

References

Classic Paper:

M. I. Budyko, The effect of solar radiation variation on the climate of the Earth, Tellus 21 (1969), 611-619.

Modern Interpretation:

K.K. Tung, Topics in Mathematical Modeling, Princeton University Press, 2007. (Chapter 8)

Budyko's Model

Insolation (Incoming Solar Radiation)

Intensity of solar radiation at Earth's orbital radius: $1372\, \mathit{Wm}^{\text{-2}}$

Cross section intercepted by the Earth:

 πr^2

Surface area of the Earth:

 $4\pi r^2$

Average surface insolation = $1372/4 = 343 \text{ Wm}^{-2}$

$$Q = \frac{1372}{4} = 343 \, \text{Wm}^{-2}$$

Average Insolation

Annual average insolation as a function of latitude θ , where $y = \sin \theta$

The function s is normalized so that

$$\int_0^1 s(y) dy = 1$$

If eccentricity = obliquity = 0, then

$$s(y) = \frac{4}{\pi} \sqrt{1 - s^2}$$

Under today's orbital elements, s(y) can be approximated by a quadratic:

$$s(y) \approx 1 - 0.241(3y^2 - 1)$$

Budyko's Model

Temperature

Surface temperature in degrees Centigrade is taken to be a decreasing function of latitude.

$$T \in \mathcal{F} = \{T : [0,1] \to \mathbb{R} : T \text{ is decreasing}\}$$

We consider equilibria, where surface temperature is independent of time. Sometimes we will think dynamically, in which case we will write

$$T(t) \in \mathcal{F}, \quad T(t)(y) \in \mathbb{R}.$$

Budyko's Model

Global MeanTemperature

Compute the average temperature over the Earth's surface.

$$\begin{split} \overline{T} &= \frac{1}{4\pi r^2} \int_0^{2\pi} \int_{-\pi/2}^{\pi/2} T(\sin \varphi) r^2 \cos \varphi d\varphi d\theta \\ &= \frac{1}{2} \int_{-\pi/2}^{\pi/2} T(\sin \varphi) \cos \varphi d\varphi = \frac{1}{2} \int_{-1}^1 T(y) dy \\ &= \int_0^1 T(y) dy \end{split}$$

Note that we have extended \ensuremath{T} as an even function of latitude.

Ice Cover

The ice cover is assumed to be a function of surface temperature. There is a critical temperature, $T_{\rm c}$ =-10°C, at which ice can accumulate.

$$T > T_c \implies$$
 no ice $T < T_c \implies$ ice

Since temperature decreases with latitude, there is a latitude dividing ice from no ice.

$$T(y_s) = T_c$$

Note that y_s is a function of the function T.

$$y_s(T) = T^{-1}(T_c) \in [0,1], \quad y_s: \mathcal{F} \rightarrow [0,1]$$

Budyko's Model

Albedo

Albedo lpha measures reflectivity. lpha=0 corresponds to complete absorption. lpha=1 corresponds to complete reflection. The albedo of the Earth's surface depends on the ice cover.

no ice:
$$\alpha_1 = 0.32$$

ice: $\alpha_2 = 0.62$

Since the ice cover is a function of surface temperature, which is a function of latitude, we write

$$\alpha(T)(y) = \begin{cases} \alpha_1 & y < y_s(T) \\ \alpha_2 & y > y_s(T) \\ \alpha_0 & y = y_s(T) \end{cases} \text{ where } \alpha_0 = \frac{\alpha_1 + \alpha_2}{2} = 0.47$$

Budyko's Model

Outward Radiation

Assume black body radiation. Stephan-Boltzman: energy radiation is proportional to the 4th power of the absolute temperature (Kelvin). Use linear approximation about the temperature of 0°C:

$$I(T)(y) = a + bT(y)$$

$$a = 202 \,\mathrm{Wm}^{-2}$$

 $b = 1.90 \,\mathrm{Wm}^{-2}/^{\circ}\mathrm{C}$

Budyko's Model

Dynamic Heat Transport

Simple assumption: the surface tries to equilibrate to the global mean temperature. Heat gain:

$$H(T)(y) = c(\overline{T} - T(y))$$

wher

$$\overline{T} = \int_{0}^{1} T(y) dy$$

is the global mean temperature and where

$$c = 1.6b = 3.04 \,\mathrm{Wm^{-2}/^{\circ}C}$$

Budyko's Model

Dynamical System

$$k\dot{T} = F(T)$$

$$F(T)(y) = Qs(y)(1-\alpha(T)(y)) - I(T)(y) + H(T)(y)$$

$$\alpha(T)(y) = \begin{cases} \alpha_1 & y < y_s(T) \\ \alpha_2 & y > y_s(T) \\ \alpha_0 & y = y_s(T) \end{cases} \qquad T(y_s) = T_c$$

$$I(T)(y) = a + bT(y)$$

$$H(T)(y) = c(\overline{T} - T(y))$$

k is the heat capacity of the surface.

Equilibrium Solution

Look for an equilibrium solution T^* .

$$F(T^*)=0$$

$$Qs(y)(1-\alpha(T^*)(y))-I(T^*)(y)+H(T^*)(y)=0$$

$$\alpha(T)(y) = \begin{cases} \alpha_1 & y < y_s(T) \\ \alpha_2 & y > y_s(T) \\ \alpha_0 & y = y_s(T) \end{cases} \qquad T(y_s) = T_c$$

$$I(T)(y) = a + bT(y)$$

$$H(T)(y) = c(\overline{T} - T(y))$$

Budyko's Model

Ice-free Equilibrium

Look for an equilibrium solution satisying

$$T^*(y) > T_c, \forall y.$$

Then

$$\alpha(T^*)(y) = \alpha_1, \forall y,$$

and

$$Qs(y)(1-\alpha(T^*)(y))-I(T^*)(y)+H(T^*)(y)=0$$

ecomes

$$Qs(y)(1-\alpha_1)-a-bT^*(y)+c(\overline{T}^*-T^*(y))=0.$$

Therefore,

$$(b+c)T^*(y)=(1-\alpha_1)Qs(y)-a+c\overline{T}^*$$
.

Budyko's Model

Ice-free Equilibrium

Integrate both sides:

$$(b+c)\overline{T}^* = (b+c) \int_0^1 T^*(y) \, dy = \int_0^1 ((1-\alpha_1) Q s(y) - a + c \overline{T}^*) \, dy$$

= $(1-\alpha_1) Q - a + c \overline{T}^*$

Therefore

$$\overline{T}^* = \frac{\left(1 - \alpha_1\right)Q - a}{b}$$

$$T^*(y) = \frac{(1-\alpha_1)Q}{b+c} \left(s(y) + \frac{c}{b}\right) - \frac{a}{b}$$

Budyko's Model

Ice-free Equilibrium

$$T^*(y) = \frac{(1-\alpha_1)Q}{b+c} \left(s(y) + \frac{c}{b}\right) - \frac{a}{b}$$

This works as long as the temperature is everywhere above -10 $^{\circ}$ C. Since s is decreasing,

$$T^*(y) \ge T^*(1) = \frac{(1-\alpha_1)Q}{b+c} \left(s(1) + \frac{c}{b}\right) - \frac{a}{b} \approx -6.32$$

for the current values of the parameters.

Budyko's Model

Ice-free Equilibrium

We will think of Q as a parameter. The ice-free solution will exist as long as

$$T^*\left(1\right) = \frac{\left(1 - \alpha_1\right)Q}{b + c} \left(s\left(1\right) + \frac{c}{b}\right) - \frac{a}{b} > T_c$$

For the current values of the other parameters,

$$Q > 330 Wm^{-2}$$

Snowball Equilibrium

Look for an equilibrium solution satisying $T^* \left(y \right) \! < \! T_c, \quad \forall y.$

This is exactly the same as before, except that

$$\alpha(T^*)(y) = \alpha_2, \forall y.$$

$$T^*(y) = \frac{(1-\alpha_2)Q}{b+c} \left(s(y) + \frac{c}{b}\right) - \frac{a}{b}$$

$$T^*(y) \le T^*(0) = \frac{(1-\alpha_2)Q}{b+c} \left(s(0) + \frac{c}{b}\right) - \frac{a}{b} \approx -31.36$$

