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Outline

I Background: Robust Principal Components Analysis (PCA)

I A new formulation for robust PCA

I Theory for exact recovery of the subspace

I Algorithm development

I Experiments
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Problem Formulation

I Given: a linear subspace L∗ and a data set
X = {xi}Ni=1 ⊂ RD , which contains some points sampled from
L∗ (we call them inliers) and outliers sampled from RD \ L∗.

I Goal: recover L∗ using X .

I Fact: PCA is sensitive to outliers:

L
∗
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History

I Covariance estimators in statistics community: M-estimator,
S-estimator, MVD (minimum volume ellipsoid) estimator,
MCD (minimum covariance determinant) estimator,
Stahel-Donoho estimator. See review by Maronna et al. (06)

I Projection Pursuit: Li & Chen (85), Ammann (93), McCoy &
Tropp (10)

I Outlier detection and removal: Torre & Black(01), Xu et al.
(10)
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History

I Convex optimization based on nuclear norm: Xu et al. (10),
McCoy & Tropp (10) (inspired by related works by
Chandrasekaran et al. (09), Candès et al. (09)).

minimize ∥L∥∗ + λ∥O∥(2,1), s.t. XN×D = L+O,

where ∥ · ∥∗ and ∥ · ∥(2,1) are the nuclear norm and sum of l2
norms of rows respectively.

I Recover L∗ by the span of the rows of L.

I Theoretical guarantee on exact recovery of L∗, and tractable
algorithm.
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Motivation of the new formulation

I The classical method minimizes the sum of the squared
residual:

L̂ = argmin
N∑
i=1

dist(xi ,L)
2.

I For robustness to outliers, people use the sum of unsquared
residual (Spath and Watson, 87; Nyquist, 88):

L̂ = argmin
N∑
i=1

dist(xi ,L).

I Nonconvex optimization–no tractable algorithm.

6 / 21



Background Formulation Theory Algorithm Experiments

Formulation

I Rewrite the optimization problem as:

L̂ = argmin
d-dimensional subspaces L

N∑
i=1

dist(xi ,L) = argmin
L

N∑
i=1

∥PL⊥xi∥.

I (Z & Lerman, 11) Use Q as the convex relaxation of PL⊥ , we
have

Q̂ = argmin
Q∈H

F (Q), whereF (Q) :=
N∑
i=1

∥Qxi∥, (1)

where

H := {Q ∈ RD×D : Q = QT , tr(Q) = 1}. (2)

I The condition tr(Q) = 1 guarantees that the solution is not a
zero matrix.
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Property of formulation

I Convex

I No parameter required

I Can not handle arbitrarily large outliers
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Theoretical justification using deterministic conditions

(Z & Lerman, 11) Denote the set of inliers and outliers by X1 and
X0 respectively, and denote dim(L∗) by d . If the following two
conditions are satisfied, then we have L∗ ⊆ ker(Q̂).

I

min
Q∈H,QP

L∗⊥=0

∑
x∈X1

∥Qx∥ >
√
2 min

v∈L∗⊥,∥v∥=1

∑
x∈X0

|vTx|, (3)

I

min
Q∈H,QP

L∗⊥=0

∑
x∈X1

∥Qx∥ >
√
2 max

v∈L∗,∥v∥=1

∑
x∈X0

|vTx|. (4)
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Theoretical justification using deterministic conditions

If the following condition is also satisfied, then we recover L∗

exactly: L∗ = ker(Q̂)

I Any minimizer of the following oracle problem

Q̂0 := argmin
Q∈H,QPL∗=0

F (Q) (5)

satisfies
rank(Q̂0) = D − d . (6)
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Some remarks

I This method can obtain the dimension of the subspace by the
number of zero eigenvalues of Q̂.

I Is there a stronger method if we know the dimension of the
subspace in advance?
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When we know the dimension d

I Recall that we minimize

Q̂ = argmin
Q∈H

F (Q), whereF (Q) :=
N∑
i=1

∥Qxi∥, (7)

where

H := {Q ∈ RD×D : Q = QT , tr(Q) = 1}. (8)

I Q is a convex relaxation of PL⊥ .

