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1 Soft vs. Hard Constraint

The term “weak constraint” refers to the following definition of alpha:

αweak =
1

mn2
. (1)

The term “strong constraint” refers to the following definition of alpha:

αstrong =
1

mFn2
. (2)

Each definition includes a constant m to adjust the relative strength of the penalty term
in the energy function. With the weak constraint α is defined in such a way that the
penalty term is on the same scale as a single fit term. This is done so that a single strong
feature can overpower the penalty, but a weak feature cannot. This enables tracking
in environments where the low rank constraint is only approximately satisfied (since
strong features can ignore the penalty). The penalty is effectively only used to help with
low-quality features.

With the strong constraint, the penalty term is on the same scale as the total con-
tribution of all fit terms. With this definition, it requires the consensus of a significant
fraction of the features in a scene to overpower the penalty term. This is only appro-
priate when one expects all features in the scene to strictly obey a low rank model.
Deviations from the model are considered errors. The hard constraint allows tracking
through limited occlusion, since a majority of features in the scene can coerce a small
number of occluded features to ignore bad template matches and instead move in a way
that maintains a low rank trajectory set. Figure 1 illustrates the difference between the
two constraints.
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(a) Occluded Features in Frame 1

(b) Occluded Features in Frame 10 - Weak Constraint

(c) Occluded Features in Frame 10 - Strong Constraint

Fig. 1: A scene with many features from a rigid environment and 2 strong features
occluded by a moving vehicle. Images (b) and (c) show the results of tracking
with the weak and strong constraints, respectively. With the weak constraint, the
features track the moving vehicle. With the strong constraint, the features ignore
the vehicle and track the occluded environment. (Best viewed in color)

2 Selection ofm For Experiments

The experimental results with the weak constraint require a value of m to be chosen
to set the relative strength of the penalty term. The procedure for this was to take the
first video in the set of test videos and for each penalty form, run the tracker on this
one video with the penalty term effectively disabled (very small m). We then iteratively
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increased m and re-ran the tracker. We increased m until the penalty was so strong that
the fit terms were insignificant and tracking no longer worked. We then identified the
value that gave the best results on that first video. When a range of values seamed to
give nearly the same (best) results, we selected the midpoint of that range. The resulting
values that were used for the results shown in the paper were:

Constraint Form m

Empirical Dimension - Uncentered M 0.1
Empirical Dimension - Centered M 0.15
Nuclear Norm - Uncentered M 0.001
Nuclear Norm - Centered M 0.0005
Explicit Factorization - Uncentered M 0.0015
Explicit Factorization - Centered M 0.002

3 Algorithm Complexity

A single iteration of our optimization algorithm requires one evaluation of the gradient
of the energy function C̄ and multiple evaluations of C̄ (without gradient). To compute
the gradient of a fit term, we could use the chain rule to express the derivative in terms
of the image gradient of our frame, I . However, each fit term depends on only two coor-
dinates of x. Hence, with only 4 evaluations of a fit term we can get a direct numerical
estimate of it’s derivative. We have found that this yields a more accurate result than
using the chain rule and image gradients. An evaluation of a fit term requires collecting
and processing pixel intensities (or RGB intensities) from n2 locations, and we have
F fit terms. Thus, the number of operations required to evaluate all fit terms and their
collective contributions to the gradient of C̄ is proportional to Fn2.

To compute the gradient of any of our penalty terms, the main computational ex-
pense is computing the SVD of the 2(L+ 1)-by-F matrix M . Without employing any
tricks, this requires on the order of LF 2 +L3 +F 2L operations. Since L will generally
be a small constant, this is effectively order LF 2.

Thus, a complete gradient computation has a complexity of k1Fn2 + k2LF
2. En-

ergy evaluation only requires each fit term to be evaluated one time and the singular
values (but not the full decomposition) of M . This has complexity k3Fn2 + k4L

2F .
The number of plain energy evaluations depends on tolerances set in the optimization
algorithm, so it is useful to have actual benchmarks for performance. As mentioned in
the paper, our single-threaded implementation can run on modest hardware with real-
time performance (35 features of size 7-by-7 can be tracked with L = 5 at 16 frames
per second, or with L = 10 at several frames per second).
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4 Qualitative Tests on Genuine Low Quality Video

Included in this submission of supplementary material is a folder called “Qualitative
Experiments on Real Videos”. This folder contains multiple sub-directories with video
sequences that were not synthetically degraded. In each sub-directory, the original video
is included, along with versions with overlayed results of 3 different trackers. Results
are presented for Lucas Kanade, 1st-order descent (no constraints), and a representative
result of our constrained tracker (we present the results with the empirical dimension
penalty form and un-centered M). We do not include compiled videos for all trackers
due to the size restrictions on the supplemental material.

