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Subspace Representations

Monitor/sense with n nodes

v € R" is a snapshot of the system state
(e.g., temperature at each node)
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Subspace Representations

Monitor/sense with n nodes
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Subspace Representations

Monitor/sense with n nodes

0

10
- l ordered singular values

Each snapshot lies near a
low-dimensional subspace

S CR"

Using the subspace as a model for the data,
we can leverage these dependencies for
detection, estimation and prediction.




Subspace Representations: Imaging

* For each frame we have n pixels.
* The background of a collection of frames lies in a
low-dimensional subspace, possibly time-varying.



Subspace Identification: Introduction

Suppose we receive a sequence of length-n vectors that lie in a

d-dimensional subspace S:
Ul,vg,...,vt,.”,ESCR” so o

And then we collect T of these vectors into a matrix,

X = V1 Vo2 ... vT

If S is static, we can identify it as the column space of this matrix

by performing the SVD: IE-

The orthogonal columns of U span the subspace S.

X =Uxv"’



Subspace Identification: Introduction

Suppose we receive a sequence of incomplete length-n vectors
that lie in a d-dimensional subspace S, and ; C {1,...,n}

refers to the observed indices:
VO, UQgs e vy Vs -+, €S C R EEEEEEE °ee

And then we collect T of these vectors into a matrix:

_ _ T T |
EECEE EEECECE
HEEEEET "HEEEN
X = UV, UVQ, VO e T
by-pertormingthe SVD-
X=Uxv".

The orthogonal columns of U span the subspace S.



Related Work: LMS subspace tracking

* Subspace tracking (with complete
data) was approached with LMS
methods 1n the 80s and 90s

— Yang 1995, Projection

Approximation Subspace A
Tracking; proof Delmas Cardoso
1998 S

— Comon, Golub survey 1990

2
v — Psvl|3
* Incremental gradient methods are
getting attention for their speed and o
Convergence guarantees Figure from Stephen Kay, Fundamentals
_ Bertsekas, Tsitsiklis 2000 of Statistical Signal Processing

Volume |: Estimation, p3.



Residual with Incomplete Data

U is an n X d orthogonal matrix whose columns span

the d-dimensional subspace S.
Uq denotes the submatrix with rows indicated by (2,
where Q2 C {1,...,n} is the subset of indices observed.

Full-data Residual
Ps =UWUTU)tUT:

v, =v— Pgv

Incomplete-data Residual

Let Ps, = Uq (USUg) " UZ.

v = v — Ps,vq



Theorem: Incomplete Data Residual Norm

S is a known d < n dimensional subspace of R with coherence (5.

v is our observation and we wish to estimate ||v) ||5 = ||[va — Ps,vall3

Theorem: If |2] = O(u(S)dlogd) and €2 is chosen uniformly with replacement,
then with high probability and ignoring constant factors,

2] — du(S)

n

Q
v~ Psoll3 < v — Psyvally < 0 o — Psol3
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Subspace Tracking

Suppose we receive a sequence of incomplete vectors that lie in a
d-dimensional subspace S:

Uy s UQos oo o s UQyy e v

Given S; and vq,, how do we generate Si417

Choose S;y1 to decrease the error ||vg — Ps,val|3.
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GROUSE

e (Given step size subspace basis U, € Rn*d Grassmannian
. p it p ¢ ’ Rank-One Update
observations vq, Subspace

Estimation

e Calculate Weights:
W = arg mgn||UQta — U, ”%

e Predict full vector: v = Uyw

o Compute Residual on observed entries: v, = vq, — (v))q,
and zero-pad.

e Update subspace:

. v (% wT
Ut—|—1 = U, + (Sln(o'nt)v— + (COS(O'nt) - 1) ||U:: ||> ||’UJ||

where o = |[v_ |||y

* One iteration involves a projection and an outer product.

« The algorithm is simple and fast.
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GROUSE Performance: Matrix Completion

RN
o
LI L | N

RN
o

Computation time in Seconds

10

103§

[N
T

Error v Computation Time

O GROUSE .
0 SDP LR
NNLS
A FPCA
SVT
+ OPT-Space

B, oge O

Ocoo @ @

10

10°° 10

Full matrix relative reconstruction error

To use GROUSE, we pass
over the columns of the
matrix a few times in
random order, doing an
update for every column.

