sparse structures. e.g.,
 - Low rank;
 - Sparsity.

イロト イポト イヨト イヨト

Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

.

< ロ > < 同 > < 回 > < 回 > .

Ways to model data appropriately

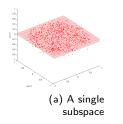
• Single subspace, or low rank matrix.

э

Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

Ways to model data appropriately

• Single subspace, or low rank matrix.

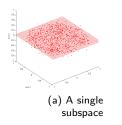


- 4 同 6 4 日 6 4 日 6

Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

Ways to model data appropriately

- Single subspace, or low rank matrix.
- Mixture of subspaces (hybrid linear modeling).

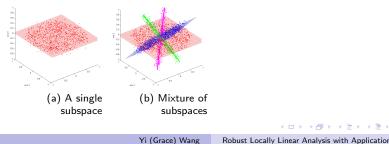


- 4 同 2 4 日 2 4 日 2

Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

Ways to model data appropriately

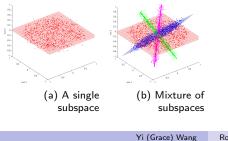
- Single subspace, or low rank matrix.
- Mixture of subspaces (hybrid linear modeling). •



Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

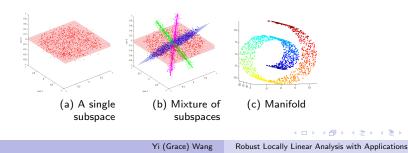
Ways to model data appropriately

- Single subspace, or low rank matrix.
- Mixture of subspaces (hybrid linear modeling).
- Single manifold.



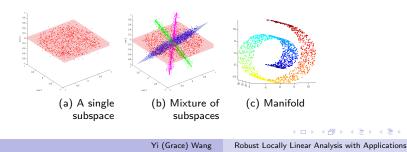
Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

- Single subspace, or low rank matrix.
- Mixture of subspaces (hybrid linear modeling).
- Single manifold.



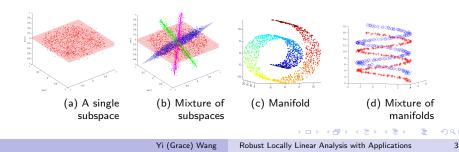
Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

- Single subspace, or low rank matrix.
- Mixture of subspaces (hybrid linear modeling).
- Single manifold.
- Mixture of manifolds.



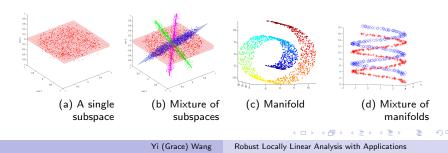
Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

- Single subspace, or low rank matrix.
- Mixture of subspaces (hybrid linear modeling).
- Single manifold.
- Mixture of manifolds.



Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

- Single subspace, or low rank matrix.
- Mixture of subspaces (hybrid linear modeling).
- Single manifold.
- Mixture of manifolds.
- And more...



Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

Natural image represented by multiple subspaces [Yu, Sapiro and Mallat 2010]

(a) House

・ロト ・ 一 ト ・ モ ト ・ モ ト

э

Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

Natural image represented by multiple subspaces [Yu, Sapiro and Mallat 2010]

(a) House

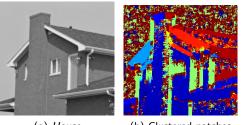
Data matrix formed by stacking overlapping patches into columns:

$$\rightarrow \qquad \qquad \mathbf{X} = \begin{pmatrix} \cdots & \begin{vmatrix} & & & & \\ & \ddots & & \\ & & & & \\ & & & & \\$$

э

Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

Natural image represented by multiple subspaces [Yu, Sapiro and Mallat 2010]



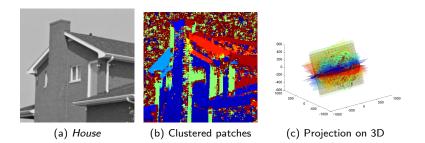
(a) House

(b) Clustered patches

Data matrix formed by stacking overlapping patches into columns:

Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

Natural image represented by multiple subspaces [Yu, Sapiro and Mallat 2010]



Data matrix formed by stacking overlapping patches into columns:

Data analysis: massive data sets and high dimensions $\ensuremath{\mathsf{Image}}$ denoising and blind inpainting

Real problems to solve

Restore images from very noisy inputs which are corrupted with

i.i.d. additive Gaussian noise

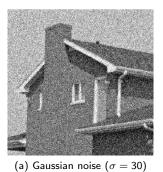
・ロト ・四ト ・モト・ モー

Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

Real problems to solve

Restore images from very noisy inputs which are corrupted with

i.i.d. additive Gaussian noise



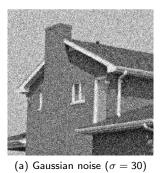
< ロ > < 同 > < 回 > < 回 > .

