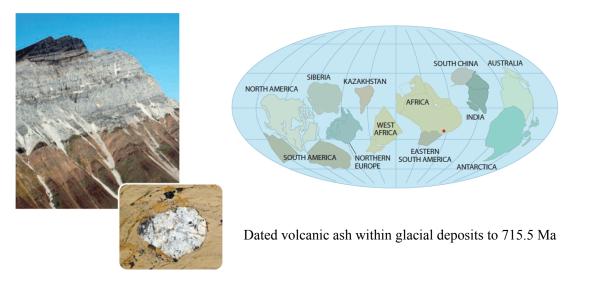


EC	DN	ERA	PERIOD		EPOCH		Ma
	02010		o		Holocene		-0.01
			Quaternary		Pleistocene	Late	- 0.8
						Early	- 1.8
			Tertiary	ē	Pliocene	Late	- 3.6
		U				Early Late	- 5.3
		ō		ē	Miocene	Middle	-11.2
		N		Neogene	Photene	Early	-16.4
		Cenozoic				Late	-23.7
					Oligocene	Early	-28.5
				Paleogene	Eocene	Late	-33.7
						Middle	-41.3
						Early	-49.0
						Late	-54.8
					Paleocene	Early	-61.0
			Cretaceous		Late		-99.0
9		.0			Early		- 144
2		2	Jurassic		Late		- 159
-		Mesozoic			Middle		- 180
č	Phanerozoic				Early		- 206
			Triassic		Late Middle		- 227
à					Early		- 242
					Late		- 248
			Permian		Early		- 256
			Pennsylvanian		Larry		- 290
			Mississippian				- 323
			monophan		Late		- 354
		U	Devonia	n	Middle		- 370
		ō			Early		- 391
		Paleozoic	Silurian		Late		- 417
		ē	Shurian		Early		- 423
		a l			Late		- 458
		•	Ordovician		Middle		- 470
					Early		- 490
					D		- 500
			Cambrian		C B		- 512
					A		- 520
	-				A		- 543
	Proterozoic	Late					0732375
E							- 900
ia		Middle Early					1600
ā							-1600
E	•						25.00
S	E	Late					-2500
Precambrian	Archean	Mide					-3000
P							-3400
		Earl			<u>6</u> .		

Geological and paleomagnetic evidence indicate that during at least two Neoproterozoic glacial periods (~630 Ma and ~715 Ma) continental ice sheets flowed into the ocean near the equator.

Glaciers at the equator: Evidence


• Occurrence of glacial debris near sea level in the tropics

Hoffman, P.F. & Schrag, D.P., 2000. Snowball Earth. Scientific American 282, 68-75

Glaciers at the equator: Evidence

• Occurrence of glacial debris near sea level in the tropics

Kerr, R., 2010. Snowball Earth Has Melted Back To a Profound Wintry Mix. Science 327, p. 1186 Macdonald, F. et al, 2010. Calibrating the Cryogenian. Science 327, 1241-1243

Glaciers at the equator: Evidence

• Unusual deposits of iron-rich rock mixed in with glacial debris:

--ice cover deprives oceans of oxygen;

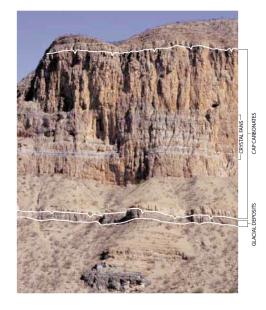
--dissolved iron expelled from seafloor hot springs accumulates in water;

--when ice melts, oceans exposed to atmospheric oxygen

--iron (virtually insoluble in presence of oxygen) precipitates out with debris once carried by glaciers

• Iridium (Ir) anomalies:

--Ir much more abundant in extra-terrestrial materials;


--Ir accumulates on and within the ice and snow, and precipitates out when ice melts;

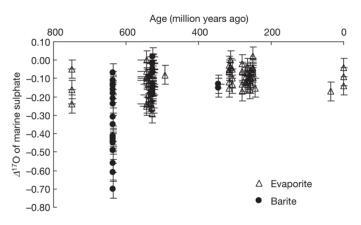
--Ir anomalies used to estimate the duration of the Marinoan glacial episode (~630 Ma) at 12 My^1

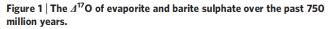
¹Bodiselitsch, B. et al, Estimating duration and intensity of Neoproterozoic snowball glaciations from Ir anomalies, *Science* **308**, 239-242.