5 Videos for Quantitative Experiments

Included in this submission of supplementary material is a folder called “Quantitative
Test Videos”. This contains subdirectories with the source test videos and tracker output
and results files for all trackers referred to in the paper. The results and output files
follow a naming convention and each tracker is referred to using a unique ID. The
following is the mapping between IDs and tracker names/descriptions.

ID Tracker Name/Description
0 KLT
2 1st-Order Descent
5 Multi-Tracker - Emp Dim - Uncentered
6 Multi-Tracker - Emp Dim - Centered
7 Multi-Tracker - Nuc Norm - Uncentered
8 Multi-Tracker - Nuc Norm - Centered
9 Multi-Tracker - Exp Fact - Uncentered

10 Multi-Tracker - Exp Fact - Centered
100 LDOF

Output trajectory files follow a simple format. Each line contains the trajectory
of a single feature in the form (f1,x1,y1):(f2,x2,y2):... where fn is a frame number,
and (xn, yn) is the position in image coordinates of the feature in frame fn. Positions
are measured in pixels and x is vertical position, while y is horizontal position (both
measured from the top left corner). Each output trajectory file has either “mode1” or
“mode2” in its filename. “mode1” refers to the test where features are initialized in
frame 0 and never re-initialized (each feature is tracked until wandering off-screen).
“mode2” refers to the test where features are re-initialized when they wander more than
10 pixels from ground truth (and mean time between re-initializations is used as the
performance metric).

For convenience, we include videos of each source video with results overlayed
from 3 of the trackers used in this comparison. We include videos for KLT, 1st-order de-
scent (no constraint), and representative results for our constrained tracker (we present
the results with the empirical dimension penalty form and un-centered M). In the pa-
per we present results of 2 different experiments (referred to above). It is not easy to
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visually present the results of the second experiments (since poorly tracked feature are
immediately re-initialized with ground truth). We therefore only include video overlays
for the first set of experiments (where each tracker is run on the same set of features for
30 frames).

6 Additional Quantitative Experiments

We include (in the folder “Quantitative Test Videos - Additional”) an additional set of
quantitative tests on another set of videos. The videos in this set are much shorter (only
30 frames) and we present mean drift and mean L1 trajectory error after 30 frames.
Since the videos are much shorter, we do not present results for the other experiment
conducted in the paper (where features are re-initialized when wandering 10 or more
pixels from ground truth and mean time between re-initializations is measured). LDOF
was not run on this set of test videos.

The videos in this set were recorded using a different camera with a different reso-
lution than the tests in the main paper. These videos were also degraded in a different
fashion (non-uniform darkening and directional motion blur were added). Thus, the
strength coefficients (m) for the different penalty forms needed to be re-evaluated (two
of the penalty forms are sensitive to the video resolution because normalized coordi-
nates were not used). The coefficients were selected in the same manner as for the test
set in the main paper, by tuning each tracker on the first video in the set. The resulting
values used for this set of videos were:

Constraint Form m

Empirical Dimension - Uncentered M 0.5
Empirical Dimension - Centered M 0.4
Nuclear Norm - Uncentered M 0.004
Nuclear Norm - Centered M 0.002
Explicit Factorization - Uncentered M 0.05
Explicit Factorization - Centered M 0.05

Again, we include videos with tracker output overlayed for convenience. Results
from the same 3 trackers as the other tests are included.
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Table 1: Mean feature drift after 30 frames of tracking
Video Number Average

1 2 3 4 5 6 7 8 9 10

Tr
ac

ke
r

KLT 58.6 158.9 59.7 203.3 178.4 91.8 156.6 71.6 148.0 77.5 120.4
1st-Order Descent 29.1 13.8 39.8 18.6 85.7 39.9 10.9 9.5 15.9 59.8 32.3
Multi-Tracker - Emp Dim - Uncentered 14.1 11.1 19.1 3.8 60.3 22.9 11.6 3.3 10.6 17.2 17.4
Multi-Tracker - Emp Dim - Centered 9.4 11.4 15.3 5.9 60.0 12.5 11.2 3.1 8.6 19.6 15.7
Multi-Tracker - Nuc Norm - Uncentered 13.3 11.0 14.5 3.5 62.7 22.4 16.7 4.2 11.2 16.5 17.6
Multi-Tracker - Nuc Norm - Centered 13.2 6.9 17.8 3.6 59.9 21.0 8.2 2.6 11.7 28.9 17.4
Multi-Tracker - Exp Fact - Uncentered 18.8 25.5 25.9 8.6 67.6 23.8 16.4 5.3 19.8 41.4 25.3
Multi-Tracker - Exp Fact - Centered 13.3 18.3 16.2 7.9 55.5 13.0 16.3 4.4 16.5 21.0 18.2