Data analysis: massive data sets and high dimensions $\ensuremath{\mathsf{Image}}$ denoising and blind inpainting

Real problems to solve

Restore images from very noisy inputs which are corrupted with

- i.i.d. additive Gaussian noise
- impulsive noise (random values at a portion of random pixels)



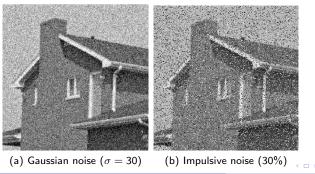
イロン イロン イヨン イヨン

Data analysis: massive data sets and high dimensions $\ensuremath{\mathsf{Image}}$ denoising and blind inpainting

Real problems to solve

Restore images from very noisy inputs which are corrupted with

- i.i.d. additive Gaussian noise
- impulsive noise (random values at a portion of random pixels)

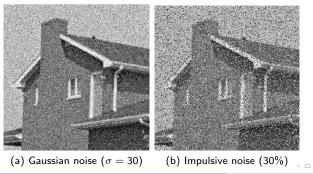


Data analysis: massive data sets and high dimensions $\ensuremath{\mathsf{Image}}$ denoising and blind inpainting

Real problems to solve

Restore images from very noisy inputs which are corrupted with

- i.i.d. additive Gaussian noise
- impulsive noise (random values at a portion of random pixels)
- and for blind inpainting, further degraded by scratches.

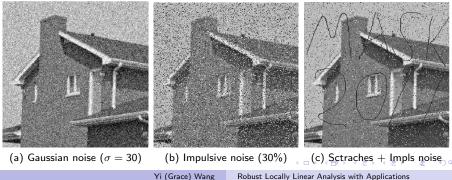


Data analysis: massive data sets and high dimensions Image denoising and blind inpainting

Real problems to solve

Restore images from very noisy inputs which are corrupted with

- i.i.d. additive Gaussian noise
- impulsive noise (random values at a portion of random pixels)
- and for blind inpainting, further degraded by scratches.



Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Outline

- Data analysis: massive data sets and high dimensions
- Image denoising and blind inpainting

2 Algorithms

- 3 Mathematical Analysis
- 4 Applications

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Recover a single subspace from data with corruptions

Definition

Given data sampled from a low-dimensional subspace, possibly corrupted with Gaussian noise and impulsive noise, the goal is to recover the underlying low-dimensional subspace.

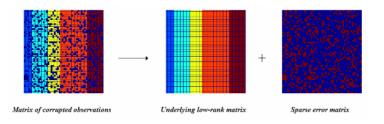
・ロン ・四 と ・ ヨ と ・ ヨ と ・

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Recover a single subspace from data with corruptions

Definition

Given data sampled from a low-dimensional subspace, possibly corrupted with Gaussian noise and impulsive noise, the goal is to recover the underlying low-dimensional subspace.



from Nuit Blanche

< 日 > < 同 > < 三 > < 三 >

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Existing methods

- Principle component pursuit(PCP) [Candès, Li, Ma and Wright. 2009]
 - ► **X** = **L** + **S**:

$$\min_{\mathbf{L},\mathbf{S}} \|\mathbf{L}\|_* + \lambda \|\mathbf{S}\|_1 \tag{1}$$

・ロト ・四ト ・ヨト ・ヨト

★ $\|\cdot\|_*$: nuclear norm, i.e. sum of singular values.

$$\star \|\mathbf{A}\|_1 = \sum |A_{ij}|.$$

-

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Existing methods

- Principle component pursuit(PCP) [Candès, Li, Ma and Wright. 2009]
 - ► **X** = **L** + **S**:

$$\min_{\mathbf{L},\mathbf{S}} \|\mathbf{L}\|_* + \lambda \|\mathbf{S}\|_1 \tag{1}$$

< ロ > < 同 > < 回 > < 回 > .

