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Summary of today’s talk

• Background: energy balance models (EBM), Budyko’s EBM,
ice line equation

• An infinite dimensional version of Budyko’s EBM, 1− D
invariant manifold, and some examples, eg Jormundgand
world

• Opportunities: greenhouse gas feedback, snowball, piecewise
smooth differential equations, maps



What does Earth do with all that energy from the Sun?



Earth’s temperature profiles

NASA’s observation
Southern Hemisphere

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
40

30

20

10

0

10

20

30

y=sin of latitude

Te
m

pe
ra

tu
re

 in
 C

el
ci

us

NASA observation Southern Hemisphere

Northern Hemisphere
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NASA observation

Source: Emma Cutler, Bowdoin College, data from
http://www.giss.nasa.gov/ar5/lplat.html

http://www.giss.nasa.gov/ar5/lplat.html


Simplifying the work: symmetric temperature profile
1. Symmetry about the equator, so we only look at eg. the
northern hemisphere.
2. Annual average along the same latitude, say θ.
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Energy balance principle

Incoming Solar Radiation (Insolation) = Reflected Energy + Outgoing
Longwave Radiation + Transported Energy

What we have

What we want to model
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Energy balance principle

Changes in energy or energy imbalance
=

(Heat capacity) · (Temperature change ∆T )
=

(Insolation energy absorbed after albedo effect)
- (Radiated energy/ OLR ) + (Transported energy)



Budyko’s EBM

R∆[T (y)](t) = k

 Qs(y)(1− α(η, y))︸ ︷︷ ︸
insolation after albedo effect

− (A + B · T (y))︸ ︷︷ ︸
re-emission/ OLR

+ C · (T − T (y))︸ ︷︷ ︸
transported energy


T = T (y) = T (t, y)

annually and latitudinally averaged temperature profile

∆T (t, y) = T (t + 1, y)− T (t, y)

(with the right k, unit time = year)



Budyko’s EBM: The OLR term and the transport term

R∆[T (y)](t) = k

 Qs(y)(1 − α(η, y))︸ ︷︷ ︸
insolation after albedo effect

− (A + B · T )︸ ︷︷ ︸
re-emission/ OLR

+ C · (T − T )︸ ︷︷ ︸
transported energy


−(A + BT ): The outgoing long wave radiation is a linearized
version of the Stephan-Boltzman’s law σT 4

C (T − T ): The transport term assumes that the temperature at y
decays to the global temperature.

A ∼= 202watts m−2 B ∼= 1.9watts m−2C−1 C ∼= 1.6B

(K. K. Tung, 2007)



Budyko’s EBM: insolation after albedo effect

R∆[T (y)](t) = k

 Qs(y)(1 − α(η, y))︸ ︷︷ ︸
insolation after albedo effect

− (A + B · T )︸ ︷︷ ︸
re-emission/ OLR

+ C · (T − T )︸ ︷︷ ︸
transported energy



Q · s(y) · (1− α(η, y))

Q = the solar constant ∼= 341watts m−2

s(y) is a distribution function, 2nd degree Legendre approximation

s(y) = 0.482 3y2−1
2

α(η, y) = the albedo at y given that the iceline is at η, here, it is
chosen to be smooth and bounded both in y and in η.



The ice albedo has a positive feedback

α(η, y) = the albedo at y given that the ice line is at η
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Need some ice line dynamics.



The ice albedo has a positive feedback

α(η, y) = the albedo at y given that the ice line is at η
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Ice line dynamics

How should ice line evolve?

Ice forms (or melts) slowly when the temperature falls (or
rises) below a certain critical temperature Tc

∆[η](t) = η(t + 1)− η(t) = ε (T (η(t))− Tc)

Here, we assume ε is small, though others might disagree.



Animations

Starting temperature profile T (y) = 34y 2 − 54, with a smooth
albedo function.

