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v ∈ Rn is a snapshot of the system state
(e.g., temperature at each node)

v ∈ Rn is a snapshot of the system state
(e.g., traffic rates at each monitor)

Given matrix X = USV T , form the SVD of [X, v].

Estimate the weights: w = arg min
a
‖Ua− v‖22

Compute the residual: v⊥ = v − Uw.

Update the SVD:

[X, v] =
[

U v⊥
‖v⊥‖

] [
S w
0 ‖v⊥‖

]

︸ ︷︷ ︸

[
V 0
0 1

]T

Diagonalize.

Theorem: Let X be an n × n matrix in a finite field. Fix ε > 0 and let Hi,
i = 1, . . . , k be sparse measurement matrices: Each entry of Hi is non-zero with
probability greater than log(n)/n with its value drawn uniformly from the field.
If k > 2rn − r2 + ε(rn − r2

2 ), then the probability that the exhaustive-search
minimum rank decoder makes a mistake estimating X, P(En)→ 0 as n→∞.
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Subspace Representations 

Temperature data from UCLA Sensornet 

ordered singular values 
(normalized) 

Byte Count data from UW network 

ordered singular values 
(normalized) 
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Using the subspace as a model for the data, 
we can leverage these dependencies for 
detec9on, es9ma9on and predic9on. 

Each snapshot lies near a 
low‐dimensional subspace 



Subspace Representations: Imaging 
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•   For each frame we have n pixels. 
•   The background of a collec9on of frames lies in a 
low‐dimensional subspace, possibly 9me‐varying. 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(I − P )x = Qx ≈ 0

Qxi = Q(Yiα + β) = 0

j = 1, . . . , n

Suppose we receive a sequence of length-n vectors that lie in a
d-dimensional subspace S:

v1, v2, . . . , vt, . . . ,∈ S ⊂ Rn

And then we collect T of these vectors into a matrix, where all the
completed vectors lie in the same d-dimensional subspace S:

X =




| | |
v1 v2 . . . vT

| | |





If S is static, we can identify it as the column space of this matrix
by performing the SVD:

X = UΣV T .

The orthogonal columns of U span the subspace S.

1

…
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(I − P )x = Qx ≈ 0

Qxi = Q(Yiα + β) = 0

j = 1, . . . , n

Suppose we receive a sequence of incomplete length-n vectors
that lie in a d-dimensional subspace S, and Ωt ⊂ {1, . . . , n}
refers to the observed indices:

vΩ1 , vΩ2 , . . . , vΩt , . . . ,∈ S ⊂ Rn

And then we collect T of these vectors into a matrix:

X =




| | |

vΩ1 vΩ2 . . . vΩT

| | |





If S is static, we can identify it as the column space of this matrix
by performing the SVD:

X = UΣV T .

The orthogonal columns of U span the subspace S.

Suppose we collect T incomplete vectors into a matrix, where all the

1

…
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Related Work: LMS subspace tracking 
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Figure from Stephen Kay, Fundamentals 
of Sta9s9cal Signal Processing 
Volume I: Es9ma9on, p3. 

•  Subspace tracking (with complete 
data) was approached with LMS 
methods in the 80s and 90s 
–  Yang 1995, Projection 

Approximation Subspace 
Tracking; proof Delmas Cardoso 
1998 

–  Comon, Golub survey 1990 

•  Incremental gradient methods are 
getting attention for their speed and 
convergence guarantees 
–  Bertsekas, Tsitsiklis 2000 

probability greater than log(n)/n with its value drawn uniformly from the field.
If k > 2rn − r2 + ε(rn − r2

2 ), then the probability that the exhaustive-search
minimum rank decoder makes a mistake estimating X, P(En)→ 0 as n→∞.

Theorem: Let X be an n × N matrix, N = O(np) for p ≥ 2, whose columns
lie in the union of k & N rank r < n incoherent subspaces which are not “too
close” to one another. Then the matrix X can be perfectly reconstructed from
O(βrN log N) measurements with probability at least 1− 6kN−2(β−1) log2 N .