★
$$\|\cdot\|_*$$
: nuclear norm, i.e. sum of singular values.

$$\star \|\mathbf{A}\|_1 = \sum |A_{ij}|.$$

Including a tolerance for Gaussian noise:

$$\min_{\mathbf{L},\mathbf{S}} \|\mathbf{L}\|_* + \lambda \|\mathbf{S}\|_1 + \mu \|\mathbf{X} - \mathbf{L} - \mathbf{S}\|_F^2.$$
(2)

-

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Existing methods

- Principle component pursuit(PCP) [Candès, Li, Ma and Wright. 2009]
 - ► **X** = **L** + **S**:

$$\min_{\mathbf{L},\mathbf{S}} \|\mathbf{L}\|_* + \lambda \|\mathbf{S}\|_1 \tag{1}$$

★ $\|\cdot\|_*$: nuclear norm, i.e. sum of singular values.

$$\star \|\mathbf{A}\|_1 = \sum |A_{ij}|.$$

Including a tolerance for Gaussian noise:

$$\min_{\mathbf{L},\mathbf{S}} \|\mathbf{L}\|_* + \lambda \|\mathbf{S}\|_1 + \mu \|\mathbf{X} - \mathbf{L} - \mathbf{S}\|_F^2.$$
(2)

• A variant of PCP: Low Rank Matrix Fitting(LMaFit) (Wen, Yin and Zhang. 2010)

•
$$\mathbf{X} \approx \mathbf{B}_{m \times d} \mathbf{C}_{d \times n} + \mathbf{S}$$
:

$$\min_{\mathbf{B},\mathbf{C},\mathbf{S}} \|\mathbf{S} + \mathbf{B}\mathbf{C} - \mathbf{X}\|_F^2 + \lambda \|\mathbf{S}\|_1.$$
(3)

< ロ > < 同 > < 回 > < 回 > .

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Solution via alternating least squares(ALS)

- $\mathbf{X} \approx \mathbf{B}_{m \times d} \mathbf{C}_{d \times n} + \mathbf{S}$.
- \mathcal{I} : indices of corruptions.

< ロ > < 同 > < 回 > < 回 > .

э

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Solution via alternating least squares(ALS)

- $\mathbf{X} \approx \mathbf{B}_{m \times d} \mathbf{C}_{d \times n} + \mathbf{S}$.
- \mathcal{I} : indices of corruptions.
- Minimize energy:

$$\min_{\mathbf{B},\mathbf{C},\mathcal{I}} J(\mathbf{B},\mathbf{C},\mathcal{I}) := \sum_{(i,j)\notin\mathcal{I}} |(\mathbf{B}\mathbf{C}-\mathbf{X})_{ij}|^2$$
(4)

s.t.

$$|\mathcal{I}| \le N_0 \tag{5}$$

(a)

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Solution via alternating least squares(ALS)

- $\mathbf{X} \approx \mathbf{B}_{m \times d} \mathbf{C}_{d \times n} + \mathbf{S}$.
- \mathcal{I} : indices of corruptions.
- Minimize energy:

$$\min_{\mathbf{B},\mathbf{C},\mathcal{I}} J(\mathbf{B},\mathbf{C},\mathcal{I}) := \sum_{(i,j)\notin\mathcal{I}} |(\mathbf{B}\mathbf{C}-\mathbf{X})_{ij}|^2$$
(4)

s.t.

$$|\mathcal{I}| \le N_0 \tag{5}$$

(a)

▶ Non-convex fixing *I*.

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Solution via alternating least squares(ALS)

- $\mathbf{X} \approx \mathbf{B}_{m \times d} \mathbf{C}_{d \times n} + \mathbf{S}$.
- \mathcal{I} : indices of corruptions.
- Minimize energy:

$$\min_{\mathbf{B},\mathbf{C},\mathcal{I}} J(\mathbf{B},\mathbf{C},\mathcal{I}) := \sum_{(i,j)\notin\mathcal{I}} |(\mathbf{B}\mathbf{C}-\mathbf{X})_{ij}|^2$$
(4)

s.t.

$$|\mathcal{I}| \le N_0 \tag{5}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ▶ Non-convex fixing *I*.
- ► Convex w.r.t. **B** and **C**, closed-form solution w.r.t. *I*.

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Solution via alternating least squares(ALS)

- $\mathbf{X} \approx \mathbf{B}_{m \times d} \mathbf{C}_{d \times n} + \mathbf{S}$.
- \mathcal{I} : indices of corruptions.
- Minimize energy:

$$\min_{\mathbf{B},\mathbf{C},\mathcal{I}} J(\mathbf{B},\mathbf{C},\mathcal{I}) := \sum_{(i,j)\notin\mathcal{I}} |(\mathbf{B}\mathbf{C}-\mathbf{X})_{ij}|^2$$
(4)

s.t.

$$|\mathcal{I}| \le N_0 \tag{5}$$

<ロ> <同> <同> < 同> < 同>

- ▶ Non-convex fixing *I*.
- ► Convex w.r.t. **B** and **C**, closed-form solution w.r.t. *I*.
- ► ALS iterates between solving for **B**,**C** and *I*.