α(η)(y) = 0.47 + 0.15 · [tanh(M(y − η))]

η = 0.6 and M = 25

Is there an invariant set? Is it attracting? What is the function
space?
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Budyko’s time one map m



∆[T (y)](t) = F ([T (y), η])(t), y ∈ (0, 1)

= Qs(y)[1− α(η, y)]− [A + BT (y)] + C [T − T (y)]

∆[η](t) = G ([T (y), η])(t)

= ε (T (η)− Tc)

The time one map m associated with the Budyko-ice line system:

m[T (y), η](t + 1) = [T (y), η](t) + ·∆ ([T (y), η]) (t) (1)

T (y) is a bounded continuous function with the sup norm over R and η ∈ R



The critical set T
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Figure 4. Equilibrium solutions of 10 for ε = 0 embedded in R.
Solid: η = 0.1. Dash-Dot: η = 0.4. Dashed: η = 0.8. Parameters
as in Figure 2.

y

T ∗(y, η)
◦C

T := {T ∗(η, y) : F (T ∗(η, y), η) = 0}

F ([T (y), η])(t) = Qs(y)[1− α(η, y)]− [A + BT (y)] + C [T − T (y)]



An attracting invariant manifold result

Theorem
Under some parameter conditions, when ε is sufficiently small,
there exists an attracting one dimensional invariant manifold
for the time one map m associated with the Budyko’s equation.
(W-, 2010)

Corollary

The invariant manifold is within O(ε) of the critical set T ∗

We call this 1-D invariant manifold Φ∗.



Example 1: α(η, y) as in the animations

Recall, ∆[η] = ε(T (η)− Tc)

The equilibrium ice line temperature T ∗(η, η)



Example 2: Jormungand world
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Figure 6. The albedo function given in 15. The extent of bare
sea ice linearly shrinks to 0 as η increases through 0.35. Dashed:
η = 0.1. Dash-Dot: η = 0.25. Solid: η = 0.5.
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Figure 7. Equilibrium solutions of 1 with albedo function 15.
Solid: η = 0.1. Dashed: η = 0.25. Dash-Dot: η = 0.4. Pa-
rameters: Q = 321, A = 167, B = 1.5, C = 2.25, M = 50,αw =
0.32,αi = 0.46,αs = 0.72.

y

◦C T ∗
J (y, η)

(Walsh and W-, 2012)

Jormungand state: the ocean is very nearly globally ice covered, but a

very small strip of the tropical ocean remains ice-free. Abbot, et al, 2011.



Example 2: Jormungand world

The ice line dynamics



From snowball to ice free state

Lower latitude continents
allowed for an albedo runaway
snowball
(ie. via a saddle node
bifurcation).

of years would leave it powerless to
resist the ice encroachment. It is also
uncertain if the tropical ocean would
ever become entirely ice covered
(Hyde et al., 2000; Baum and Crow-
ley, 2001; Warren et al., 2002)
Kirschvink (1992) speculated that
areas of open water (polynyas) would
remain, tracking the zone of highest
solar incidence back and forth across
the equator and imparting a strongly
seasonal climate even at low latitude,
consistent with geological observa-
tions (Williams and Tonkin, 1985).
This is distinct from the tropical
‘loophole’ model (Hyde et al., 2000;
Baum and Crowley, 2001; Crowley
et al., 2001), in which the ice fronts
miraculously approach but never

cross the ice-albedo instability thresh-
old [but the continents are glaciated
because they are mostly placed in
middle and high latitudes, contrary
to palaeomagnetic evidence (Evans,
2000)].
Assuming an albedo runaway did

occur, the climate would be domin-
ated by the dry atmosphere and the
low heat capacity of the solid surface
(Walker, 2001). It would be more like
Mars (Leovy, 2001) than Earth as we
know it, except that the greater at-
mospheric pressure would allow sur-
face meltwater to exist. Diurnal and
seasonal temperature oscillations
would be strongly amplified at all
latitudes because of weak lateral heat
transfer and extreme ‘continentality’