Theorem: If |Ω| = O(µ(S)d log d) and Ω is chosen uniformly with replacement,
then with high probability and ignoring constant factors,

|Ω|− dµ(S)
n

‖v − PSv‖22 ≤ ‖vΩ − PSΩvΩ‖22 ≤
|Ω|
n
‖v − PSv‖22

Full Theorem: If |Ω| ≥ 8
3µ(S)d log(2d/δ) and Ω is chosen uniformly with

replacement, then with probability 1− 4δ,

|Ω|(1− α)− dµ(S) (1+β)2

(1−γ)

n
‖v−PSv‖22 ≤ ‖vΩ−PSΩvΩ‖22 ≤ (1+α)

|Ω|
n
‖v−PSv‖22

where we write v = x + y, x ∈ S, y ∈ S⊥,

α =
√

2µ(y)2

|Ω| log
(

1
δ

)
, β =

√
2µ(y) log

(
1
δ

)
, and γ =

√
8dµ(S)
3|Ω| log

(
2d
δ

)
.

S is a known d < n dimensional subspace of Rn with coherence µ(S).

vΩ is our observation and we wish to estimate ‖v⊥‖22 = ‖vΩ − PSΩvΩ‖22

Given observation v ∈ Rn, update S to incorporate v.

2



Job talk slide tex

Laura Balzano
University of Wisconsin-Madison

February 4, 2012

PS = U(UT U)−1UT :

v⊥ = v − PSv

Let PSΩ = UΩ

(
UT

Ω UΩ

)−1
UT

Ω .

v⊥ = vΩ − PSΩvΩ

xt+1 = Axt + But + wt (1)
zt = Cxt + νt (2)

Choose St+1 to decrease the error ‖vΩ − PSΩvΩ‖2
2.

Ut+1 = Ut +
(
(cos(σηt)− 1)Ut

wt
‖wt‖ + sin(σηt) Γ

‖Γ‖

)
wT

t
‖wt‖

v ∈ Rn is a snapshot of the system state
(e.g., temperature at each node)

v ∈ Rn is a snapshot of the system state
(e.g., traffic rates at each monitor)

Given matrix X = USV T , form the SVD of [X, v].

Estimate the weights: w = arg min
a
‖Ua− v‖2

2

Compute the residual: v⊥ = v − Uw.

1

Residual with Incomplete Data 

Full-data Residual

Incomplete-data Residual

9 

Given observation v ∈ Rn, update S to incorporate v.

U is an n× d orthogonal matrix whose columns span
the d-dimensional subspace S.
UΩ denotes the submatrix with rows indicated by Ω,
where Ω ⊂ {1, . . . , n} is the subset of indices observed.

Suppose we only see an incomplete subsample vΩ,
where Ω ⊂ {1, . . . , n} is the subset of indices observed.

a =
(
UT

Ωt
UΩt

)−1
UT

Ωt
vΩt

If we had a batch of data, X = [v1, v2, · · · , vlast]
and the subspace S were fixed for this batch,
our overall goal would be to choose S to minimize ‖X − PSX‖22.

So, this means we are looking for the subspace
of the best rank-d SVD approximation.

3



Theorem: Incomplete Data Residual Norm 
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Subspace Tracking 
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Suppose we collect T incomplete vectors into a matrix, where all the
completed vectors lie in the same d-dimensional subspace S:




| | |

vΩ1 vΩ2 . . . vΩT

| | |





How do we use these data to estimate the underlying subspace S?

Suppose we receive a sequence of incomplete vectors that lie in a
d-dimensional subspace S:

vΩ1 , vΩ2 , . . . , vΩt , . . .

Given St and vΩt , how do we generate St+1?