We compared against other
state of the art MC
algorithms on
reconstruction error and
computation time.
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Robust Low-Rank Modeling (Robust PCA)

* Sparse + Low-Rank Model

33 12188
e

Muairix af carrupted observations Underlying low-rank matrix Sparse ervor matrix

b BN

image from Nuit Blanche

* Several algorithms have been developed to find such
a decomposition from a matrix observation

— convex optimization and approximations
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GROUSE to GRASTA with Jun He and Arthur Szlam

FQTOUSG(S; t) — mui)n HUQtw - UQtH%

Grassmannian

~ Robust Adaptive
Subspace Tracking

FgTaStCL (87 t) = min ”UQtw — VQ, ”1 Algorithm
w

Ut_|_1 — Ut -+ ((COS(O'Ut) — 1)Ut Hgt | Sin(0'77t) ||E||) —t

¢|]
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GRASTA Performance on RPCA
with Jun He

e Simulated 2000 x 2000 matrix, rank=5

* Compare GRASTA to Inexact Augmented Lagrange
Multiplier Method for RPCA

% outliers | noise | GRASTA 100% GRASTA 30% IALM FOR RPCA

var sampled sampled
10% 0.5e-3 | 3.64e-4 /58.31sec |6.07e-4 /20.79 sec 16.7e-4 / 93.16 sec
10% 1.0e-3 | 7.643-4 / 59.55sec | 12.3e-4 / 20.66 sec 36.4e-4 / 117.76 sec
30% 0.5e-3 | 6.13e-4 /67.19sec | 12.6e-4/22.63 sec 26.4e-4 / 324.26 sec
30% 1.0e-3 [ 9.87e-4 /69.06 sec | 19.3e-4/22.85 sec 56.2e-4 / 362.62 sec
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GRASTA Performance on Background Subtraction

with Jun He
t=1 t =600 t=1200
Dataset Resolution Total Frames Training Time Tracking and FPS
Separating Time
Airport Hall 144 x 176 3584 11.3 sec 20.9 sec 171.5
Shopping Mall 320 % 256 1286 33.9 sec 27.5 sec 46.8
Lobby 144 X176 1546 3.9 sec 71.3 sec 21.7
Hall with Virtual Pan (1) 144 % 88 3584 3.8 sec 191.3 sec 18.7
Hall with Virtual Pan (2) 144 % 88 3584 3.7 sec 144.8 sec 24.8
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GRASTA Performance on Background Subtraction
with Jun He

t =105 t =110 t =115 t="120 =125
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GRASTA demo

* Written by Arthur Szlam at CUNY 1n Open
CV
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For more information: http://sunbeam.ece.wisc.edu/

Incremental Gradient on the Grassmannian for Background and Foreground Separation
in Subsampled Video

Jun He, Laura Balzano, and Arthur Szlam. To appear at CVPR, June 2012.

Online Robust Subspace Tracking from Partial Information

Jun He, Laura Balzano, Arthur Szlam, and John C.S. Lui. In preparation for Trans PAMI.
http://arxiv.org/abs/1109.3827

Online Identification and Tracking of Subspaces from Highly Incomplete Information
Laura Balzano, Robert Nowak, and Benjamin Recht. Allerton, September 2010.

High-Dimensional Matched Subspace Detection when Data are Missing
Laura Balzano, Benjamin Recht, and Robert Nowak. ISIT, June 2010.

THANK YOU!
Questions?
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Theorem: Incomplete Data Residual Norm

Full Theorem: If [Q > $u(S)dlog(2d/é) and € is chosen uniformly with
replacement, then with probability 1 — 44,

Q)1 — a) — du(S) 2 0|

Q
S o — Psoll3 < [l — Psyval3 < (1+a)— v = Pso]j;

n

where we write v =ox+y, €S, ye s,

o= \/2“&)2 log (3), 3= \/2,u )log (5), and v = \/8‘é’rg(2f) log (24).

Lemma 1: [jyo|2 > (1 — ) 2ljy)2  McDiarmid’s inequality with sum
of RVs

Lemma 2: [|Uyal3 < (1+ 82245142 McDiarmid’s inequality.

1 n . .
Lemma 3: || (UqUn) "2 < a=55;7  Non-commutative Bernstein

inequality
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Descent on the Grassmannian

Idea: Stochastic gradient descent to minimize the incomplete

project residual one vector at a time. (Subspace Tracking in Signal
Processing is done this way, using the complete-data residual.)

Since we are estimating a subspace, we can perform gradient
descent directly on the Grassman manifold G(n,d) and follow

its geodesics.

. (There are explicit formulas for a gradient descent step that

follows the Grassmannian geodesic.)

A. Edelman, T. A. Arias, and S. T. Smith. The geometry of
algorithms with orthogonality constraints. SIAM Journal on
Matrix Analysis and Applications, 20(2):303-353, 1998.

1-d subspaces
in R%

22