(Walker, 2001). Despite mean annual
temperatures well below freezing
everywhere, afternoon temperatures
in the summer hemisphere would
reach the melting point (Walker,
2001). Evaporation of transient melt
water would contribute, along with
sublimation, to maintain low levels of
atmospheric water vapour, and gla-
ciers would feed on daily updrafts of
this moisture (Walker, 2001). The
global mean thickness of sea ice
depends strongly on sea-ice albedo
(! 1.4 km for albedo 0.6) and
meridional variability is a complex
function of solar incidence,
greenhouse forcing (see below), zonal
albedo, ablation or precipitation, and
equatorward flowage of warm basal
ice (Warren et al., 2002).
Climate physicists originally assu-

med that no ice-albedo catastrophe
ever actually occurred because it
would be permanent: the high planet-
ary albedo would be irreversible. A
saviour exists, however, and Kirsch-
vink (1992) identified it as the buildup
of an intense atmospheric CO2 green-
house through the action of plate
tectonics in driving the long-term
carbon cycle (Walker et al., 1981;
Caldeira and Kasting, 1992; Kirsch-
vink, 1992). On a snowball Earth,
volcanoes would continue to pump
CO2 into the atmosphere (and ocean),
but the sinks for CO2 – silicate weath-
ering and photosynthesis – would be
largely eliminated (Kirschvink, 1992).
Even if CO2 ice precipitated at the
poles in winter, it would likely subli-
mate away again in summer (Walker,
2001). CO2 levels would inexorably
rise and surface temperatures would
follow, most rapidly at first and more
slowly later on (Fig. 7) due to the non-
linear relation between CO2 concen-
tration and the resultant greenhouse
forcing (Caldeira and Kasting, 1992).
With rising surface temperatures, sea
ice thins but ground ice sheets expand
in some areas due to a stronger
hydrological cycle. If CO2 outgassing
rates were broadly similar to today (a
reasonable assumption for 600–
700 Ma), then the time needed to
build up the estimated 0.12 bar CO2

required to begin permanent melting
at the equator, assuming a planetary
albedo of 0.6, would be a few million
years (Caldeira and Kasting, 1992;
Crowley et al., 2001). This estimate
(Fig. 7), while subject to large uncer-
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Fig. 6 Ice-line latitudes (at sea level) as a function of the effective solar flux (Es), or
equivalent pCO2 (for Es ¼ 1.0), based on a simple energy-balance model of the
Budyko-Sellers type (after Caldeira and Kasting, 1992; Ikeda and Tajika, 1999).
Effect of a 30% reduction in meridional heat transport is shown, as is the estimated
solar flux at ! 600 Ma. Of three possible stable points for Es ¼ 1.0, the Earth
actually lies on the partially ice-covered branch at point 1. An instability due to ice-
albedo feedback drives any ice-line latitude < 30! onto the ice-covered branch. A
pCO2 » 0.12 bar is required for deglaciation of an ice-covered Earth, assuming the
planetary albedo is 0.6 and Es ¼ 1.0 (Caldeira and Kasting, 1992). The snowball
Earth hypothesis is qualitatively predicated on these findings and infers a hysteresis in
pCO2 (and consequently surface temperature) following the circuit labelled 1–7.
Starting from point 1, lowering of pCO2 causes ice lines to migrate stably to point 2,
whereupon runaway ice-albedo feedback drives ice lines to the ice-covered branch at
point 3. Normal volcanic outgassing over millions of years increases pCO2 to point 4,
initiating deglaciation. Reverse ice-albedo feedback then drives ice lines rapidly to the
ice-free branch at point 5, where high pCO2 combined with low planetary albedo
creates a transient ultra-greenhouse. Enhanced silicate weathering causes lowering of
pCO2 to point 6, whereupon polar ice caps reform and ice lines return to the partially
ice-covered branch at point 7. In the 1960s, Budyko was concerned with the small ice-
cap instability, which predicts a possible switch to the ice-free branch (e.g.
disappearance of Arctic sea ice) due to anthropogenic global warming.