Strong hysteresis vis-à-vis changes in greenhouse gas forcing

• Glacial formations nearly universally overlain with cap carbonates

Chemical breakdown of rocks converts CO₂ to bicarbonate, washed into oceans


Chemical reactions in ocean produce carbonate sediments, storing a great deal of carbon

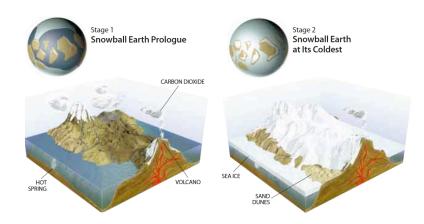

Rapid accumulation of carbonate sediment on seafloor as Neoproterozoic glaciers retreat, later becoming rock

Hoffman, P.F. & Schrag, D.P., 2000. Snowball Earth. Scientific American 282, 68-75

Strong hysteresis vis-à-vis changes in greenhouse gas forcing

• Marinoan cap carbonate sequences possess extremely negative $\Delta^{17}O$ values

 $(\Delta^{17}O = \delta'^{17}O - 0.52 \times \delta'^{18}O)$


Boa, H. et al, 2008. Triple oxygen isotope evidence for elevated CO_2 levels after a Neoproterozoic glaciation. *Nature* **453**, 504-506

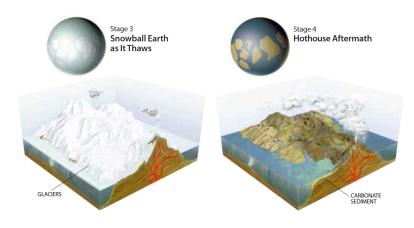
Neoproterozoic glaciation models

• Snowball Earth

--J. Kirschivink, 1992¹. The data are difficult to interpret in any fashion other than that of widespread, equatorial glaciation.

--popularized/advocated for in "A Neoproterozoic Snowball earth," Science 281, 1998, 1342-1346, by Hoffman, Kaufman, Halverson, & Schrag

¹J. Kirschivink, Late Proterozoic low-latitude global glaciation: the Snowball Earth. In *The Proterozoic Biosphere: A Multidisciplinary Study*, J.W Schopf & C. Klein (eds.), Cambridge University Press, 1992.


Figures from: Hoffman, P.F. & Schrag, D.P., 2000. Snowball Earth. Scientific American 282, 68-75

Neoproterozoic glaciation models

• Snowball Earth

--J. Kirschivink, 1992¹. The data are difficult to interpret in any fashion other than that of widespread, equatorial glaciation.

--popularized/advocated for in "A Neoproterozoic Snowball earth," Science 281, 1998, 1342-1346, by Hoffman, Kaufman, Halverson, & Schrag

¹J. Kirschivink, Late Proterozoic low-latitude global glaciation: the Snowball Earth. In *The Proterozoic Biosphere: A Multidisciplinary Study*, J.W Schopf & C. Klein (eds.), Cambridge University Press, 1992.

Figures from: Hoffman, P.F. & Schrag, D.P., 2000. Snowball Earth. Scientific American 282, 68-75

Neoproterozoic glaciation models

Snowball Earth

"In many people's minds, the hard Snowball is dead." --Michael Arthur, PSU (geochemist)

"We can get ice on land, it's the oceans we can't freeze over... The more sophisticated the model, the less likely you'd get a hard Snowball result."

--Mark Chandler, Goddard Institute for Space Studies

"When the Snowball came up, the [geological] community was very open to it. Now, it's my impression that 90% of the geological community is quite hostile to the idea." --Philip Allen, Imperial College of London (geologist)

"[Resistance to the hard Snowball] is really typical of scientific controversy. The problem is the experts reach a quick judgment and dig themselves into a position." --Paul Hoffman, Harvard (retired, geologist)

Neoproterozoic glaciation models

• Snowball Earth -- biological ambiguities

--evidence that photosynthetic eukaryotes thrived both before and immediately after the Snowball episodes

(organism whose cells contain complex structures enclosed within membranes)

--evidence that multiple lineages of sponges may have survived these glaciations (more complex marine animals)

Researchers have found a bacterium that is the first photosynthetic organism that doesn't live off sunlight but from the dim light coming from hydrothermal vents deep within the ocean.