I The convex hull of PL⊥ for all d-dimensional subspace L is:

H1 = {Q ∈ RD×D : Q = QT , 0 ≤ Q ≤ I, tr(Q) = D − d}.

I We propose Reaper algorithm, which minimizers

Q̂ = argmin
Q∈H1

F (Q). (9)
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A probabilistic model

I Gaussian inliers and Gaussian outliers

I Nin: number of inliers, Nout: number of outliers

I σ2
in: variance of inliers, σ2

out: variance of outliers

I ρin = Nin/d , ρout = Nout/D

(Lerman, Z, Mccoy & Tropp, 12) When

ρin > C1 + C2β + C3
σout
σin

(ρout + 1 + 4β)

then Q̂ = PL∗⊥ = I− PL∗ w.p. at least 1− 4e−βd .
We can estimate that C1 < 13, C2 < 7 and C3 < 16.
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S-reaper algorithm: a variant

I We can obtain extra robustness by first projecting all points to
the sphere.

I This variant can handle outliers with arbitrarily large
magnitude.

I We call this variant S-reaper algorithm.

(Lerman, Z, Mccoy & Tropp, 12) When

ρin > C̃1 + C̃2β + C̃3ρout

then Q̂ = PL∗⊥ = I− PL∗ w.p. at least 1− 4e−βd .
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Algorithm
I Recall the objective function F (Q) =

∑N
i=1 ∥Qxi∥

I Heuristic proposal for IRLS (iteratively reweighted least
square) algorithm:

Qnew = argmin
Q

N∑
i=1

∥Qxi∥2

∥Qoldxi∥
.

I When Q ∈ H, the update formula is

Qnew =

(
N∑
i=1

xix
T
i

∥Qoldxi∥

)−1

/ tr

( N∑
i=1

xix
T
i

∥Qoldxi∥

)−1


I When Q ∈ H1 (i.e., Reaper algorithm),

Qnew = c2 min

c1I,

(
N∑
i=1

xix
T
i

∥Qoldxi∥

)−1
 ;

c1 and c2 are chosen such that Qnew ∈ H1, i.e., ∥Qnew∥2 = 1,
tr(Qnew) = D − d . 15 / 21
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Regularization in algorithm

I The update formula fails when ∥Qoldxi∥ = 0

I Use IRLS with regularized weight:

Qnew = argmin
Q

N∑
i=1

∥Qxi∥2

max(∥Qoldxi∥, δ)
.

I Then the update formula for the case Q ∈ H is

Qnew=

(
N∑
i=1

xix
T
i

max(∥Qoldxi∥, δ)

)−1

/ tr

( N∑
i=1

xix
T
i

max(∥Qoldxi∥, δ)

)−1


Reaper algorithm (i.e., Q ∈ H1) can be regularized similarly.
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Convergence of algorithm

I The algorithm converges to the minimizer of the objective
function: ∥Qk −Q∗∥ → 0.

I The proof of the convergence depends on the assumption that

{X∩L1}∪{X∩L2} ̸=X , for all (D − 1)-dimensional subspaces L1,L2.

I This condition holds when N ≥ 2D − 1 and {xi}Ni=1 lie in
general positions.

I Empirically Reaper and S-reaper algorithms converge linearly.
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Experiment

I 64 images of a single face under different illuminations from
the Extended Yale Face database (used as inliers)

I 400 additional random images from the
BACKGROUND/Google folder of the Caltech101 database
(used as outliers)

I resolution downsampled to 20× 20

I The face images lie on a nine-dimensional subspace (Basri &
Jacobs, 03)

I Learn the subspace from a data set that contain 32 face
images and 400 other random images.
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Experiment
We compare our Reaper and S-reaper algorithms with PCA, SPCA
(PCA with spherical projection), LLD (the convex method based
on nuclear norm):
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Conclusions

I We proposed a new formulation for robust PCA.

I We gave theoretical guarantee on exact recovery of the
subspace.

I We have fast implementations.
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