Table 2: Mean L1 trajectory error after 30 frames of tracking
Video Number Average

1 2 3 4 5 6 7 8 9 10

Tr
ac

ke
r

KLT 1414.22739.01155.74534.92585.61684.42399.81579.92212.01350.5 2165.6
1st-Order Descent 418.1 286.6 542.7 409.6 1010.8 495.0 298.2 152.5 260.1 950.4 482.4
Multi-Tracker - Emp Dim - Uncentered 180.5 165.8 286.0 137.5 654.7 269.7 176.3 63.1 179.4 330.2 244.3
Multi-Tracker - Emp Dim - Centered 131.7 173.3 199.4 129.8 600.0 139.6 161.0 63.7 128.7 389.5 211.7
Multi-Tracker - Nuc Norm - Uncentered 186.2 155.3 210.5 134.1 703.6 271.1 231.7 75.5 190.5 333.4 249.2
Multi-Tracker - Nuc Norm - Centered 175.9 147.4 243.3 118.6 687.6 222.5 170.0 63.4 189.0 474.4 249.2
Multi-Tracker - Exp Fact - Uncentered 274.6 435.9 410.4 218.5 753.0 377.8 269.5 96.0 343.7 750.0 392.9
Multi-Tracker - Exp Fact - Centered 185.5 287.8 216.3 147.2 543.8 153.1 228.5 79.3 275.7 433.5 255.1

7 Gradient Evaluation

The gradients of template fit terms (all but the final term in Eq. (3)) are evaluated numer-
ically using the centered derivative estimate (sampling 0.25 pixels up, down, left, and
right of the given location). We found this to give better accuracy than using the chain
rule and image gradients. We evaluate the gradient of the penalty term P (x) in Eq. (3)
explicitly, so the precise formula depends on the form of P . In the following descrip-
tions, we occasionally use Matlab notation to more clearly express some operations.
Each gradient computation has a similar structure:

– Construct the centered or uncentered matrix M (centering is done by subtracting
the mean trajectory from each column).

– Evaluate the SVD ofM :M = UΣVT .
– Define dddim

dM = UΣ̃VT , where Σ̃ is defined in the following subsections for each
regularizer.

– Let A be the matrix containing only the final 2 rows of dddim
dM .

– Let B be the 2-by-1 vector containing the means of the two rows of A.
– In the centered case, let C = A−B ones(1,F). In the uncentered case, let C = A.
– Let

−→
C = C(:). That is, vectorize C by taking one column at a time.

– ∇P =
−→
CT .

7.1 Nuclear Norm

For the nuclear norm low-rank regularizer: P (x) = ‖M‖∗ = ‖σ‖1. We compute the
gradient ∇P as described above. For this regularizer, Σ̃ is diagonal with Σ̃i,i = 1

if Σi,i > ξ and Σ̃i,i = Σi,i/ξ otherwise. Here, ξ is a small number (we use 0.05).
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This reduces sensitivity to small singular values and generally yields a better search
direction.

7.2 Explicit Factorization

Recall that the explicit factorization regularizer is P (x) =
∑F
i=d+1 σi, where σi is the

i’th singular value of M . The gradient computations for the centered and uncentered
cases are described above. For this regularizer, Σ̃ is diagonal with Σ̃i,i = 0 for i ∈
{1, 2, ..., d}. For i > d, Σ̃i,i = 1 if Σi,i > ξ and Σ̃i,i = Σi,i/ξ otherwise. As with the
nuclear norm regularizer, we use ξ = 0.05.

7.3 Empirical Dimension

Recall that the empirical dimension regularizer is P (x) = d̂ε(M) := ‖σ‖ε
‖σ‖

( ε
1−ε )

. The

gradient computations for the centered and uncentered cases are described above. Let
δ = ε/(1 − ε). Now let C1 = ‖σ‖1−εε ‖σ‖−1δ and C2 = ‖σ‖ε‖σ‖−1−δδ . For this
regularizer, Σ̃ is diagonal with Σ̃i,i =

(
C1σ

ε−1
i − C2σ

δ−1
i

)
if
(
C1σ

ε−1
i − C2σ

δ−1
i

)
>

ξ, and Σ̃i,i = (σi/ξ)
(
C1σ

ε−1
i − C2σ

δ−1
i

)
otherwise. Again, we use ξ = 0.05.