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Recover multiple subspaces from data with corruptions

3

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Recover multiple subspaces from data with corruptions

$$\begin{array}{ll} \min & \sum_{k=1}^{K} \sum_{(i,j) \notin \mathcal{I}_{k}} |(\mathbf{B}_{k}\mathbf{C}_{k} - \mathbf{X}_{k})_{ij}|^{2} \\ \mathbf{B}_{1}, \cdots, \mathbf{B}_{K} \\ \mathbf{C}_{1}, \cdots, \mathbf{C}_{K} \\ \mathbf{X}_{1}, \cdots, \mathbf{X}_{K}, \text{s.t.} \\ \mathbf{X} = [\mathbf{X}_{1}, \cdots, \mathbf{X}_{K}] \end{array}$$
(6)

• *K*-ALS (alternating least squares) algorithm iterates between **clustering** and **subspace estimation**.

< ロ > < 同 > < 回 > < 回 > .

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Recover multiple subspaces from data with corruptions

$$\begin{array}{ll} \min & \sum_{k=1}^{K} \sum_{(i,j) \notin \mathcal{I}_{k}} |(\mathbf{B}_{k}\mathbf{C}_{k} - \mathbf{X}_{k})_{ij}|^{2} \\ \mathbf{B}_{1}, \cdots, \mathbf{B}_{K} \\ \mathbf{C}_{1}, \cdots, \mathbf{C}_{K} \\ \mathbf{X}_{1}, \cdots, \mathbf{X}_{K}, \text{s.t.} \\ \mathbf{X} = [\mathbf{X}_{1}, \cdots, \mathbf{X}_{K}] \end{array}$$
(6)

- *K*-ALS (alternating least squares) algorithm iterates between **clustering** and **subspace estimation**.
 - Clustering is done by assigning to each data point its "nearest" subspace.

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Recover multiple subspaces from data with corruptions

$$\begin{array}{ll} \min & \sum_{k=1}^{K} \sum_{(i,j) \notin \mathcal{I}_{k}} |(\mathbf{B}_{k}\mathbf{C}_{k} - \mathbf{X}_{k})_{ij}|^{2} \\ \mathbf{B}_{1}, \cdots, \mathbf{B}_{K} \\ \mathbf{C}_{1}, \cdots, \mathbf{C}_{K} \\ \mathbf{X}_{1}, \cdots, \mathbf{X}_{K}, \text{s.t.} \\ \mathbf{X} = [\mathbf{X}_{1}, \cdots, \mathbf{X}_{K}] \end{array}$$
(6)

- *K*-ALS (alternating least squares) algorithm iterates between **clustering** and **subspace estimation**.
 - Clustering is done by assigning to each data point its "nearest" subspace.
 - **Subspace estimation** is done by ALS within each cluster.

< ロ > < 同 > < 回 > < 回 > .

Recover a single subspace from corrupted data Recover multiple subspaces from corrupted data

Recover multiple subspaces from data with corruptions

$$\begin{array}{ll} \min & \sum_{k=1}^{K} \sum_{(i,j) \notin \mathcal{I}_{k}} |(\mathbf{B}_{k}\mathbf{C}_{k} - \mathbf{X}_{k})_{ij}|^{2} \\ \mathbf{B}_{1}, \cdots, \mathbf{B}_{K} \\ \mathbf{C}_{1}, \cdots, \mathbf{C}_{K} \\ \mathbf{X}_{1}, \cdots, \mathbf{X}_{K}, \text{s.t.} \\ \mathbf{X} = [\mathbf{X}_{1}, \cdots, \mathbf{X}_{K}] \end{array}$$
(6)

- *K*-ALS (alternating least squares) algorithm iterates between **clustering** and **subspace estimation**.
 - Clustering is done by assigning to each data point its "nearest" subspace.
 - Subspace estimation is done by ALS within each cluster.
- K-ALS algorithm converges.

< ロ > < 同 > < 回 > < 回 > .

Outline

- Data analysis: massive data sets and high dimensions
- Image denoising and blind inpainting
- 2 Algorithms
- 3 Mathematical Analysis
 - 4 Applications

イロト イポト イヨト イヨト

э

Main Theorem

For simplicity, we denote $(\{\mathbf{B}_k\}_{k=1}^{K}, \{\mathbf{C}_k\}_{k=1}^{K}, \{\mathcal{I}_k\}_{k=1}^{K}, [\mathbf{X}_1, \cdots, \mathbf{X}_{K}])$ by Ω and $J(\Omega^t)$ is the objective function for K-ALS at step t.

