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What is Tracking?

Broad Definition

Tracking, or Object tracking, is a general term for following some
“thing” through multiple frames of a video sequence, and
determining that things location in each frame.

This is a very broad problem, and there are several sub-problems in
tracking.
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What is Tracking?

Big Question #1

How do we characterize the target?

Color or intensity histogram
Texture composition
Spatial configuration (sub-image)
Outline or Silhouette
Target autocorrelation pattern (Irani)

Big Question #2

What do we assume about the nature of the target and its
possible motion?

Rigid/Semi-Rigid/Non-Rigid
Smooth motion
Limited velocity/Limited changes in scale
Will the targets characterization evolve?
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Feature Tracking

Feature Tracking

Feature tracking is a sub-problem in tracking. We make the
following assumptions:

The target is well-characterized by a template image.

The targets motion is limited from one frame to the next.

The targets signature (our characterization of the target) may
change is many ways, but its evolution is slow (between
successive frames it changes only a small amount).

Why Make These Assumptions?

The assumptions above tend to be valid for small, visually
distinctive objects in high-framerate motion video.
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Feature Tracking

Lucas Kanade Framework

In feature tracking we try and minimize the “Fit Residual”:

ε(p) =
∑
x

[I (W (x,p))− T (x)]2 (1)

I = Current frame of video (image function)
T = Template for feature (image function)
W = “Warp” function: R2 × RD → R2
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Feature Tracking

Lucas Kanade Framework

ε(p) =
∑
x

[I (W (x,p))− T (x)]2

I = Current frame of video (image function)
T = Template for feature (image function)
W = “Warp” function: R2 × RD → R2

The Warp function is thought of as a domain transformation for
the image function I (R2 → R2) with controlling parameter p. The
warp function will have a particular form (chosen in advance).
We are trying to find the domain transformation that makes the
Image and the template agree as much as possible (minimize l2
distance between them).
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Feature Tracking

Lucas Kanade Framework

ε(p) =
∑
x

[I (W (x,p))− T (x)]2

I = Current frame of video (image function)
T = Template for feature (image function)
W = “Warp” function: R2 × RD → R2

Frequently, the warp function is chosen to represent simple
translation. The parameter p is a vector in R2 and the warp
function has the form:

W (x,p) = x + p

This is sufficient because we need only model the transformation
that the feature experiences between two successive frames.
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Feature Tracking

(a) Image, I (b) Template, T
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Feature Tracking

(c) Good Match

(d) Bad Match (e) Bad Match
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Feature Tracking

Lucas Kanade Framework

ε(p) =
∑
x

[I (W (x,p))− T (x)]2

I = Current frame of video (image function)
T = Template for feature (image function)
W = “Warp” function: R2 × RD → R2

Minimization Strategy

The objective function is:

Non-Convex

Possibly Non-Smooth

How do we minimize it?
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Feature Tracking

Minimization Strategy

Exhaustive search for minimum in some search window. This
is not as bad as it sounds since we know where the feature
was in the last frame - one of our assumptions is that it can’t
go far between 2 frames.

Pretend ε(p) is “nice” and use calculus-based minimization
methods. This should be faster than exhaustive search.

Iterative Gradient-Based Registration

We can use an iterative approach to minimizing ε(p). In each step
we compute a good direction to shift p and a good amount (by
using derivative information). We take that step. Repeat until we
converge.
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Feature Tracking

1st-Order Approach

Your step is −1 times a small multiple of the gradient of ε(p).
This is reliable, but takes lots of iterations to converge.

2nd-Order Approach - Gauss-Newton

Locally fit a quadratic surface to ε(p) (using derivative
information). Analytically find the minimum of the quadratic
surface. Take the step which moves you to that minimum.
This will typically converge in very few iterations (like 3 or 4), but
it can be “finicky” since it uses 2nd-order info on a function that
depends on real data. The Lucas Kanade method uses this scheme.
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Feature Tracking

Enhancements and Extensions

A simple modification to the Lucas Kanade formulation allows
for processing color video: ε(p) =

∑
x |I (W (x,p))− T (x)|2

Coarse-2-Fine: Build an image pyramid for the Image and the
template. Start with the lowest resolution copy of both and
match the template to the image. Successively refine your
solution on finer and finer resolution levels. This offers a very
big improvement and is essential for a good feature tracker.

