Conservation of Energy	Ice-Albedo Feedback	Dynamic Ice Line	Studying Climate	Further Reading
000000000000000000000000000000000000000	000000	0000	0000000	

An Introduction to Energy Balance Models

Alice Nadeau (with a lot of slides from Dick McGehee)

University of Minnesota Mathematics of Climate Seminar

September 25, 2018

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conservation of energy

Conservation of energy

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Further Reading

Initial Thoughts

Annual radiation from the Sun := Q

Conservation of Energy	Ice-Albedo Feedback 000000	Dynamic Ice Line 0000	Studying Climate	Further Readin
Finding Q				

IDEAS, USBC Geography Dept.

$$I_{\mathsf{Earth}} = \frac{\mathsf{power flux} \cdot \mathsf{surface area}}{4\pi r_{\mathsf{Earth}}^2} = \frac{(\sigma T_{\mathsf{Sun}})^4 (4\pi r_{\mathsf{Sun}}^2)}{4\pi r_{\mathsf{Earth}}^2} \approx 1368 \text{ W m}^{-2}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Conservation of Energy	Ice-Albedo Feedback	Dynamic Ice Line	Studying Climate	Further Readin
Finding Q				

IDEAS, USBC Geography Dept.

$$I_{\text{Earth}} = \frac{\text{power flux} \cdot \text{surface area}}{4\pi r_{\text{Earth}}^2} = \frac{(\sigma T_{\text{Sun}})^4 (4\pi r_{\text{Sun}}^2)}{4\pi r_{\text{Earth}}^2} \approx 1368 \text{ W m}^{-2}$$
$$Q = \frac{I_{\text{Earth}} \cdot \pi r_{\text{Earth}}^2}{4\pi r_{\text{Earth}}^2} \approx 342 \text{ W m}^{-2}$$

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Initial Thoughts

Annual radiation from the Sun := Q

Outgoing radiation := σT^4

 \rightarrow Stefan-Boltzmann Law

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

<ロト < 団ト < 豆ト < 豆ト = 三 の < 0</p>

Further Reading

Dynamical Models

Perfect thermally conducting black body:

$$R\frac{dT}{dt} = Q - \sigma T^4$$

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

<ロト < 団ト < 豆ト < 豆ト = 三 の < 0</p>

Further Reading

Dynamical Models

Perfect thermally conducting black body:

$$Rrac{dT}{dt} = Q - \sigma T^4, \quad T^* = (Q/\sigma)^{1/4}$$

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Further Reading

Dynamical Models

Perfect thermally conducting black body:

$$Rrac{dT}{dt} = Q - \sigma T^4, \quad T^* = (Q/\sigma)^{1/4}$$

Perfect thermally conducting black body plus albedo:

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Albedo

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Further Reading

Dynamical Models

Perfect thermally conducting black body:

$$Rrac{dT}{dt}=Q-\sigma T^4, \quad T^*=(Q/\sigma)^{1/4}$$

Perfect thermally conducting black body plus albedo:

$$Rrac{dT}{dt} = Q(1-lpha) - \sigma T^4, \quad T^* = ((1-lpha)Q/\sigma)^{1/4}$$

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Further Reading

Dynamical Models for *Surface Temperature*

Convert to surface temperature:

$$Rrac{dT}{dt} = Q(1-lpha) - (A+BT), \ T^* = ((1-lpha)Q - A)/B$$

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Further Reading

Dynamical Models for *Surface Temperature*

Convert to surface temperature:

$$Rrac{dT}{dt} = Q(1-lpha) - (A+BT), \ T^* = ((1-lpha)Q - A)/B$$

Include latitude dependence:

$$R\frac{\partial T}{\partial t} = Qs(y)(1-\alpha) - (A+BT(y,t)), \ T^*(y) = ((1-\alpha)Qs(y) - A)/B$$

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Dynamical Models for *Surface Temperature*