(http://www.asu.edu/feature/includes/summer05/readmore/photosyn.html)

Alternative Neoproterozoic glaciation models

• Slushball, Oasis, Soft-Snowball, Waterbelt

Ice expands over the ocean down to 25-40° latitude, and stabilizes

Survival of marine animal and photosynthetic life

Weak hysteresis in global climate models

Qualitatively similar to glaciations of the last few million years, only more extreme?

Alternative Neoproterozoic glaciation models

• Tropical "thin-ice" solution

Ocean is ice-covered, ice ~ 1 m thick in the tropics

Penetration of photosynthetically active radiation

Found in an energy balance climate model¹; requires

- (a) Bare sea ice has high transmissivity & low albedo (0.4-0.5) relative to snow covered sea ice (~0.8)
- (b) Moisture in tropics is exported so that sea ice in tropics is bare.

E V Stronger hysteresis in Pollard-Kasting model

? Debate whether the parameter regime in Pollard-Kasting is physically realistic

Not found in global climate model simulations of Neoproterozoic glaciations which use low bare sea ice albedo

¹Pollard, D. & Kasting, F., 2005. Snowball Earth: A thin-ice solution with flowing sea glaciers. *Journal of Geophysical Research* **110**, 1-16

Alternative Neoproterozoic glaciation models

• Albedo

--Appropriate value of the albedo for exposed, non-melting ice formed by freezing seawater is 0.47 at temperatures above -23 $^{\rm o}{\rm C}$

(at temps below -23°C, NaCl precipitates out which could increase the albedo to 0.71)¹

--Appropriate value of the albedo for snow covered ice is 0.81¹

Surface type	Albedo
Clean new H ₂ O snow	0.85
Bare sea ice	0.5
Clean H ₂ O glacier ice	0.6
Deep water	0.1
Sahara Desert sand	0.35
Martian sand	0.15
Basalt (any planet)	0.07
Granite	0.3
Limestone	0.36
Grassland	0.2
Deciduous forest	0.14
Conifer forest	0.09
Tundra	0.2