Suppose we receive a sequence of length-n vectors that lie in a
d-dimensional subspace S:

v1, v2, . . . , vt, . . . ,∈ S ⊂ Rn

1
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Choose St+1 to decrease the error ‖vΩ − PSΩvΩ‖22.

Ut+1 = Ut +
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v ∈ Rn is a snapshot of the system state
(e.g., temperature at each node)

v ∈ Rn is a snapshot of the system state
(e.g., traffic rates at each monitor)

Given matrix X = USV T , form the SVD of [X, v].

Estimate the weights: w = arg min
a
‖Ua− v‖22

Compute the residual: v⊥ = v − Uw.

Update the SVD:

[X, v] =
[

U v⊥
‖v⊥‖

] [
S w
0 ‖v⊥‖

]

︸ ︷︷ ︸

[
V 0
0 1

]T

Diagonalize.

Theorem: Let X be an n × n matrix in a finite field. Fix ε > 0 and let Hi,
i = 1, . . . , k be sparse measurement matrices: Each entry of Hi is non-zero with
probability greater than log(n)/n with its value drawn uniformly from the field.
If k > 2rn − r2 + ε(rn − r2

2 ), then the probability that the exhaustive-search
minimum rank decoder makes a mistake estimating X, P(En)→ 0 as n→∞.

1
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GROUSE 

•  One iteration involves a projection and an outer product.  

•  The algorithm is simple and fast. 

12 

If we had a batch of data, X = [v1, v2, · · · , vlast]
and the subspace S were fixed for this batch,
our overall goal would be to choose S to minimize ‖X − PSX‖22.

So, this means we are looking for the subspace
of the best rank-d SVD approximation.

∆Ωt is the n× n diagonal matrix with jth diagonal entry

=
{

1 if j ∈ Ωt

0 otherwise

• Given step size ηt, subspace basis Ut ∈ Rn×d,
observations vΩt

• Calculate Weights:
w = arg min

a
‖UΩta− vΩt‖22

• Predict full vector: v‖ = Utw

• Compute Residual on observed entries: v⊥ = vΩt − (v‖)Ωt

and zero-pad.

• Update subspace:

Ut+1 = Ut +
(

sin(σηt)
v⊥
‖v⊥‖

+ (cos(σηt)− 1)
v‖
‖v‖‖

)
wT

‖w‖
where σ = ‖v⊥‖‖v‖‖

We receive X, a subset Ω of entries of a matrix.

4



GROUSE Performance: Matrix Completion 

•  To use GROUSE, we pass 
over the columns of the 
matrix a few 9mes in 
random order, doing an 
update for every column. 

•  We compared against other 
state of the art MC 
algorithms on 
reconstruc9on error and 
computa9on 9me. 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Robust Low-Rank Modeling (Robust PCA) 

•  Sparse + Low-Rank Model 

•  Several algorithms have been developed to find such 
a decomposition from a matrix observation 
–  convex optimization and approximations 

image from Nuit Blanche 

14 



where wt is the d× 1 weight vector, st is the n× 1 sparse outlier vector whose nonzero entries may
be arbitrarily large, and ζt is the n× 1 zero-mean Gaussian white noise vector with small variance.
We observe only a small subset of entries of vt, denoted by Ωt ⊂ {1, . . . , n}.

Conforming to the notation of GROUSE [4], we let UΩt denote the submatrix of Ut consisting
of the rows indexed by Ωt; also for a vector vt ∈ Rn, let vΩtdenote a vector in R|Ωt| whose entries
are those of vt indexed by Ωt. A critical problem raised when we only partially observe vt is how to
quantify the subspace error only from the incomplete and corrupted data. GROUSE [4] uses the
natural Euclidean distance, the l2-norm, to measure the subspace error from the subspace spanned
by the columns of Ut to the observed vector vΩt :

Fgrouse(S; t) = min
w

‖UΩtw − vΩt‖22 . (2.2)

It was shown in [5] that this cost function gives an accurate estimate of the same cost function with
full data (Ω = {1, . . . , n}), as long as |Ωt| is large enough2. However, if the observed data vector is
corrupted by outliers as in Equation (2.1), an l2-based best-fit to the subspace can be influenced
arbitrarily with just one large outlier; this in turn will lead to an incorrect subspace update in the
GROUSE algorithm, as we demonstrate in Section 4.1.