The snowball Earth hypothesis • P. F. Hoffman and D. P. Schrag Terra Nova, Vol 14, No. 3, 129–155
.............................................................................................................................................................
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Hoffman & Schrag, Snowball Earth Hypothesis,2002



Beyond albedo: the greenhouse gas feedback

tainties, is of the same order as the
estimated time-scale of LNGD from
palaeomagnetic (Sohl et al., 1999) and

stratigraphic (Hoffman et al., 1998a)
evidence. Once the tropical ocean
begins to open up perennially, degla-

ciation proceeds rapidly due to reverse
ice-albedo feedback (Caldeira and
Kasting, 1992; Crowley et al., 2001).
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Fig. 7 Estimated changes in global mean surface temperature, based on energy-balance calculations, and ice extent through one
complete snowball event. The suggested time scale of the event of ! 5 Myr is conservative for an albedo ¼ 0.6, based on the
estimated outgassing flux of CO2 and subsidence analysis (Hoffman et al., 1998b). The global palaeogeographical model (Powell
et al., 2001) pertains to 750 Ma, ! 30 Myr before the ‘Sturtian’ glaciation (Table 1). Palaeocontinents: Am, Amazonia; Au,
Australia; Ba, Baltica; Co, Congo; In, India; K, Kalahari; M, Mawson; Si, Siberia; Ta, Tarim; WA, West Africa; Y, South China
(Yangtse). The global ice-line depictions correspond approximately to points 1–7 in Fig. 2. Note the growth of terrestrial ice sheets
with rising surface temperature during the snowball event. Note also the abrupt onset and termination of glacial conditions in the
low and middle latitudes, consistent with geological observations, and the saw-tooth form of the temperature curve reversed to that
associated with late Quaternary glacial cycles. Note finally that the estimated surface temperatures are global mean values and give
no sense of the real zonal, seasonal and diurnal ranges in temperature (Walker, 2001).

Terra Nova, Vol 14, No. 3, 129–155 P. F. Hoffman and D. P. Schrag • The snowball Earth hypothesis
.............................................................................................................................................................
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Back to Budyko’s EBM:

∆[T (y)] = Qs(y)[1−α(η, y)]−[A+BT (y)]+C [T−T (y)]

The parameter A needs to be
dynamically driven, one guess:

∆A = δ(η − ηc)



Beyond albedo: the greenhouse gas feedback

Use the invariant manifold Φ∗(η, y) of the Budyko-ice line system for η

A′ = δ(η − ηc)

η′ = ε(Φ∗(η, η)− Tc)

Here ∆A = A0 − A

Modifying Budyko-Sellers Snowball Earth

Exiting Snowball Earth

?

Image from Abbot et. al. 2011

Once in “Snowball Earth,” is it possible to exit?

Hoffman and Schrag (2000): Snowball Earth ⇒ Cessation of silicate weathering allows pCO2 to
build up over time ⇒ Enough warming to melt ice.

Anna M. Barry Climate Transitions in a Conceptual Model
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Beyond albedo: the greenhouse gas feedback

Modifying Budyko-Sellers Snowball Earth

Exiting Snowball Earth

?

Image from Abbot et. al. 2011

Once in “Snowball Earth,” is it possible to exit?

Hoffman and Schrag (2000): Snowball Earth ⇒ Cessation of silicate weathering allows pCO2 to
build up over time ⇒ Enough warming to melt ice.

Anna M. Barry Climate Transitions in a Conceptual Model

Challenges: what happen at the boundaries, ie. η = 0, 1?
Are there machineries eg. maps, piecewise smooth system?



Thank you for your attentions!!