- An iterative algorithm φ (a mapping at each iteration):
 x ∈ X ↦ P(X).
- x is a fixed point if $\phi(\mathbf{x}) = \mathbf{x}$.

・ロン ・部 と ・ ヨ と ・ ヨ と …

Main Theorem

For simplicity, we denote $(\{\mathbf{B}_k\}_{k=1}^{K}, \{\mathbf{C}_k\}_{k=1}^{K}, \{\mathcal{I}_k\}_{k=1}^{K}, [\mathbf{X}_1, \cdots, \mathbf{X}_{K}])$ by Ω and $J(\Omega^t)$ is the objective function for K-ALS at step t.

An iterative algorithm φ (a mapping at each iteration):
 x ∈ X ↦ P(X).

• x is a fixed point if $\phi(\mathbf{x}) = \mathbf{x}$.

Theorem

Main Theorem

For simplicity, we denote $(\{\mathbf{B}_k\}_{k=1}^{K}, \{\mathbf{C}_k\}_{k=1}^{K}, \{\mathcal{I}_k\}_{k=1}^{K}, [\mathbf{X}_1, \cdots, \mathbf{X}_{K}])$ by Ω and $J(\Omega^t)$ is the objective function for K-ALS at step t.

An iterative algorithm φ (a mapping at each iteration):
 x ∈ X ↦ P(X).

• x is a fixed point if $\phi(\mathbf{x}) = \mathbf{x}$.

Theorem

For the regularized K-ALS algorithm, the following statements hold with probability one:

Every accumulation point of the iterates {Ω^t} produced by this algorithm is one of its fixed points;

Main Theorem

For simplicity, we denote $(\{\mathbf{B}_k\}_{k=1}^{K}, \{\mathbf{C}_k\}_{k=1}^{K}, \{\mathcal{I}_k\}_{k=1}^{K}, [\mathbf{X}_1, \cdots, \mathbf{X}_{K}])$ by Ω and $J(\Omega^t)$ is the objective function for K-ALS at step t.

An iterative algorithm φ (a mapping at each iteration):
 x ∈ X ↦ P(X).

• x is a fixed point if $\phi(\mathbf{x}) = \mathbf{x}$.

Theorem

- Every accumulation point of the iterates {Ω^t} produced by this algorithm is one of its fixed points;
- **2** $J(\Omega^t) \to J(\Omega^*)$, where Ω^* is a fixed point;

Main Theorem

For simplicity, we denote $(\{\mathbf{B}_k\}_{k=1}^{K}, \{\mathbf{C}_k\}_{k=1}^{K}, \{\mathcal{I}_k\}_{k=1}^{K}, [\mathbf{X}_1, \cdots, \mathbf{X}_{K}])$ by Ω and $J(\Omega^t)$ is the objective function for K-ALS at step t.

An iterative algorithm φ (a mapping at each iteration):
 x ∈ X ↦ P(X)

• x is a fixed point if
$$\phi(\mathbf{x}) = \mathbf{x}$$
.

Theorem

- Every accumulation point of the iterates {Ω^t} produced by this algorithm is one of its fixed points;
- **2** $J(\Omega^t) \to J(\Omega^*)$, where Ω^* is a fixed point;

Main Theorem

For simplicity, we denote $(\{\mathbf{B}_k\}_{k=1}^{K}, \{\mathbf{C}_k\}_{k=1}^{K}, \{\mathcal{I}_k\}_{k=1}^{K}, [\mathbf{X}_1, \cdots, \mathbf{X}_{K}])$ by Ω and $J(\Omega^t)$ is the objective function for K-ALS at step t.

An iterative algorithm φ (a mapping at each iteration):
 x ∈ X ↦ P(X).

• x is a fixed point if $\phi(\mathbf{x}) = \mathbf{x}$.

Theorem

- Every accumulation point of the iterates {Ω^t} produced by this algorithm is one of its fixed points;
- **2** $J(\Omega^t) \to J(\Omega^*)$, where Ω^* is a fixed point;
- either Ω^t converges or the accumulation points form a continuum.

Sketch of the proof

Key steps:

- The algorithm is **strictly monotonic** w.r.t. the energy function.
 - Suffices to show the algorithm is monotone and single-valued.
 - ► $J(\Omega^{t+1}) \leq J(\Omega^t).$
 - ► Regularized by: min $\|\tilde{\mathbf{B}}\mathbf{c} \tilde{\mathbf{x}}\|_2^2 + \lambda \|\mathbf{c}\|_2^2$. ($\tilde{\mathbf{x}}$: uncorrupted elements in \mathbf{x} ;

 $\tilde{\mathbf{B}}$: the corresponding rows of \mathbf{B} .)