Live Demo
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Structure
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Structure

Definition

Assume a single feature is tracked through L frames of video. Let
(xi , yi ) denote the position of the feature in frame i . Then the
following vector is called the “trajectory” or the “track” of the
feature:

v =


x1

y1
...
xL
yL

 (2)
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Structure

Definition

Imagine that we track multiple features on a single rigid body, and
we consider the set of feature tracks (a set of vectors in R2L). We
will call this a “track set” for the rigid object.

Features On a Rigid Body Don’t Move Arbitrarily

Not every set of vectors in R2L is realizable as a track set for a
rigid body.
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Structure

Definition

For a track set to be consistent with the motion of a rigid body,
some relationships between the different tracks must be obeyed.
We will refer to a collection of relationships between feature tracks
as a “structure observation”. It represents a formal and precise
way of quantifying some type of structure in a scene.

Affine Camera Model

There are multiple structure observations for rigid bodies. We will
derive a structure observation based on the affine camera model.
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Detour: The Affine Camera Model
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The Simplest Camera Model... Orthographic

In The Beginning...

From a theoretical perspective, a camera maps points in 3D space
into a plane, called the “image plane”, or the “focal plane”. A
camera model defines this projection operation. The most basic
camera model is the orthographic model. This model approximates
a cameras projection with orthogonal projection onto a subspace.

Image Plane

Points in

3-D Space
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The Simplest Camera Model... Orthographic

Homogeneous Coordinates

Homogeneous Coordinates are convenient for expressing and
manipulating transformations and projections that occur in camera
modeling. The homogeneous vector [x , y , t]T corresponds to the
euclidean vector (x/t, y/t)T . When the last coordinate in a
homogeneous vector is 1, the vector is said to be in “standard
homogeneous coordinates”.

Watch This...

The affine transformation Y = RX + C in Euclidean coordinates
becomes the following when using homogeneous coordinates:

Y =

(
R C

0 0 0 1

)
X (3)
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The Simplest Camera Model... Orthographic

Coordinate Frames

There are 3 main coordinate frames used in defining camera models.

The World Frame

The Camera Frame

Image Coordinates
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The Simplest Camera Model... Orthographic

The World Frame

This is a 3D coordinate system fixed in the world we are imaging.

Bryan Poling Using Subspace Constraints to Improve Feature Tracking



The Simplest Camera Model... Orthographic

The Camera Frame

This is a 3D coordinate system fixed to our camera. The z-axis
(also called the “optical axis”) points at our target.
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The Simplest Camera Model... Orthographic

The Image Frame

The image frame is a coordinate system in our focal plane. It’s origin can
be chosen however is convenient, although often the camera center is
chosen (the image of the camera frame origin). The x and y axes are
parallel to the images of the x and y camera axes, respectively.
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The Simplest Camera Model... Orthographic

The Orthographic Camera

Let Xworld represent the position of a point in 3D space in
standard homogeneous coordinates, in the world frame. To derive
the orthographic camera model, we first express Xworld in the
camera frame (denoted Xcam), and then perform the projection.
The world and camera frames are both standard 3D coordinate
frames. They are related by some rotation and translation. Assume
that R and C represent the rotation and translation between these
frames so that:

Xcam =

(
R C

0 0 0 1

)
Xworld (4)
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The Simplest Camera Model... Orthographic

The Orthographic Camera

Let x denote the projection of Xcam in the image plane (using
homogeneous coordinates). To perform the projection we just
eliminate the z-component of the vector. This is accomplished as
follows:

x =

 1 0 0 0
0 1 0 0
0 0 0 1

Xcam (5)
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The Simplest Camera Model... Orthographic

The Orthographic Camera

Then, using our relationship between the world and camera frames,
we get our final camera model:

x =

 1 0 0 0
0 1 0 0
0 0 0 1

( R C
0 0 0 1

)
Xworld (6)
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From The Orthographic To The Affine Camera

Problems With The Orthographic Camera

Since the orthographic camera is nothing more than
orthogonal projection onto a subspace, the overall scale of
objects is preserved. This in not realistic though for regular
cameras (A photo of a car, for instance, would be physically
very large).

The orthographic camera model defines the origin of your
image frame for you. It may not be the origin you want.