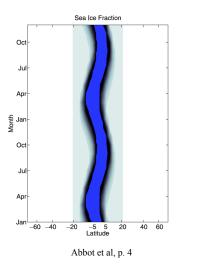
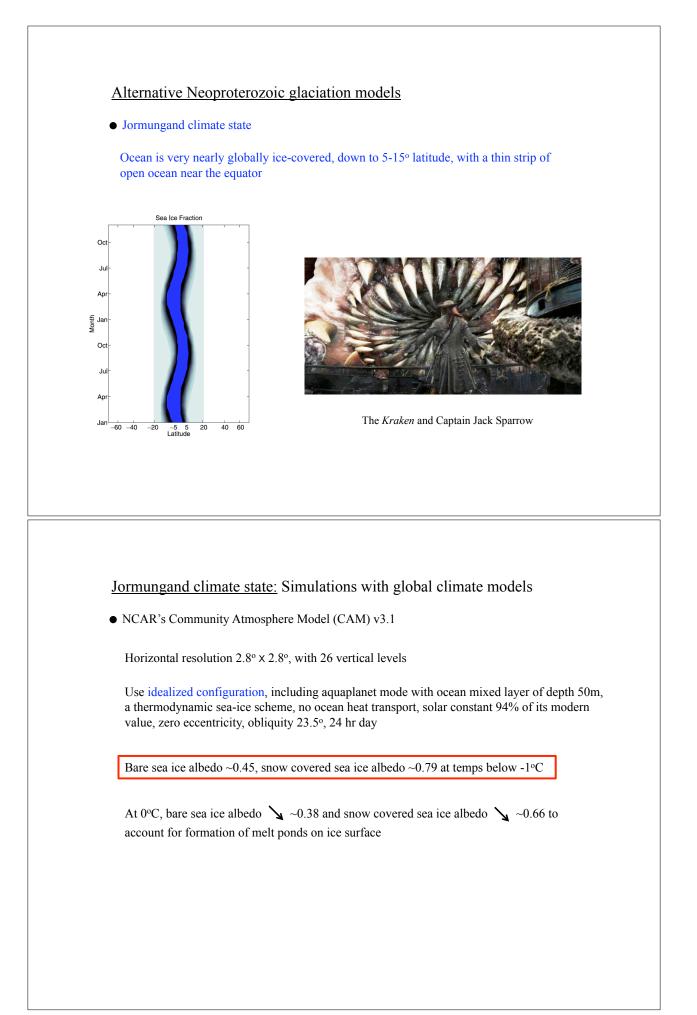
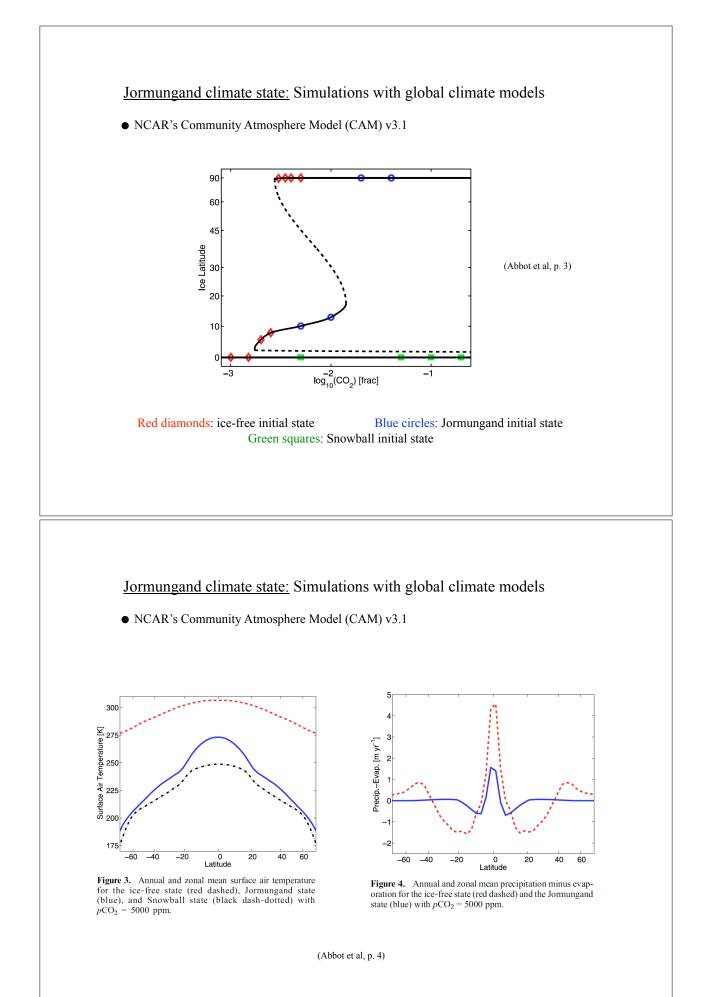
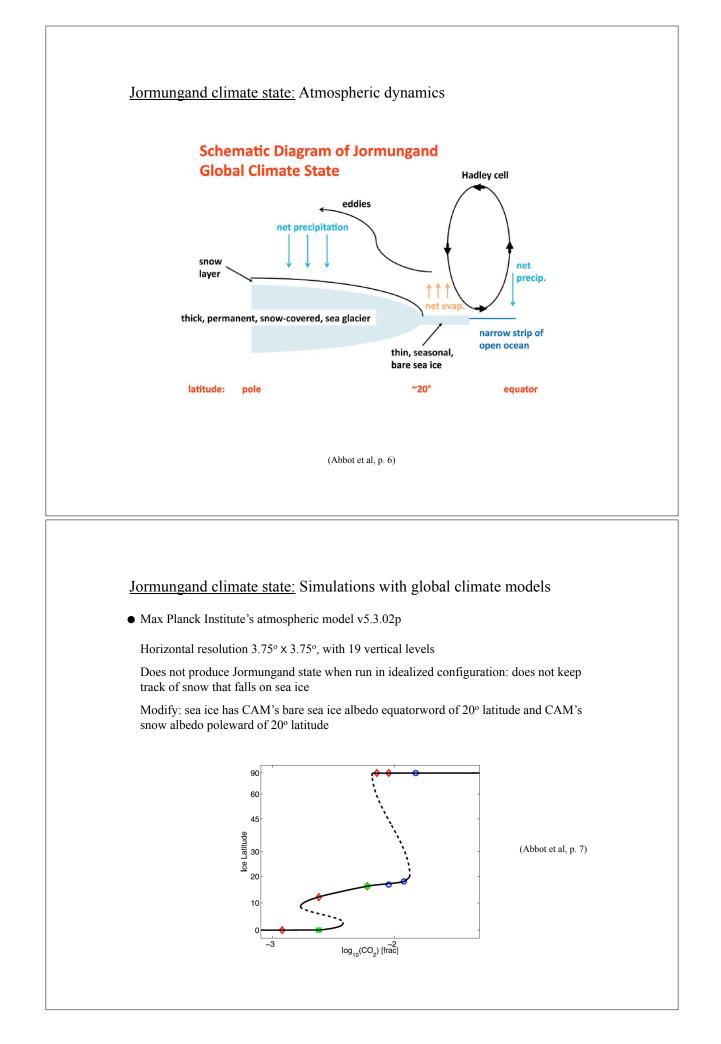

