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Introduction

World’s oceans exhibit a variety of dynamics that 
vary in both time and space.

These equations have different natural regimes, or 
limits.

The inherent structure of these limits may allow 
the equations to be split into their fast/slow 
dynamics to improve computational integration.



Motivation

Global climate models (GCMs) make thousands of 
nonlinear computations for each time step across 
the ocean.

Scientists improve ocean computation speed with 
the assumption that the ocean is more active 
horizontally than vertically. 

2-dimensional ocean dynamics equations are used 
for the horizontal motions.

We will be considering the Parallel Ocean 
Program (POP) that is developed at Los 
Alamos National Laboratory (LANL).



Motivation

The ocean equations have intrinsic fast/slow 
dynamics.

The goal is to improve the 2D computational times 
by capitalizing on the fast/slow dyamics.

If the fast dynamics can be easily split from the 
slow, then they may be integrated on a separate 
processor for faster integration times.

Initial research shows that the fast dynamics can 
be decoupled from the slow and furthermore 
the fast dynamics are always linear.



Motivation



The Equations

One of the simplest models which displays the characteristic fast/slow dynamics 
of the ocean is the Shallow-Water Equations:

Ro = Rossby Number  (rotational forces)
Fr = Froude Number   (a measure of resistance)
B  = Height Ratio



The Limits

Fr -> 0 represents hydrostatic balance
Ro -> represents geostrophic balance
LF regime is classified by strong stratification and flat top water.
LR regime is classified by strong rotation and wavy top water.



The Quasi-Geostrophic Limit



The Quasi-Geostrophic Limit

Apply the following change of variables: 

Embid, Pedro and Andrew Majda.  “Averaging over fast gravity waves for geophysical flows with arbitrary 
potential vorticity” Commun. In Partial Differential Equations, 21 (3&4), 619-658. 1996.



The fast/slow operators

Embid, Pedro and Andrew Majda.  “Averaging over fast gravity waves for geophysical flows with arbitrary 
potential vorticity” Commun. In Partial Differential Equations, 21 (3&4), 619-658. 1996.

Next we split the equations into two operators depending on their scaling with the 
following form:



Fourier Modes

Embid, Pedro and Andrew Majda.  “Averaging over fast gravity waves for geophysical flows with arbitrary 
potential vorticity” Commun. In Partial Differential Equations, 21 (3&4), 619-658. 1996.

We may write the above operator in component form:

It’s linear!



Fourier Modes

Embid, Pedro and Andrew Majda.  “Averaging over fast gravity waves for geophysical flows with arbitrary 
potential vorticity” Commun. In Partial Differential Equations, 21 (3&4), 619-658. 1996.

Now we will just analyze the fast dynamics.  We will assume the variables are 2 pi 
periodic. This simplification allows us to write the associated eigenfunctions explicitly in 
Fourier Modes. Below is the identity that must be satisfied for a multidimensional 
Fourier transform.

We can now find the appropriate form of the partial derivatives. For example,



Fourier Modes

Embid, Pedro and Andrew Majda.  “Averaging over fast gravity waves for geophysical flows with arbitrary 
potential vorticity” Commun. In Partial Differential Equations, 21 (3&4), 619-658. 1996.



Fourier Modes

Embid, Pedro and Andrew Majda.  “Averaging over fast gravity waves for geophysical flows with arbitrary 
potential vorticity” Commun. In Partial Differential Equations, 21 (3&4), 619-658. 1996.



Fourier Modes

Embid, Pedro and Andrew Majda.  “Averaging over fast gravity waves for geophysical flows with arbitrary 
potential vorticity” Commun. In Partial Differential Equations, 21 (3&4), 619-658. 1996.

This matrix is skew-hermitian!    Ie:  aij = - aji Thus is has an
orthonormal basis of eigenvectors with purely imaginary 
eigenfrequencies. 

Next we find the eigenfrequencies:



The eigenfrequencies are Where and .

Fourier Modes

Embid, Pedro and Andrew Majda.  “Averaging over fast gravity waves for geophysical flows with arbitrary 
potential vorticity” Commun. In Partial Differential Equations, 21 (3&4), 619-658. 1996.

The eigenfunction and eigenfrequencies can be found to be:



Quasigeostrophic: Wave Solution

Embid, Pedro and Andrew Majda.  “Averaging over fast gravity waves for geophysical flows with arbitrary 
potential vorticity” Commun. In Partial Differential Equations, 21 (3&4), 619-658. 1996.

Stationary Waves
K=10 L=1

Propagating Waves
K=10 L=1



Low Froude: Wave Solution

Stationary Waves
K=10 L=1

Propagating Waves
K=10 L=1



Low Rossby: Wave Solution

Stationary Waves
K=10 L=1

Propagating Waves
K=10 L=1



Conclusion
With these three limits of the Shallow-Water Equation, a better understanding may be 
gained of the separation of slow and fast dynamics.

This work provides insight in how to take advantage of new heterogeneous computer 
architectures.

The Low Rossby Limit doesn’t have the form that we desire.  Therefore future inquiry 
must take place into this limit.

Future work:
Proof of principle numerical algorithms on shallow-water equations that use fast/slow 
time splitting.
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