Bryan Poling Using Subspace Constraints to Improve Feature Tracking



From The Orthographic To The Affine Camera

Problems With The Orthographic Camera

Since the orthographic camera is nothing more than
orthogonal projection onto a subspace, the overall scale of
objects is preserved. This in not realistic though for regular
cameras (A photo of a car, for instance, would be physically
very large).

The orthographic camera model defines the origin of your
image frame for you. It may not be the origin you want.

The Fix

To address these problems we apply a scaling and translation after
orthographic projection.
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From The Orthographic To The Affine Camera

Modified Orthographic Camera

x =

 α 0 γ
0 β δ
0 0 1

 1 0 0 0
0 1 0 0
0 0 0 1

( R C
0 0 0 1

)
Xworld

This simply scales the result of orthographic projection by α in the
x-direction and β in the y-direction, and then shifts by (γ, δ)
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From The Orthographic To The Affine Camera

The Affine Camera

We can generalize this camera model by replacing our scaling of
the x and y axes with an arbitrary linear transformation T:

x =

 T
γ
δ

0 0 1

 1 0 0 0
0 1 0 0
0 0 0 1

( R C
0 0 0 1

)
Xworld

Multiplying these matrices out and changing variables gives:

x =

 T11 T12 T13 T14

T21 T22 T23 T24

0 0 0 1

Xworld (7)

where each Tij is arbitrary.
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From The Orthographic To The Affine Camera

The Affine Camera

If we want to then go to euclidean coordinates in the image plane,
we just drop the trailing 1 (this requires that Xworld be expressed
in standard homogeneous coordinates).

x =

(
1 0 0
0 1 0

) T11 T12 T13 T14

T21 T22 T23 T24

0 0 0 1

Xworld (8)

This is written more simply as:

x = PXworld (9)

where P is an arbitrary 2-by-4 matrix. This P will be called the
“camera projection matrix”, or more simply just the “camera
matrix” for our camera.
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End Detour: Deriving The Structure Observation
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Structure

Recall...

We set out to derive a set of relationships that must be obeyed by
a set of feature trajectories if they all belong to a single rigid body.

Let us fix our “world frame” to our rigid body. Let Xf denote the
position of feature f in the world frame (we drop the subscript
world for readability). Because our world frame is fixed to the
same body that all of our features belong to, a features position in
the world frame does not change with time.
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Structure

We Have A Moving Rigid Body

Now, imagine that our rigid body is moving with respect to our
camera. This means that at each instant we have a different
rotation and translation from our camera frame to our world
frame. Thus, for each frame of video, we will have a different
camera matrix. Let Pl denote the camera matrix for frame l .

PlXf gives the euclidean image coordinates of feature f in frame l .
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Structure

The Trackpoint Matrix

We define a matrix holding the observed image coordinates of each
feature in each frame. This is called the “history matrix” or the
“trackpoint matrix”. Assume we observe F features for L frames
of video.

M =


P1X1 P1X2 ... P1XF

P2X1 P2X2 ... P2XF
...

...
...

PLX1 PLX2 ... PLXF

 (10)

This matrix has dimensions 2L-by-F .
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Structure

The Decomposition Of The Trackpoint Matrix

From the way we constructed the trackpoint matrix, there is an
obvious decomposition:

M =


P1

P2
...
PL


2L x 4

[
X1 X2 ... XF

]
4 x F

(11)
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Structure

The Decomposition Of The Trackpoint Matrix

From the way we constructed the trackpoint matrix, there is an
obvious decomposition:

M =


P1

P2
...
PL


2L x 4

[
X1 X2 ... XF

]
4 x F

(12)

From this decomposition we see that M has rank less than or equal
to 4. That is, the columns of the trackpoint matrix live in a
4-dimensional subspace of R2L.
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Structure

It Gets Better

The last coordinate of each Xf is 1 (since we used standard
homogeneous coordinates). Thus the columns of[

X1 X2 ... XF

]
4 x F

(13)

actually live is an affine subspace of R4 of dimension 3.

Thus, the columns of M actually live in an affine subspace of R2L

of dimension 3 or less.
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Structure

Our Structure Observation

If a set of features belong to the same rigid body, then the
associated trajectories are confined to an affine subspace of
dimension no more than 3.