¹Warren, S.G. et al, 2002. Snowball Earth: Ice thickness on the tropical ocean. *Journal of Geophysical Research* **107**, 3167.

Table from: Pierrehumbert, R., 2010. *Principles of Planetary Climate*, Cambridge University Press, p. 154

Alternative Neoproterozoic glaciation models


• Jormungand climate state


Ocean is very nearly globally ice-covered, down to 5-15° latitude, with a thin strip of open ocean near the equator



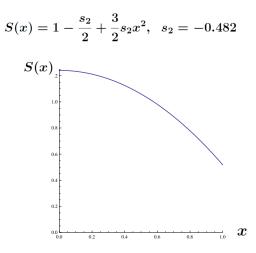
Henry Fuseli (1788)

Jormungand climate state: Simple energy balance climate models

Budyko-Sellers Model: At equilibrium

$$\frac{\partial Q}{\partial 4}S(x)(1 - \alpha(T(x))) = A + BT(x) + C(T(x) - \overline{T})$$

Q solar constant


$$\begin{split} x \in [0,1] & \text{sine of latitude (0-equator, 1-north pole)} \\ S(x) & \text{meridional distribution of insolation, } \int_0^1 S(x) dx = 1 \\ T & \text{surface temperature} \\ \overline{T} & \text{average surface temperature} \\ \alpha & \text{albedo} \\ A + BT & \text{linearization of OLWR} \\ C(T - \overline{T}) & \text{meridional heat transport} \\ \text{symmetry} \\ \alpha(T(x)) = \begin{cases} \alpha_1, \ T > T_s \\ \alpha_s, \ T = T_s \\ \alpha_2, \ T < T_s \end{cases} & \alpha_1 \\ \bullet \\ \alpha_2, \ T < T_s \end{cases} \\ \alpha_1 \\ \bullet \\ \alpha_2 \\ \alpha_3 \\ \alpha_1 \\ \bullet \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \\ \alpha_5$$

1

Budyko-Sellers Model

$$\frac{Q}{4}S(x)(1 - \alpha(T(x))) = A + BT(x) + C(T(x) - \overline{T})$$

S(x) is uniformly approximated within 2% by

North, G., 1975. Analytic solution to a simple climate model with diffusive heat transport. *Journal of Atmospheric Sciences* **32**, 1301-1307.