Convert to surface temperature:

$$Rrac{dT}{dt} = Q(1-lpha) - (A+BT), \ T^* = ((1-lpha)Q - A)/B$$

Include latitude dependence:

$$R\frac{\partial T}{\partial t} = Qs(y)(1-\alpha) - (A+BT(y,t)), \ T^*(y) = ((1-\alpha)Qs(y) - A)/B$$

Include heat transport:

$$R\frac{\partial T}{\partial t} = Qs(y)(1-\alpha) - (A + BT(y,t)) - C \cdot f(T), \quad T^*(y) = \dots$$

Ice-Albedo Feedback

Dynamic Ice Line 0000 Studying Climate

Further Reading

Budyko vs. Sellers

Mikhail I. Budyko

William D. Sellers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A

Further Reading

Sac

The Budyko Energy Balance Model

Incoming **Sol**ar Radiation Distribution: s(y)

Dashed: from first principles, Solid: Quadratic approximation

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Finding A, B and C

A, B, and C are empirical parameters

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Conservation of Energy	Ice-Albedo Feedback	Dynamic Ice Line	Studying Climate	Further Reading
000000000000000000000000000000000000000	000000	0000	0000000	

$$R\frac{\partial T}{\partial t} = \underbrace{Qs(y)}_{\text{insolation albedo}} \underbrace{(1-\alpha)}_{\text{oLR}} - \underbrace{\underbrace{C\left(T(y,t) - \overbrace{\overline{T}(t)}^{\int_{0}^{1} T(y,t) dy}}_{\text{heat transport}}\right)}_{\text{heat transport}}$$

Incoming Solar Radiation Approximation: $s(y) \approx 1 - 0.238(3y^2 - 1)$

Symmetry assumption: Equator = $0 \le y = sin(latitude) \le 1 = North$ Pole

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Further Reading

Equilibrium Temperature Profile

$$0 = Qs(y)(1 - \alpha) - (A + BT^*(y)) - C\left(T^*(y) - \overline{T^*}\right)$$

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Equilibrium Temperature Profile

$$0 = Qs(y)(1-\alpha) - (A + BT^*(y)) - C\left(T^*(y) - \overline{T^*}\right)$$

Integrate to find $\overline{T^*}$:

$$0 = \int_{0}^{1} \left[Qs(y)(1-\alpha) - (A+BT^{*}(y)) - C\left(T^{*}(y) - \overline{T^{*}}\right) \right] dy$$

= $Q \underbrace{\int_{0}^{1} s(y)dy}_{1} - Q \underbrace{\int_{0}^{1} s(y)\alpha dy}_{\overline{\alpha}} - A \underbrace{\int_{0}^{1} dy}_{1} - B \underbrace{\int_{0}^{1} T^{*}(y)dy}_{\overline{T^{*}}} - C \underbrace{\int_{0}^{1} T^{*}(y)dy + C \int_{0}^{1} \overline{T^{*}} dy}_{0}$

 $= Q(1 - \overline{\alpha}) - (A + B\overline{T^*})$

⇒Equilibrium Global Mean Temperature:

$$\overline{T^*} = \frac{1}{B}(Q(1-\overline{\alpha}) - A)$$

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Further Reading

Equilibrium Temperature Profile

$$0 = Qs(y)(1 - \alpha) - (A + BT^*(y)) - C\left(T^*(y) - \overline{T^*}\right)$$
$$\overline{T^*} = \frac{1}{B}(Q(1 - \overline{\alpha}) - A)$$

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Equilibrium Temperature Profile

$$0 = Qs(y)(1 - \alpha) - (A + BT^*(y)) - C\left(T^*(y) - \overline{T^*}\right)$$
$$\overline{T^*} = \frac{1}{B}(Q(1 - \overline{\alpha}) - A)$$

Plug in $\overline{T^*}$ and solve for $T^*(y)$:

$$T^*(y) = \frac{1}{B+C} \left(Qs(y)(1-\alpha) - A + C\overline{T^*} \right) \right)$$