Footnote

It turns out that in general, track sets from different rigid bodies
(moving differently) give rise to different affine subspaces.
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Structure

Application To Segmentation

This structure observation has been successfully applied to motion
segmentation. You track features and generate trajectories from
the observed feature positions in each frame. Segmentation is
accomplished by identifying different subspaces in the set of
trajectories and associating each trajectory to its nearest subspace.

(f) Tracks (g) Segmented Tracks (h) Segmentation
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Exploiting Structure To Improve Feature Tracking
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Exploiting Structure For Better Feature Tracking

The Total Energy Function

The first step is to merge all of the single-feature energy functions
used for tracking into a global energy function.

C (x) =
F∑

f =1

∑
u∈Ω

ψ (Tf (u)− I (u + xf )) (14)

Now, we can effect a rigid body requirement by imposing
constraints on the minimization of this total energy function. This
can be done in a strong sense or a weak sense.
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Exploiting Structure For Better Feature Tracking

Causality

In this problem, it is important to keep causality in mind. For our
algorithm to be useful practically, it should not require knowledge
of the future. If a solution were to require information from L
frames into the future, our tracking scheme would have a
theoretical latency of L frames.
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Exploiting Structure For Better Feature Tracking

First Solution

?
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Exploiting Structure For Better Feature Tracking

First Solution

Our first solution might be to track features without a constraint
from the last frame to the current. Then fit a 3-dim affine
subspace to the trajectories over the last L frames and project the
trajectories into that subspace. Take the projected feature
positions as the state for the current frame.
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Exploiting Structure For Better Feature Tracking

Problems With The First Solution

Our constraint requires explicitly modeling motion. The
results are very sensitive to errors in our subspace estimation.

This is a track-then-fix solution. We start by tracking without
constraint. If we make catastrophic errors in the initial
tracking, they are hard to fix because they make it harder to
model the motion.

Fixed dimensionality. The 3D constraint does not allow us to
infer the precise position of a single feature, given the rest.

Cannot “encourage” the constraint... can only “demand” it.
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Exploiting Structure For Better Feature Tracking

Our Solution

Impose the constraint in the weak sense by adding a penalty term
to the energy function. This term “disincentivises” configurations
of features that are inconsistent with rigid motion, given
knowledge of the past.

C̄ (x) = α

F∑
f =1

∑
u∈Ω

ψ (Tf (u)− I (u + xf )) + P(x) (15)

The Penalty Term

P(x) is an estimate of, or proxy for, the dimensionality of the set
of feature trajectories over the last several frames of video
(including the current frame).
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Exploiting Structure For Better Feature Tracking

C̄ (x) = α

F∑
f =1

∑
u∈Ω

ψ (Tf (u)− I (u + xf )) + P(x)

The Penalty Term Details

Past feature locations are treated as constants, so P is a
function only of the current state, x.

The terms before P(x) are called “fit terms”. We added α as
a coefficient to the sum of the fit terms to weight the penalty.

Several forms of P were tested, with different levels of success.
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Exploiting Structure For Better Feature Tracking

C̄ (x) = α

F∑
f =1

∑
u∈Ω

ψ (Tf (u)− I (u + xf )) + P(x)

Forms for P(x)

Let M denote the trackpoint matrix for the last L frames of video
(plus the current frame).

P(x) = ‖x− Π(x)‖ where Π(x) is the projection of x onto the
best-fit 3D affine subspace to the columns of M (in l2 sense).

P(x) = ‖M‖∗
P(x) = dε(M) where dε denotes empirical dimension.
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Exploiting Structure For Better Feature Tracking

C̄ (x) = α

F∑
f =1

∑
u∈Ω

ψ (Tf (u)− I (u + xf )) + P(x)

Forms for P(x)

Each form for P(x) tested offered some improvement over not
using a constraint. The form that appeared to work best was
P(x) = dε(M). Recall the definition of dε(M):

dε(M) :=
‖σ‖ε
‖σ‖( ε

1−ε)
(16)

where σ is the vector of singular values of M.
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Exploiting Structure For Better Feature Tracking

Optimization Strategy

We employed a 1st-order decent method. The simplest such
method is gradient decent. Unfortunately, there can be large
differences in magnitude in the gradients of the fit terms (strong
features can have much sharper gradients than weak features).

If we could measure gradients exactly this would not be a
problem.