2.2 Subspace Error Quantification by l1-Norm

In order to quantify the subspace error robustly, we use the l1-norm as follows:

Fgrasta(S; t) = min
w

‖UΩtw − vΩt‖1 . (2.3)

With UΩt known (or estimated, but fixed), this l1 minimization problem is the classic least absolute
deviations problem; Boyd [7] has a nice survey of algorithms to solve this problem and describes in
detail a fast solver based on the technique of ADMM (Alternating Direction Method of Multipliers)3.
More references can be found therein.

According to [7], we can rewrite the right hand of Equation (2.3) as the equivalent constrained
problem by introducing a sparse outlier vector s:

min ‖s‖1 (2.4)

s.t. UΩtw + s− vΩt = 0

The augmented Lagrangian of this constrained minimization problem is then

L(s, w, y) = ‖s‖1 + yT (UΩtw + s− vΩt) +
ρ

2
‖UΩtw + s− vΩt‖22 (2.5)

where y is the dual vector. Our unknowns are s, y, U , and w. Note that since U is constrained to a
non-convex manifold (UTU = I), this function is not convex (neither is Equation (2.2)). However,
note that if U were estimated, we could solve for the triple (s, w, y) using ADMM; also if (s, w, y)
were estimated, we could refine our estimate of U . This is the alternating approach we take with
GRASTA. We describe the two parts in detail in Sections 3.1 and 3.2.

2In [5] the authors show that |Ωt| must be larger than µ(S)d log(2d/δ), where µ(S) is a measure of incoherence
on the subspace and δ controls the probability of the result. See the paper for details.

3http://www.stanford.edu/~boyd/papers/admm/
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deviations problem; Boyd [7] has a nice survey of algorithms to solve this problem and describes in
detail a fast solver based on the technique of ADMM (Alternating Direction Method of Multipliers)3.
More references can be found therein.

According to [7], we can rewrite the right hand of Equation (2.3) as the equivalent constrained
problem by introducing a sparse outlier vector s:

min ‖s‖1 (2.4)

s.t. UΩtw + s− vΩt = 0

The augmented Lagrangian of this constrained minimization problem is then

L(s, w, y) = ‖s‖1 + yT (UΩtw + s− vΩt) +
ρ

2
‖UΩtw + s− vΩt‖22 (2.5)

where y is the dual vector. Our unknowns are s, y, U , and w. Note that since U is constrained to a
non-convex manifold (UTU = I), this function is not convex (neither is Equation (2.2)). However,
note that if U were estimated, we could solve for the triple (s, w, y) using ADMM; also if (s, w, y)
were estimated, we could refine our estimate of U . This is the alternating approach we take with
GRASTA. We describe the two parts in detail in Sections 3.1 and 3.2.

2In [5] the authors show that |Ωt| must be larger than µ(S)d log(2d/δ), where µ(S) is a measure of incoherence
on the subspace and δ controls the probability of the result. See the paper for details.

3http://www.stanford.edu/~boyd/papers/admm/
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Choose St+1 to decrease the error ‖vΩ − PSΩvΩ‖22.

Ut+1 = Ut +
(
(cos(σηt)− 1)Ut

wt
‖wt‖ + sin(σηt) Γ

‖Γ‖

)
wT

t
‖wt‖

v ∈ Rn is a snapshot of the system state
(e.g., temperature at each node)

v ∈ Rn is a snapshot of the system state
(e.g., traffic rates at each monitor)

Given matrix X = USV T , form the SVD of [X, v].

Estimate the weights: w = arg min
a
‖Ua− v‖22

Compute the residual: v⊥ = v − Uw.