Budyko-Sellers Model

(1)
$$\frac{Q}{4}S(x)(1-\alpha(T(x))) = A + BT(x) + C(T(x) - \overline{T})$$

Global mean energy balance: integrate from x=0 to x=1

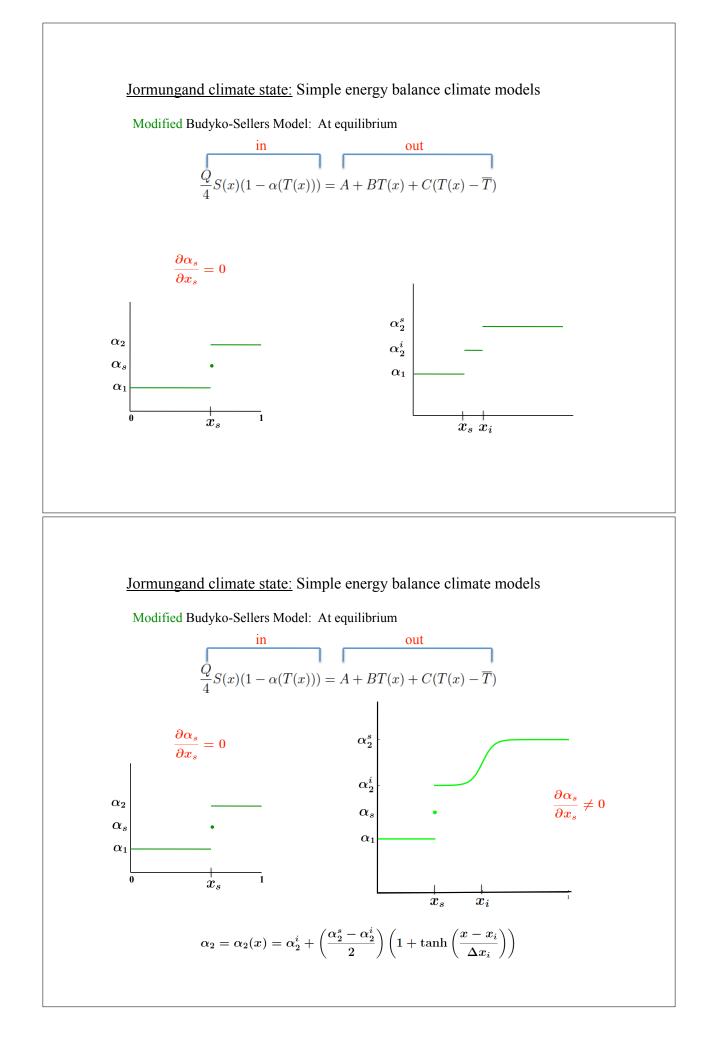
(2)
$$\frac{Q}{4}(1-\alpha_p(x_s)) = A + B\overline{T}$$
 $x_s = \text{ sine of the ice latitude}$
 $\alpha_p(x_s) = \int_0^1 \alpha(x)S(x)dx = \alpha_1 \int_0^{x_s} S(x)dx + \alpha_2 \int_{x_s}^1 S(x)dx$

Plug x_s into (1):

(3)
$$\frac{Q}{4}S(x_s)(1-\alpha_s) = A + BT_s + C(T_s - \overline{T})$$

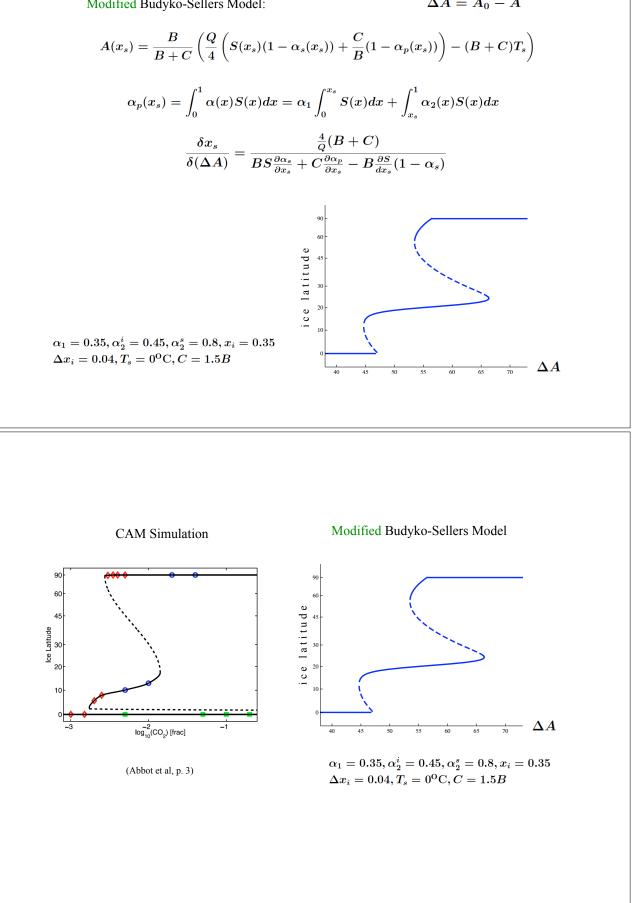
Solve (2) for \overline{T} , plug into (3)