We must numerically approximate gradients (since our energy
function is built on measured data). The approximation error
on strong features can be larger than the entire gradient
contribution from weak features.

With pure gradient decent, the algorithm has a tendency to
ignore weak features completely.
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Exploiting Structure For Better Feature Tracking

Optimization Strategy

Our fix was to alternate between gradient decent steps and
coordinate decent steps.

Gradient decent steps ensure we continue moving in the
direction that decreases the total energy the fastest.

Coordinate decent steps ensure that week features do not get
ignored.
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Exploiting Structure For Better Feature Tracking

The Down Side

A 2nd-order method (like in Lucas Kanade) has more expensive
iterations, but requires fewer iterations to converge than our
method. Ignoring the penalty term, the cost of our method is a
small fixed multiple of the cost of Lucas Kanade. The penalty term
was not significant in the problem sizes we worked with.

The Up Side

In exchange for the added computational cost, we get (much)
more reliable tracking of low-quality features.
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Experiments

Penalty Strength

By selecting the coefficient α, we can make the penalty strong or
weak. A strong constraint will “demand” that the features move in
a manner consistent with rigid motion. A week constraint will only
“encourage” this behavior.

We observed (surprisingly) that the weak constraint was actually
very useful.
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Experiments

On The Week Constraint

With the week constraint:

If a feature has a very sharp single-feature energy, the penalty
is effectively ignored in determining that features position.

If a feature has a single-feature energy surface that is not
sharp (in one or more directions) then the penalty becomes
significant in those directions only.

Effectively, strong features are tracked normally, while weak
features get assistance in ambiguous directions from the rest of the
track set. This happens smoothly and automatically - there is not
decision making in the algorithm.

Bryan Poling Using Subspace Constraints to Improve Feature Tracking



Experiments

Energy Surface For An Edge Feature

Here we show the energy surface projected onto the 2 dimensions
which correspond to the position of a single edge feature. The fit
term is ambiguous in the vertical direction.

(i) Fit Term (j) Penalty Term (k) Combined Energy
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Experiments

Occlusion?

When a single feature becomes occluded, its template will not
match the image at any feasible location. The fit term of the
energy function becomes large and effectively random. Ideally, the
penalty term would dominate the fit term and the feature would
ideally be tracked according to the penalty term. The position of
the feature would be inferred by the motion of the rest of the
trackset. Some modifications are needed in order to achieve this:

Detect Occlusion and stop updating template.

Clip fit term values at a max level. This will prevent the
randomness of the fit term from dominating the weak penalty
term.

I have not tried this yet... it may not work.
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Experiments

Performance With Weak Constraint

Table: Average track duration in frames (higher is better)

Average Over All Files

M
et
h
o
d

Lucas Kanade (OpenCV) 8.6
Gradient Descent 36.1
LDOF 22.3
Rank-const: Emp Dim 67.0
Rank-const: Nuc Norm 67.1
Rank-const: Exp Fact 66.3

Bryan Poling Using Subspace Constraints to Improve Feature Tracking



Experiments

Sample With Weak Constraint

Red boxes highlight groundtruth feature positions. Green boxes
show tracker output. These images show tracker state 10 frames
after initialization.

(l) Lucas Kanade (m) Our Method - Weak
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Experiments

On The Strong Constraint

Since the strong constraint forces rigidity, it makes it possible to
track through occlusion. Regardless of whether or not a single
feature is strong, if its motion is not consistent with the rest of the
trackset, it is advantageous to adjust that features location
according to the penalty term.

(n) Frame 1 (o) Frame 10 Strong (p) Frame 10 Weak
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Other Details Of Tracker

Other Details

Tracker is multi-resolution (coarse-to-fine)

State initialization is done via coarse global motion estimation.

Feature templates are updated periodically and in batches.
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Conclusions Of Rank-Regularized Tracking

Conclusions Of Rank-Regularized Tracking

Exploiting structure observations can improve feature tracking
performance.

Our method exploits structure by adding a penalty term to
the optimization objective.

Encouraging conformance with a structure observation can
work as well as, or almost as well as forcing conformance. It is
also applicable in more problems since it only effects weak
features.

1st-order optimization (gradient/coordinate decent) gives
more reliable results than 2nd-order methods, and only incurs
a modest increase in computational expense.
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Thank You!
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