Budyko's Model

Snowball Equilibrium

Again thinking of Q as a parameter, the snowball solution will exist as long as

$$T^*(0) = \frac{(1-\alpha_1)Q}{b+c} \left(s(0) + \frac{c}{b}\right) - \frac{a}{b} < T_c$$

For the current values of the other parameters,

$$Q < 441Wm^{-2}$$

Budyko's Model

Ice Cap Equilibrium

Recall

$$Qs(y)(1-\alpha(T^{*})(y))-I(T^{*})(y)+H(T^{*})(y)=0$$

$$\alpha(T)(y) = \begin{cases} \alpha_{1} & y < y_{s}(T) \\ \alpha_{2} & y > y_{s}(T) \\ \alpha_{0} & y = y_{s}(T) \end{cases} T(y_{s}) = T_{c}$$

$$I(T)(y) = a + bT(y)$$
 $H(T)(y) = c(\overline{T} - T(y))$

Evaluate at ice boundary: $y=y_s^*=y_s\left(T^*\right), \quad T^*\left(y_s^*\right)=T_c$

$$I(T^*)(y_s^*) = a + bT_c \qquad H(T^*)(y_s^*) = c(\overline{T}^* - T_c)$$
$$\alpha(T^*)(y_s^*) = \alpha_0$$

Budyko's Model

Ice Cap Equilibrium

Therefore:

$$Qs\left(y_{s}^{*}\right)\left(1-\alpha\left(T^{*}\right)\left(y_{s}^{*}\right)\right)-I\left(T^{*}\right)\left(y_{s}^{*}\right)+H\left(T^{*}\right)\left(y_{s}^{*}\right)=0$$
becomes

$$Qs(y_s^*)(1-\alpha_0)-a-bT_c+c(\overline{T}^*-T_c)=0$$

$$(1-\alpha_0)Qs(y_s^*)-a+c\overline{T}^*-(b+c)T_c=0$$

Goal: We think of Q and y_s^* as parameters. The above equation can be solved for Q as a function of y_s^* .

Problem: \overline{T}^* depends on y_s^*

Budyko's Model

Ice Cap Equilibrium

Computation of global mean temperature at equilibrium

Recall:

$$Qs(y)(1-\alpha(T^*)(y))-I(T^*)(y)+H(T^*)(y)=0$$

$$\alpha(T)(y) = \begin{cases} \alpha_1 & y < y_s(T) \\ \alpha_2 & y > y_s(T) \\ \alpha_0 & y = y_s(T) \end{cases} \qquad T(y_s) = T_c$$

$$I(T)(y) = a + bT(y)$$
 $H(T)(y) = c(\overline{T} - T(y))$

Integrate:

$$\int_{0}^{1} \left[Qs(y) \left(1 - \alpha \left(T^{*} \right) (y) \right) - I(T^{*}) (y) + H(T^{*}) (y) \right] dy = 0$$

Ice Cap Equilibrium

$$\int_{0}^{1} H(T^{*})(y) dy = \int_{0}^{1} c(\overline{T}^{*} - T^{*}(y)) dy = 0$$

$$\int_{0}^{1} I(T^{*})(y) dy = \int_{0}^{1} (a + bT^{*}(y)) dy = a + b\overline{T}^{*}$$

$$\begin{split} \int_0^1 & \Big[Q s \left(y \right) \! \left(1 - \alpha \left(T^* \right) \! \left(y \right) \! \right) \! - I \left(T^* \right) \! \left(y \right) \! + H \left(T^* \right) \! \left(y \right) \Big] dy = 0 \\ & \text{becomes} \\ & Q \! \left(1 \! - \overline{\alpha} \left(T^* \right) \right) \! - a - b \overline{T}^* = 0, \\ & \text{where} \\ & \overline{\alpha} \left(T^* \right) \! = \! \int_0^1 s \left(y \right) \alpha \left(T^* \right) \! \left(y \right) dy. \end{split}$$