イロン イロン イヨン イヨン

Sketch of the proof

Key steps:

- The algorithm is **strictly monotonic** w.r.t. the energy function.
 - Suffices to show the algorithm is monotone and single-valued.
 - ► $J(\Omega^{t+1}) \leq J(\Omega^t).$
 - ► Regularized by: $\min_{\mathbf{c}} \|\mathbf{\tilde{B}c} \mathbf{\tilde{x}}\|_2^2 + \lambda \|\mathbf{c}\|_2^2$. ($\mathbf{\tilde{x}}$: uncorrupted elements in \mathbf{x} ; $\mathbf{\tilde{B}}$: the corresponding rows of \mathbf{B} .)
- The iterates produced by the algorithm lie in a compact set.
 - $\|\mathbf{B}\|_F^2$ and $\|\mathbf{C}\|_F^2$ are bounded by $J(\Omega^0)$.

<ロ> <同> <同> < 同> < 同>

Sketch of the proof

Key steps:

- The algorithm is **strictly monotonic** w.r.t. the energy function.
 - Suffices to show the algorithm is monotone and single-valued.
 - ► $J(\Omega^{t+1}) \leq J(\Omega^t).$
 - ► Regularized by: $\min_{\mathbf{c}} \|\mathbf{\tilde{B}c} \mathbf{\tilde{x}}\|_2^2 + \lambda \|\mathbf{c}\|_2^2$. ($\mathbf{\tilde{x}}$: uncorrupted elements in \mathbf{x} ; $\mathbf{\tilde{B}}$: the corresponding rows of \mathbf{B} .)
- The iterates produced by the algorithm lie in a compact set.
 - $\|\mathbf{B}\|_F^2$ and $\|\mathbf{C}\|_F^2$ are bounded by $J(\Omega^0)$.
- The algorithm is **closed**.
 - By continuity of J w.r.t. **B** and **C**.

イロン イロン イヨン イヨン

Problem description Experimental results

Outline

- Data analysis: massive data sets and high dimensions
- Image denoising and blind inpainting
- 2 Algorithms
- 3 Mathematical Analysis
- Applications

<ロ> <同> <同> < 同> < 同>

э

Problem description Experimental results

Removing impulsive noise and blind inpainting

Recover images corrupted with

- **(**) i.i.d. additive Gaussian noise with standard deviation σ ,
- **②** a percentage of p_0 random corruptions at random pixels (**impulsive noise**).
- and for blind inpainting (inpaint without info of locations), further degraded by scratches.

・ロン ・四 と ・ ヨ と ・ ヨ と ・

Removing impulsive noise and blind inpainting

Recover images corrupted with

- **(**) i.i.d. additive Gaussian noise with standard deviation σ ,
- **a** percentage of p_0 random corruptions at random pixels (**impulsive noise**).
- and for blind inpainting (inpaint without info of locations), further degraded by scratches.

Process images by:

- Forming the actual data matrix X by stacking the vectors representing overlapping 8 × 8 patches as columns.
- ⁽²⁾ Transforming estimated $\tilde{\mathbf{X}}$ back to the image (after enhancing it) by averaging values of all coordinates representing the same pixel.

Problem description Experimental results

Examples revisit

(a) Impulsive noise denoising

(b) Blind inpainting

<ロ> <同> <同> < 同> < 同>

Methods to compare with:

• K-PCP(capped): learning K-subspaces by PCP(capped).

Problem description Experimental results

Examples revisit

(a) Impulsive noise denoising

(b) Blind inpainting

< ロ > < 同 > < 回 > < 回 >

Methods to compare with:

- K-PCP(capped): learning K-subspaces by PCP(capped).
- MF+SSMS: median filter + SSMS ([Yu, Sapiro and Mallat 2010]).

Problem description Experimental results

Examples revisit

(a) Impulsive noise denoising

(b) Blind inpainting

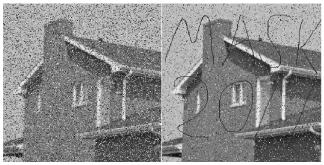
イロト イポト イヨト イヨト

Methods to compare with:

- K-PCP(capped): learning K-subspaces by PCP(capped).
- MF+SSMS: median filter + SSMS ([Yu, Sapiro and Mallat 2010]).
- IMF: iterative median filter (with optimal number of interation).

