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Budyko’s Model
Heat Balance

Budyko’s Model
Insolation (Incoming Solar Radiation)

107, Radien [ 2° | Gomon Intensity of solar radiation at Earth’s orbital radius:

= 1372Wm?

Cross section intercepted by the Earth:
7r?

Surface area of the Earth:

4zr?

Average surface insolation = 1372/4 = 343 Wm-2

Q= % =343Wm™*

Historical Overview of Climate Change Science, IPCC AR4, p.96
http://ipcc-wgl.ucar.edu/wgl/Report/ARMWGL Print_CHOL.pdf




Budyko’s Model
Obliquity

http://upload.wikimedia.org/wikipedia/commons/6/61/AxialTiltObliquity.png

Budyko’s Model
Eccentricity
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Budyko’s Model
Average Insolation

Annual average insolation as a function of latitude 6 , where y = sin

Qs(y)
The function § is normalized so that
j':s(y)dy =1
If eccentricity = obliquity = 0, then

s(y):%ﬁ

Under today’s orbital elements, S(y) can be approximated by a quadratic:

s(y)~1-0.241(3y* -1)

Budyko’s Model
Annual Average Insolation

The function S(Yy)
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Budyko’s Model
Temperature

Surface temperature in degrees Centigrade is taken to be a
decreasing function of latitude.

Te# ={T:[0,1] > R:T is decreasing}

We consider equilibria, where surface temperature is independent of
time. Sometimes we will think dynamically, in which case we will write

T()eF, T(t)(y)eR

Budyko’s Model
Global MeanTemperature

Compute the average temperature over the Earth’s surface.

_ 1 27 paf2 .
TZWL 7”/2T(Slngo)rZCOS(pd(/)d9

1 72 . 1
_ EJ.—n/zT (sing)cosgpde = EJ:T (y)dy
=[T )y

Note that we have extended T as an even function of latitude.




Budyko’s Model
Ice Cover

The ice cover is assumed to be a function of surface temperature.
There is a critical temperature, T =-10°C, at which ice can
accumulate.

T>T, = noice
T<T, = ice

Since temperature decreases with latitude, there is a latitude
dividing ice from no ice.

T(y.)=T.
Note that Y, is a function of the function T.

v.(T)=T*(T,)e[01], vy, :F—>[01]

Budyko’s Model
Albedo

Albedo @ measures reflectivity. @=0 corresponds to complete
absorption. @=1 corresponds to complete reflection. The albedo of
the Earth’s surface depends on the ice cover.
noice: o, =0.32

ice: @, =0.62
Since the ice cover is a function of surface temperature, which is a
function of latitude, we write

o Y<y5(T)
a(T)(y)=1a, y>y,(T) where a,=
o y:ys(T)

AT _g47

Budyko’s Model
Albedo

albedo

no ice
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Budyko’s Model
Outward Radiation

Assume black body radiation. Stephan-Boltzman: energy radiation is
proportional to the 4" power of the absolute temperature (Kelvin). Use
linear approximation about the temperature of 0°C:

1(T)(y)=a+bT(y)

a=202Wm™
b=1.90wm?/°C

Budyko’s Model
Dynamic Heat Transport

Simple assumption: the surface tries to equilibrate to the global mean
temperature. Heat gain:

[HT)()=c(T-T(y))

where
_ 1
T= LT (y)dy

is the global mean temperature and where

c=16b=3.04Wm?/°C

Budyko’s Model
Dynamical System

K _F(T)
F(T)(y)=Qs(y)(L-a(T)(y))-1(T)(y)+H(T)(y)
o y<ys(T)
a(T)(y)=ya, y>¥.(T)  T(y,)=T,

Q y:ys(T)

I(T)(y)=a+bT(y)
H(T)(y)=c(T-T(y))

k is the heat capacity of the surface.




Budyko’s Model
Equilibrium Solution

Look for an equilibrium solution T*.

F(T7)=0
Qs(y)(L-a(T7)(y)) =1 (T") () + H(T")(y) =0
o y<ys(T)
a(T)(y)=qa y>y.(T)  T(y,)=T.
a y=Y,(T)

1(T)(y)=a+bT(y)
H(T)(y)=c(T-T(y))

Budyko’s Model
Ice-free Equilibrium

Look for an equilibrium solution satisying
T(y)>T, Wy

Then
a(T)(y)=a, Wy,
and
@s()(t-e(T)(¥)) =1 (") () +H (")) =0

becomes

Qs(y)(l—al)—a—bT*(y)+c(f* —T'(y)) =0.
Therefore,

(b+¢)T"(y)=(1-a,)Qs(y)-a+cT".

Budyko’s Model
Ice-free Equilibrium

Integrate both sides:

(b+c)T" :(b+c)_[:T*(y)dy :J.:((lfal)Qs(y)faJrcf*)dy

=(1-)Q-a+cT"
Therefore
o (1-o)Q-a

b
and

7(5)-L 2R s(y)e£)-2

Budyko’s Model
Ice-free Equilibrium

()-8 5y ) -2

This works as long as the temperature is everywhere above -10° C.
Since S is decreasing,

<

b+c b

T )ZT*(l)=w(s(l)+gj—%z—6.32

for the current values of the parameters.
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Budyko’s Model
Ice-free Equilibrium
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Budyko’s Model
Ice-free Equilibrium

We will think of Q as a parameter. The ice-free solution will exist as

long as
T"(1)= (lbfc) ((1) 7)—7 T

For the current values of the other parameters,

Q >330Wm™




Budyko’s Model
Snowball Equilibrium

Look for an equilibrium solution satisying
T'(y)<T., Wy
This is exactly the same as before, except that
a(T*)(y) =a,, VY.