Update the SVD:

[X, v] =
[

U v⊥
‖v⊥‖

] [
S w
0 ‖v⊥‖

]

︸ ︷︷ ︸

[
V 0
0 1

]T

Diagonalize.

Theorem: Let X be an n × n matrix in a finite field. Fix ε > 0 and let Hi,
i = 1, . . . , k be sparse measurement matrices: Each entry of Hi is non-zero with
probability greater than log(n)/n with its value drawn uniformly from the field.
If k > 2rn − r2 + ε(rn − r2

2 ), then the probability that the exhaustive-search
minimum rank decoder makes a mistake estimating X, P(En)→ 0 as n→∞.

1
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GRASTA Performance on RPCA 
with Jun He 
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•  Simulated 2000 x 2000 matrix, rank=5 
•  Compare GRASTA to Inexact Augmented Lagrange 

Multiplier Method for RPCA 

% outliers  noise 
var 

GRASTA 100% 
sampled 

GRASTA 30% 
sampled 

IALM FOR RPCA 

10%  0.5e‐3  3.64e‐4 / 58.31 sec  6.07e‐4 / 20.79 sec  16.7e‐4 / 93.16 sec 

10%  1.0e‐3  7.643‐4 / 59.55 sec  12.3e‐4 / 20.66 sec  36.4e‐4 / 117.76 sec 

30%  0.5e‐3  6.13e‐4 / 67.19 sec  12.6e‐4 / 22.63 sec  26.4e‐4 / 324.26 sec 

30%  1.0e‐3  9.87e‐4 / 69.06 sec  19.3e‐4 / 22.85 sec  56.2e‐4 / 362.62 sec 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real-time performance. In order to show GRASTA can han-
dle higher resolution video effectively, we use the “Shop-
ping Mall” [17] video with resolution 320 × 256 as the
second experiment. We also do the subspace training stage
with the same parameter settings as “Airport Hall”. We do
the background and foreground separation only from 1%
entries of each frame. For “Shopping Mall” the separat-
ing time is 27.5 seconds for total 1286 frames. Thus we
achieve 46.8 FPS real-time performance. Figure 4 shows
the separation quality at t = 1, 600, 1200. In all of these
static background video experiments we used a maximum
of K = 10 iterations of the ADMM algorithm per subspace
update. The details of each tracking set-up are described in
Table 2.

Dataset Resolution Total Frames Training Time Tracking and FPS
Separating Time

Airport Hall 144×176 3584 11.3 sec 20.9 sec 171.5
Shopping Mall 320×256 1286 33.9 sec 27.5 sec 46.8

Lobby 144×176 1546 3.9 sec 71.3 sec 21.7
Hall with Virtual Pan (1) 144×88 3584 3.8 sec 191.3 sec 18.7
Hall with Virtual Pan (2) 144×88 3584 3.7 sec 144.8 sec 24.8

Table 1. Real-time video background and foreground separation by
GRASTA. Here we use three different resolution video datasets,
the first two with static background and the last three with dynamic
background. We train from 50 frames; in the first two experiments
they are chosen randomly from throughout, and in the last three
they are the first 50 frames. The subspace dimension is 5 for all.

Dataset Training Tracking Separation Tracking/Separation
Sub-Sampling Sub-Sampling Sub-Sampling Algorithm

Airport Hall 30% - 1% ADMM Separation
Shopping Mall 30% - 1% ADMM Separation

Lobby 30% 30% 100% Full GRASTA Alg 1
Hall with Virtual Pan (1) 100% 100% 100% Full GRASTA Alg 1
Hall with Virtual Pan (2) 50% 50% 100% Full GRASTA Alg 1

Table 2. Here we summarize the approach for the various video
experiments. When the background is dynamic, we use the full
GRASTA for tracking. We used K = 10 ADMM iterations for
static background Airport Hall and Shopping Mall, and K = 20
for all other video experiments.