Budyko's Model

Ice Cap Equilibrium

Compute:

$$\begin{split} \overline{\alpha}\left(T^*\right) &= \int_0^1 s(y)\alpha\left(T^*\right)(y)dy \\ &= \int_0^{y_s^*} s(y)\alpha\left(T^*\right)(y)dy + \int_{y_s^*}^1 s(y)\alpha\left(T^*\right)(y)dy \\ &= \alpha_1 S\left(y_s^*\right) + \alpha_2\left(1 - S\left(y_s^*\right)\right), \\ &\text{where} \\ S(y) &= \int_0^y s(\eta)d\eta. \end{split}$$

$$\overline{\alpha}\left(y_{s}^{*}\right) = \alpha_{1}S\left(y_{s}^{*}\right) + \alpha_{2}\left(1 - S\left(y_{s}^{*}\right)\right)$$

Budyko's Model

Ice Cap Equilibrium

Recall:

$$Q(1-\overline{\alpha}(T^*))-a-b\overline{T}^*=0,$$

which yields

$$\overline{T}^* = \frac{1}{h} \left(Q \left(1 - \overline{\alpha} \left(y_s^* \right) \right) - a \right).$$

I.e., the global mean temperature for a equilibrium solution depends only on the location of the ice boundary.

Budyko's Model

Ice Cap Equilibrium

$$\begin{split} &(1-\alpha_0) \mathcal{Q}s \left(y_s^*\right) - a + c \overline{T}^* - (b+c) T_c = 0 \\ &\overline{T}^* = \frac{1}{b} \Big(\mathcal{Q} \Big(1 - \overline{\alpha} \left(y_s^*\right) \Big) - a \Big) \\ &\text{Combining:} \end{split}$$

$$(1-\alpha_0)Qs(y_s^*)-a+\frac{c}{b}(Q(1-\overline{\alpha}(y_s^*))-a)-(b+c)T_c=0$$

$$Q((1-\alpha_0)s(y_s^*)+\frac{c}{b}(1-\overline{\alpha}(y_s^*)))=(b+c)(\frac{a}{b}+T_c)$$

The above equation can be solved for Q as a function of y_s^* .

Budyko's Model

Ice Cap Equilibrium

Computation of the equilibrium temperature function. Recall:

$$Qs(y)(1-\alpha(T^*)(y))-I(T^*)(y)+H(T^*)(y)=0$$

$$I(T)(y)=a+bT(y) H(T)(y)=c(\overline{T}-T(y))$$

$$Qs(y)\left(1-\alpha\left(T^{*}\right)(y)\right)-a-bT^{*}(y)+c\left(\overline{T}^{*}-T^{*}(y)\right)=0$$

$$T^*(y) = \frac{1}{h+c} \left(Qs(y) \left(1 - \alpha \left(T^* \right) (y) \right) - a + c \overline{T}^* \right)$$

Ice Cap Equilibrium

Summary

$$T^{*}(y) = \begin{cases} \frac{1}{b+c} \left(Qs(y)(1-\alpha_{1}) - a + c\overline{T}^{*} \right) & \text{for } y < y_{s}^{*} \\ \frac{1}{b+c} \left(Qs(y)(1-\alpha_{2}) - a + c\overline{T}^{*} \right) & \text{for } y > y_{s}^{*} \end{cases}$$

$$Q\left(\left(1 - \alpha_{0} \right) s\left(y_{s}^{*} \right) + \frac{c}{b} \left(1 - \overline{\alpha} \left(y_{s}^{*} \right) \right) \right) = (b+c) \left(\frac{a}{b} + T_{c} \right)$$

$$\overline{T}^{*} = \frac{1}{b} \left(Q\left(1 - \overline{\alpha} \left(y_{s}^{*} \right) \right) - a \right).$$

$$\overline{\alpha} \left(y_{s}^{*} \right) = \alpha_{1} S\left(y_{s}^{*} \right) + \alpha_{2} \left(1 - S\left(y_{s}^{*} \right) \right)$$

Budyko's Model

Stability

What about linear stability?

Variational equation about an equilibrium:

$$k\dot{u} = DF(T^*)u, \quad u \in T_{T^*}\mathcal{F}$$

Does ${\mathcal F}$ have a differentiable structure? (It is not a linear space.) Is F differentiable?