◆□ > ◆□ > ◆豆 > ◆豆 > → □ = → ○ < ⊙ < ⊙

000000000000000000000000000000000000000	0000	0000000	i di citer i tedanig

$$T^*(y) = \frac{1}{B+C} \left(Qs(y)(1-\alpha) - A + C\overline{T^*}) \right)$$

-

$$\alpha = 0.32$$

 $\alpha = 0.62$
 $C = 3.04$

<ロ> <目> <目> <目> <目> <目> <日> <日> <日> <日> <日</p>

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Ice-Albedo Feedback

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Further Reading

Non-uniform Albedo

$$R\frac{\partial T}{\partial t} = Qs(y)(1 - \alpha(y, \eta)) - (A + BT(y, t)) - C(T - \overline{T^*})$$

albedo depends on latitude

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Non-uniform Albedo

$$R\frac{\partial T}{\partial t} = Qs(y)(1 - \underline{\alpha(y, \eta)}) - (A + BT(y, t)) - C(T - \overline{T^*})$$

albedo depends on latitude

Ice Line Assumption: There is one ice line, η , in the northern hemisphere north of which there is always ice.

$$lpha(y,\eta) = egin{cases} lpha_1 & 0 \leq y < \eta \ lpha_2 & \eta < y \leq 1 \end{cases}, \qquad lpha 1 < lpha_2$$

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Equilibrium Temperature Profile depends on the Ice Line

$$egin{aligned} &T^*_\eta(y) = rac{1}{B+C} \left(Qs(y)(1-lpha) - A + C \,\overline{T^*}
ight) \ &\overline{T^*_\eta} = rac{1}{B} (Q(1-\overline{lpha}(\eta)) - A) \end{aligned}$$

where

$$\overline{\alpha}(\eta) = \int_0^1 s(y) \alpha(y, \eta) dy = \alpha_1 \int_0^\eta s(y) dy + \alpha_2 \int_\eta^1 s(y) dy$$

<ロ> < 団> < 団> < 三> < 三> < 三</p>

Conservation of Energy	Ice-Albedo Feedback	Dynamic Ice Line	Studying Climate	Further Reading
000000000000000	000000	0000	0000000	

Equilibrium Temperature Profile depends on the Ice Line

From McGehee, Climate Seminar Sept. 19, 2017

Conservation	of	Energy
00000000	oc	00000

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Further Reading

Dynamics of T

Experts only:

Theorem (Widiasih)

Let X be the space of functions where T lives and

$$L: X \to X;$$
 $LT := C\overline{T} - (B + C)T.$

If $f(y) = Qs(y)(1 - \alpha(y, \eta)) - A$, then Budyko's equation can be written as a linear vector field on X:

$$R\frac{dT}{dt}=f+LT.$$

Furthermore, the operator L has only point spectrum, with all eigenvalues negative. Therefore all solutions are stable.

Conservation	of	Energy
00000000	000	00000

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Dynamics of T

Experts only:

Theorem (Widiasih)

Let X be the space of functions where T lives and

$$L: X \to X;$$
 $LT := C\overline{T} - (B + C)T.$

If $f(y) = Qs(y)(1 - \alpha(y, \eta)) - A$, then Budyko's equation can be written as a linear vector field on X:

$$R\frac{dT}{dt} = f + LT.$$

Furthermore, the operator L has only point spectrum, with all eigenvalues negative. Therefore all solutions are stable.

Everyone: For each fixed ice line η , there is a **globally stable** equilibrium solution for Budyko's equation.

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Further Reading

Something seems wrong ...

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Further Reading

Something seems wrong...

Intuition:

- High temperature \Rightarrow ice melts \Rightarrow ice line moves north
- Low temperature \Rightarrow ice forms \Rightarrow ice line moves south

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Something seems wrong...