3.2. Dynamic Background: Changing Lighting
Here we want to consider a problem where the lighting

in the video is changing throughout. We use the “Lobby”
dataset from [17]. In order to adjust to the lighting changes,
GRASTA tracks the subspace throughout the video; that is,
we run the full GRASTA Algorithm 1 for every frame. We
use 30% of the pixels of every frame to do this update and
100% of the pixels to do the separation. In all of these dy-
namic background video experiments we used a maximum
of K = 20 iterations of the ADMM algorithm per subspace
update. Again, see the numerical results in Table 1. The
results are illustrated in Figure 5.

3.3. Dynamic Background: Virtual Pan
In the last experiment, we demonstrate that GRASTA

can effectively track the right subspace in video with a dy-

Figure 4. Real-time video background and foreground separation
from partial information. The first row is the original video frame
at each time; the middle row is the recovered background at each
time only from 1% information; and bottom row is the foreground
estimated by ADMM separation.

namic background. We consider panning a “virtual camera”
from left to right and right to left through the video to simu-
late a dynamic background. Periodically, the virtual camera
pans 20 pixels. The idea of the virtual camera is illustrated
cleanly with Figure 6.

!"#$%&'()&*+#&(,&--"-.(#"./$(01(,"2+'3

Figure 6. Demonstration of panning the “virtual camera” right 20
pixels.

We choose “Airport Hall” as the original dataset. We set
the scope of the virtual camera to be half the width, so the
resolution of the virtual camera is 144 × 88. We set the
subspace dimension to 5. Figure 7 shows how GRASTA
can quickly adapt to the changed background in just 25
frames when the virtual camera pans 20 pixels to the right at
t = 101. We also let GRASTA track and do the separation
task for all frames. When we use 100% of the pixels for the
tracking and separation, the total computation time is 191.3
seconds, or 18.7 FPS, and adjusting to a new camera posi-
tion after the camera pans takes 25 frames as can be seen
in Figure 7. When we use 50% of the pixels for tracking
and 100% of the pixels for separation, the total computa-
tion time is 144.8 seconds or 24.8 FPS, and the adjustment

6
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GRASTA demo 

•  Written by Arthur Szlam at CUNY in Open 
CV  
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For more informa9on: h\p://sunbeam.ece.wisc.edu/ 

Incremental Gradient on the Grassmannian for Background and Foreground SeparaKon 
in Subsampled Video 
Jun He, Laura Balzano, and Arthur Szlam. To appear at CVPR, June 2012. 

Online Robust Subspace Tracking from ParKal InformaKon  
Jun He, Laura Balzano, Arthur Szlam, and John C.S. Lui. In prepara9on for Trans PAMI.  
h\p://arxiv.org/abs/1109.3827 

Online IdenKficaKon and Tracking of Subspaces from Highly Incomplete InformaKon 
Laura Balzano, Robert Nowak, and Benjamin Recht. Allerton, September 2010. 

High‐Dimensional Matched Subspace DetecKon when Data are Missing  
Laura Balzano, Benjamin Recht, and Robert Nowak. ISIT, June 2010. 

THANK YOU!  
Questions? 
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Theorem: Incomplete Data Residual Norm 

 McDiarmid’s inequality. 

21 

probability greater than log(n)/n with its value drawn uniformly from the field.
If k > 2rn − r2 + ε(rn − r2

2 ), then the probability that the exhaustive-search
minimum rank decoder makes a mistake estimating X, P(En)→ 0 as n→∞.

Theorem: Let X be an n × N matrix, N = O(np) for p ≥ 2, whose columns
lie in the union of k & N rank r < n incoherent subspaces which are not “too
close” to one another. Then the matrix X can be perfectly reconstructed from
O(βrN log N) measurements with probability at least 1− 6kN−2(β−1) log2 N .