Problem description Experimental results

Examples revisit



(a) Impulsive noise denoising

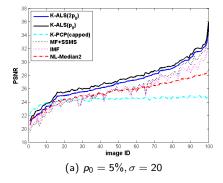
(b) Blind inpainting

Methods to compare with:

- K-PCP(capped): learning K-subspaces by PCP(capped).
- MF+SSMS: median filter + SSMS ([Yu, Sapiro and Mallat 2010]).
- IMF: iterative median filter (with optimal number of interation).
- NL-Median: a variant of non-local means ([Buades, Coll and Morel 2005]).

Problem description Experimental results

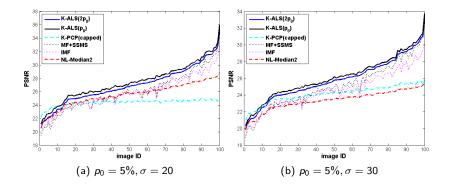
Results of removing impulsive noise, PSNR on 100 images



<ロ> <同> <同> < 同> < 同>

Problem description Experimental results

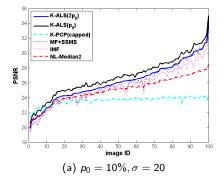
Results of removing impulsive noise, PSNR on 100 images



< ロ > < 同 > < 回 > < 回 >

Problem description Experimental results

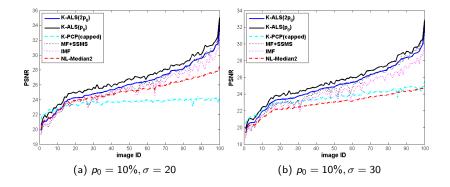
Results of removing impulsive noise, PSNR on 100 images



< ロ > < 同 > < 回 > < 回 >

Problem description Experimental results

Results of removing impulsive noise, PSNR on 100 images



< ロ > < 同 > < 回 > < 回 >

Problem description Experimental results

Visualization for removing impulsive noise

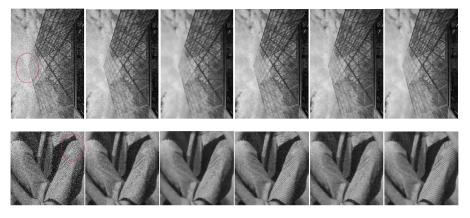
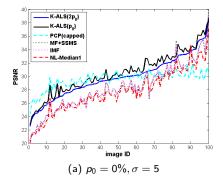


Figure: From left to right: noisy images, IMF, MF+SSMS, NL-Median1, K-PCP(capped) and K-ALS($2p_0$).

<ロ> (日) (日) (日) (日) (日)

Problem description Experimental results

Results of blind inpainting, PSNR on 100 images

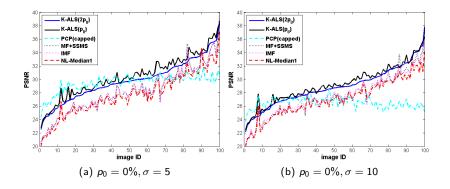


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Problem description Experimental results

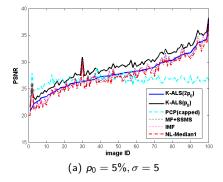
Results of blind inpainting, PSNR on 100 images



< ロ > < 同 > < 回 > < 回 >

Problem description Experimental results

Results of blind inpainting, PSNR on 100 images

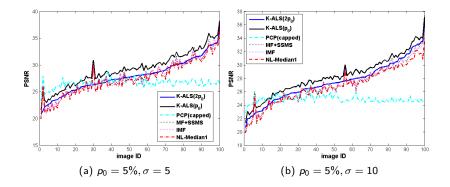


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Problem description Experimental results

Results of blind inpainting, PSNR on 100 images



< ロ > < 同 > < 回 > < 回 >

Problem description Experimental results

Visualization for blind inpainting

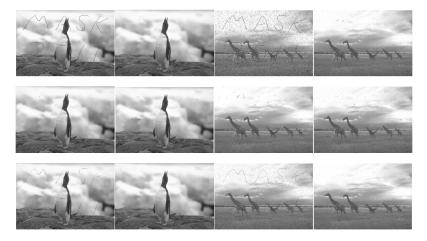


Figure: From left to right, from top to bottom: noisy images, IMF, MF+SSMS, NL-Median2, PCP(capped) and K-ALS(2 p_0).

Problem description Experimental results

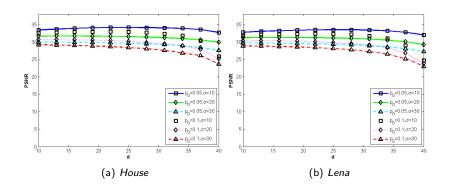
Thank You!