$$A(x_s) = rac{B}{B+C} \left(rac{Q}{4} \left(S(x_s)(1-lpha_s) + rac{C}{B}(1-lpha_p(x_s))
ight) - (B+C)T_s
ight)$$

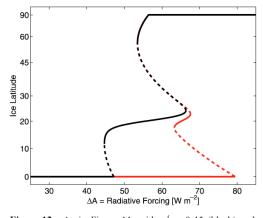

Change in radiative forcing $\Delta A = A_0 - A$, A_0 present value

Budyko-Sellers Model: Linear stability analysis
$$\Delta A = A_0 - A$$
$$A(x_s) = \frac{B}{B+C} \left(\frac{Q}{4} \left(S(x_s)(1-\alpha_s) + \frac{C}{B}(1-\alpha_p(x_s)) \right) - (B+C)T_s \right)$$
$$A(x_s + \delta x_s) = \frac{B}{B+C} \left(\frac{Q}{4} \left(S(x_s + \delta x_s)(1-\alpha_s) + \frac{C}{B}(1-\alpha_p(x_s + \delta x_s)) \right) - (B+C)T_s \right)$$
Linear approximation:
$$f(x + \delta x) \approx f(x) + f'(x)\delta x$$
$$\frac{\delta x_s}{\delta(\Delta A)} = \frac{\frac{4}{Q}(B+C)}{C\frac{\partial \alpha_x}{\partial x_s} - B\frac{\partial S}{\partial x_s}(1-\alpha_s)}$$

 ΔA


 $B = 1.5 \text{ W m}^{-2} \text{ K}^{-1}, \quad C = 2.5B, \ \alpha_1 = \alpha_2 = 0.6, \ T_s = -10^o \text{C}, \ s_2 = -0.482$

 ${Q}$



Modified Budyko-Sellers Model:

 $\Delta A = A_0 - A$

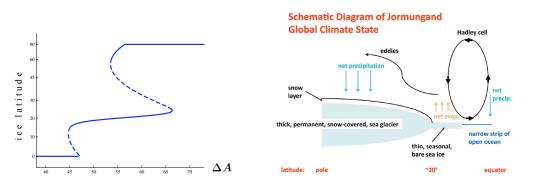
Jormungand climate state: Accessibility

Figure 12. As in Figure 11, with $\alpha_2^i = 0.45$ (black) and with $\alpha_2^i = 0.65$ (red). In the latter case the Jormungand state is not "accessible" if the radiative forcing (ΔA) is increased and decreased through a hysteresis loop between the warm state and the Snowball state.

(Abbot et al, p. 10)

Jormungand climate state & Neoproterozoic glaciations: Recap

High CO₂ initially to balance reduce insolation


For some reason there is a reduction of one or more greenhouse gases, and ice latitude decreases

Reach first bifurcation, and ice latitude rushes toward the equator

At 20-30° atmospheric circulation ensures the sea ice is generally bare, lowering ice-albedo feedback, climate enters Jormungand state

Very cold, dry, ice sheets cover large areas of continents: silicate weathering greatly reduced, so climate never enters Snowball state

Strong hysteresis, CO_2 build up over millions of years, high enough eventually to melt ice, return violently to ice-free state, depositing cap carbonates

Jormungand climate state & Neoproterozoic glaciations

Coupled global climate model simulations described in recently submitted work appears to further support the idea that the Jormungand state can exist with a dynamical ocean and realistic continents¹

The Jormungand state represents a potential model for Neoproterozoic glaciations, although further study of this issue is needed.

¹Yang, J. et al, The initiation of modern "soft Snowball" and "hard Snowball" climates in CCSM3. Part I: The influence of solar luminosity, CO2 concentration and the sea ice/snow albedo parametrization; Part II: Climate dynamic feedbacks, submitted.