Theorem: If |Ω| = O(µ(S)d log d) and Ω is chosen uniformly with replacement,
then with high probability,

|Ω|− dµ(S)
n

‖v − PSv‖22 ≤ ‖vΩ − PSΩvΩ‖22 ≤
|Ω|
n
‖v − PSv‖22

Full Theorem: If |Ω| ≥ 8
3µ(S)d log(2d/δ) and Ω is chosen uniformly with

replacement, then with probability 1− 4δ,

|Ω|(1− α)− dµ(S) (1+β)2

(1−γ)

n
‖v−PSv‖22 ≤ ‖vΩ−PSΩvΩ‖22 ≤ (1+α)

|Ω|
n
‖v−PSv‖22

where we write v = x + y, x ∈ S, y ∈ S⊥,

α =
√

2µ(y)2

|Ω| log
(

1
δ

)
, β =

√
2µ(y) log

(
1
δ

)
, and γ =

√
8dµ(S)
3|Ω| log

(
2d
δ

)
.

S is a known d < n dimensional subspace of Rn with coherence µ(S).

vΩ is our observation and we wish to estimate ‖v⊥‖22 = ‖vΩ − PSΩvΩ‖22

Given observation v ∈ Rn, update S to incorporate v.

2

probability greater than log(n)/n with its value drawn uniformly from the field.
If k > 2rn − r2 + ε(rn − r2

2 ), then the probability that the exhaustive-search
minimum rank decoder makes a mistake estimating X, P(En)→ 0 as n→∞.

Theorem: Let X be an n × N matrix, N = O(np) for p ≥ 2, whose columns
lie in the union of k & N rank r < n incoherent subspaces which are not “too
close” to one another. Then the matrix X can be perfectly reconstructed from
O(βrN log N) measurements with probability at least 1− 6kN−2(β−1) log2 N .

Theorem: If |Ω| = O(µ(S)d log d) and Ω is chosen uniformly with replacement,
then with high probability and ignoring constant factors,

|Ω|− dµ(S)
n

‖v − PSv‖22 ≤ ‖vΩ − PSΩvΩ‖22 ≤
|Ω|
n
‖v − PSv‖22

Full Theorem: If |Ω| ≥ 8
3µ(S)d log(2d/δ) and Ω is chosen uniformly with

replacement, then with probability 1− 4δ,

|Ω|(1− α)− dµ(S) (1+β)2

(1−γ)

n
‖v−PSv‖22 ≤ ‖vΩ−PSΩvΩ‖22 ≤ (1+α)

|Ω|
n
‖v−PSv‖22

where we write v = x + y, x ∈ S, y ∈ S⊥,

α =
√

2µ(y)2

|Ω| log
(

1
δ

)
, β =

√
2µ(y) log

(
1
δ

)
, and γ =

√
8dµ(S)
3|Ω| log

(
2d
δ

)
.

Lemma 1: ‖yΩ‖22 ≥ (1− α) |Ω|
n ‖y‖

2
2

Lemma 2: ‖UT
Ω yΩ‖22 ≤ (1 + β)2 |Ω|

n
dµ(S)

n ‖y‖22

Lemma 3: ‖
(
UT

Ω UΩ

)−1 ‖2 ≤ n
(1−γ)|Ω|

S is a known d < n dimensional subspace of Rn with coherence µ(S).

vΩ is our observation and we wish to estimate ‖v⊥‖22 = ‖vΩ − PSΩvΩ‖22

2

McDiarmid’s inequality with sum 
of RVs 

Non-commutative Bernstein 
inequality 



1‐d subspaces 
in R2: 

Descent on the Grassmannian 
•  Idea: Stochas9c gradient descent to minimize the incomplete 

project residual one vector at a 9me. (Subspace Tracking in Signal 
Processing is done this way, using the complete‐data residual.)  

•  Since we are es9ma9ng a subspace, we can perform gradient 
descent directly on the Grassman manifold G(n,d) and follow 
its geodesics. 

•  (There are explicit formulas for a gradient descent step that 
follows the Grassmannian geodesic.) 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