- Contact: wangx857@umn.edu
- Preprint and code are available on http://www.math.umn.edu/~wangx857/

(人間) (人) (人) (人) (人) (人)

Problem description Experimental results

Effect of *d* of *K*-ALS algorithm on denoising.



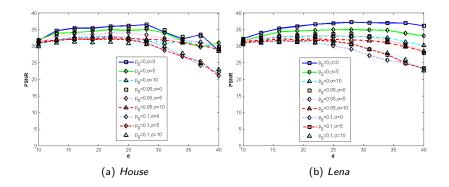
<ロ> (日) (日) (日) (日) (日)

24

э

Problem description Experimental results

Effect of *d* of *K*-ALS algorithm on blind inpainting.



<ロ> (日) (日) (日) (日) (日)

Problem description Experimental results

Initialization

(a) At direction 30°

・ロト ・回ト ・ヨト ・ヨト

Problem description Experimental results

Numerical simulations with a single subspace

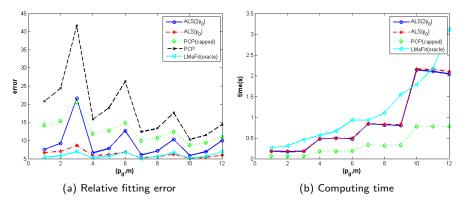


Figure: The computing time of PCP is about 200 times that of ALS.

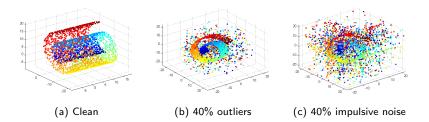
PCP(capped): PCP capped at d of rank for computational efficiency.

э

Problem description Experimental results

Challenges in very noisy cases

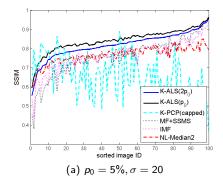
It is difficult when data is largely corrupted by Gaussian noise, outliers, **impulsive noise (corrupted at coordinates)**, and etc.



< ロ > < 同 > < 回 > < 回 >

Problem description Experimental results

Results of removing impulsive noise, SSIM on 100 images

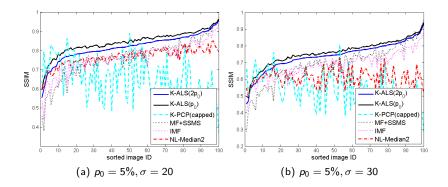


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Problem description Experimental results

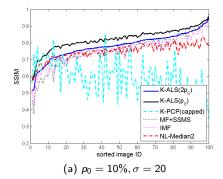
Results of removing impulsive noise, SSIM on 100 images



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem description Experimental results

Results of removing impulsive noise, SSIM on 100 images

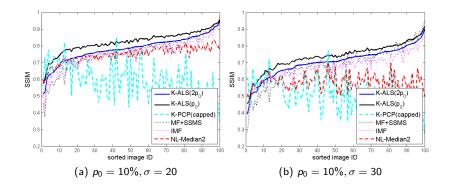


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Problem description Experimental results

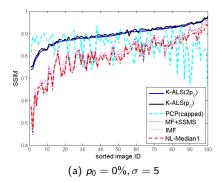
Results of removing impulsive noise, SSIM on 100 images



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem description Experimental results

Results of blind inpainting, SSIM on 100 images

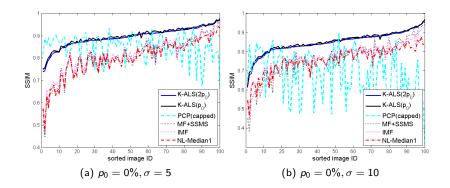


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Problem description Experimental results

Results of blind inpainting, SSIM on 100 images

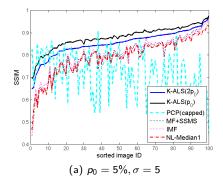


< ロ > < 同 > < 回 > < 回 >

э

Problem description Experimental results

Results of blind inpainting, SSIM on 100 images

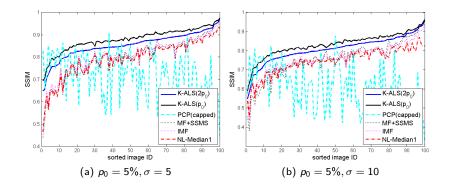


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Problem description Experimental results

Results of blind inpainting, SSIM on 100 images



< ロ > < 同 > < 回 > < 回 >

Problem description Experimental results

Complexity

 $O(m^2n) + O(Kdmn) + O(d^4mn)$: where *m* is the number of pixels in each patch, *n* is number of patches, *K* is the number of subspaces, and *d* is the intrinsic dimension of the subspace.

-