()= s -2

b+c

T (y)=T"(0)=1=%)Q ((o) ,j_, -31.36

b+c

Budyko’s Model
Snowball Equilibrium
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Budyko’s Model
Snowball Equilibrium

Again thinking of Q as a parameter, the snowball solution will exist
as long as

7(0)- 5 s(0)+ ¢ -2,

b+c

For the current values of the other parameters,

Q < 441Wm™

Budyko’s Model
Ice Cap Equilibrium

Recall:
Qs(y)(t=a(T")(y)=1 (T )+ H(T)(y)=0
a y<y(T)
a(T)(y)=1a y>¥.(T)  T(%)=T
25 y:ys(T)
I(T)(y)=a+bT(y) H(T)(y)=c(T-T(y))
Evaluate at ice boundary: Y=Y, =Y, (T*), T‘(y:) =T,
H(T7)(y;)=a+bT, H(T)(y:)=c(T"-T,)

() (5)= a0

Budyko’s Model
Ice Cap Equilibrium

Therefore:

Qs(y:) (2= (T)(v2)) =1 (1) (v:) + H(T7)(v7) =0

becomes
Qs(y;)(1-a)-a-bT, +¢(T"-T,)=0

(1-a,)Qs(y;)-a+cT = (b+c)T, =0

Goal: We think of Q and ys* as parameters. The above equation can
be solved for Q as a function of y,".

Problem: T depends on y"

Budyko’s Model
Ice Cap Equilibrium

Computation of global mean temperature at equilibrium

Recall:

Qs(y)(l—a(T')(y))—I (T)(y)+H(T)(y)=0

) y<ys(T)
a(T)(y)=1a y>¥.(T)  T(y,)=T,
a y=Y,(T)
I(T)(y)=a+bT(y) H(T)(y)=c(T-T(y))
Integrate:

Llesnie-

a(T*)(y))f | (T*)(y)+H (T*)(y)}dy:o
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Ice Cap Equilibrium

Budyko’s Model
Ice Cap Equilibrium

_[:H(T*)(y)dy:J.:C(f*fT*(y))dy:O Compute:

a(t")=[ s(y)e(T")(y)dy
:Joy‘s(y)a(T*)(y)dy+L1;s(y)a(T*)(y)dy

Lll (T*)(y)dy=j:(a+bT*(y))dy=a+bf*

Theretore, S(¥:)+ e (1-5(v:))
=a, ys + a,|1l— ys 3
Lles()(a-a(T)n)-1(T)(y)+ H(T")(y) ey 0
becomes S ( y) - -[Oy S(”)d”'

1-a(T"))-a-bT =0,
Q( a( v?/ler: Abuse notation:

a(T)=[s(na(T)()dy. @(y:)=aS(y;)+(1-5(x1))

Budyko’s Model
Ice Cap Equilibrium

Budyko’s Model
Ice Cap Equilibrium

Recall:
Recall: (1-a,)Qs(y;)-a+cT —(b+c)T, =0

Q(1-a(T"))-a-bT =0, - 1 o

e - 3of-a(s)-¢

which yields Combining:
— 1 o«
T ZB(Q(l‘“(Vs))‘a)- (1—0:0)Qs(y;)—a+%(Q(l—07(y;))—a)—(bJrc)Tc -0
l.e., the global mean temperature for a equilibrium solution depends only
on the location of the ice boundary. Q((l— %)S(y:)‘*' %(1_5( v, ))j =(b+ C)(%*'Tc]

The above equation can be solved for Q as a function of ys*.

Budyko’s Model
Equilibria

Budyko’s Model
Ice Cap Equilibrium

Computation of the equilibrium temperature function.

Recall:
N Qs (){t-a(T)(y)-1(T)(y)+H(T)(y)=0
/ 1(T)(y)=a+bT(y) H(T)(y)=¢(T-T(y))
206 Substitute:
gw \ Qs(y)(1-a(T")(y))~a—bT"(y)+¢(T"~T" (y)) =0
o . Solve:
N \ T*(y):b—ic(Qs(y)(l—a(T*)(y))—aJrcf*)




Budyko’s Model
Ice Cap Equilibrium

Summary:

T(y)= ﬁ(QS(Y)(l—al)—a+cf*) fory<y.

1 — N
E(Qs(y)(l—az)—aJrcT ) fory>y;

Q((l—ao)s(y:)+§(1—&(y§)))=(b+c)(%+nj
T :%(Q(l—&(yg))—a).

a(y:)=as(v) + a(1-5(x.))
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Budyko’s Model
Stability
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K. K. Tung, Topics in Mathematical Modeling, p. 139

Budyko’s Model
Stability

Literature Claim:

Snowball solution is stable.
Ice free solution is stable.
Small polar cap is stable.

Large polar cap is unstable.

What does this mean?

KT=F(T), TeF

T(t)>T ast—> oo, in aneighborhood of T"

What is the topology?

Budyko’s Model
Stability

What about linear stability?

Variational equation about an equilibrium:

ki=DF(T")u, ueT.7”

Does 7 have a differentiable structure? (It is not
a linear space.)
Is F differentiable?