Intuition:

- High temperature \Rightarrow ice melts \Rightarrow ice line moves north
- Low temperature \Rightarrow ice forms \Rightarrow ice line moves south

How do we model our intuitions?

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Further Reading

Dynamic Ice Line

Ice Formation Assumption: Permanent ice forms if the annual average temperature is below $T_c = -10$ °C and melts if the annual average temperature is above T_c

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Further Reading

Dynamic Ice Line

Ice Formation Assumption: Permanent ice forms if the annual average temperature is below $T_c = -10$ °C and melts if the annual average temperature is above T_c

$$\frac{d\eta}{dt} = \epsilon (T_{\eta}^*(\eta) - T_c)$$

Conservation of Energy Ice-Albedo Fe

-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Dynamics of the Ice Line

$$R\frac{\partial T}{\partial t} = Qs(y)(1 - \alpha(y, \eta)) - (A + BT(y, t)) - C\left(T - \overline{T_{\eta}^*}\right), \qquad \frac{d\eta}{dt} = \epsilon(T_{\eta}^*(\eta) - T_c)$$

Experts only:

Theorem (Widiasih's Theorem)

For sufficiently small ϵ , the system has an attracting invariant curve given by the graph of a function $\Phi_{\epsilon} : [0,1] \to X$. On this curve, the dynamics are approximated by the equation

$$\frac{d\eta}{dt} = \epsilon (T_{\eta}^*(\eta) - T_c).$$

E. Widiasih, "Dynamics of the Budyko Energy Balance Model," SIAM J. Appl. Dyn. Syst., 12(4), 2068-2092.

Ice-Albedo Feedback

Dynamic Ice Line 00●0 Studying Climate

Further Reading

Dynamics of the Ice Line

$$R\frac{\partial T}{\partial t} = Qs(y)(1 - \alpha(y, \eta)) - (A + BT(y, t)) - C\left(T - \overline{T_{\eta}^*}\right), \qquad \frac{d\eta}{dt} = \epsilon(T_{\eta}^*(\eta) - T_c)$$

From McGehee, Climate Seminar Sept. 19, 2017

Ice-Albedo Feedback

Dynamic Ice Line 000● Studying Climate

Further Reading

The Budyko-Widiasih Model

vicGenee, Climate Seminar Sept. 19, 2017

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Further Reading

Greenhouse Gasses in the Budyko-Widiasih Model

$$R\frac{\partial T}{\partial t} = Qs(y)(1 - \alpha(y, \eta)) - \underbrace{(A + BT(y, t))}_{\text{outgoing long wave radiation}} - C\left(T - \overline{T_{\eta}^*}\right)$$
$$\frac{d\eta}{dt} = \epsilon h(\eta, A)$$

The parameter A is the greenhouse gas parameter.

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Bifurcation Diagram for A

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Current Earth

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

500

Bifurcation Diagram for A

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Future Earth?

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Bifurcation Diagram for A

∃ ∽ < (~

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Past Earth?

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Evidence for Snowball Earth

Hoffman & Schrag, Snowball Earth, Scientific American, January 2000, 68-75

Ice-Albedo Feedback

Dynamic Ice Line

Studying Climate

Further Reading

Sac

Further Reading

Everyone:

Experts:

- Barry, McGehee, Widiasih. (2017) "Nonsmooth Frameworks for and Extended Budyko Model."
- McGehee and Lehman. (2012) "A paleoclimate model of ice-albedo feedback forced by variations in Earth's orbit."
- MeGehee and Widiasih. (2014) "A quadratic approximation to Budyko's ice-albedo feedback bodel with ice line dynamics."
- Walsh (2016) "Periodic orbits for a discontinuous vector field arising from a conceptual model of glacial cycles."
- Widiasih. (2013) "Dynamics of the Budyko Energy Balance Model."

Conservation of Energy	Ice-Albedo Feedback	Dynamic Ice Line	Studying Climate	Further Reading
000000000000000000000000000000000000000	000000	0000	00000000	

Thank you!