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History

Definition

Celestial mechanics is considered to be the study of the motion of
objects in outer space. Historically, celestial mechanics applies the
principles of physics (classical mechanics) to astronomical objects (e.g.
stars, planets) to acquire information on these objects.

A definition we care about more:
Celestial mechanics is the study of point particles in R3 (mostly)
moving under the influence of their mutual gravitational attraction.
Generally there is an emphasis on the general orbital motions of the
solar system bodies.
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History

Timeline

� Alexandria, ∼140CE, Ptolemy
� Poland, 1473 - 1543, Nicolaus Copernicus
� Denmark, 1546 - 1602, Tycho Brahe
� Germany, 1571 - 1630, Johannes Kepler
� England, 1643 - 1727, Isaac Newton
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History

Timeline

� Switzerland, 1707 - 1783, Leonard Euler
� Sardinia, 1736 - 1813, Joseph-Louis Lagrange
� Prussia, 1804 - 1851, Carl Jacobi
� USA, 1838 - 1914, George Hill
� France, 1854 - 1912, Henri Poincare
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The Kepler Problem

The Two-Body Problem

Let us start by looking at a simple case - the two - body problem.
The two-body problem is to determine the position and speed of two
bodies interacting with each other given their masses, initial positions,
and initial velocities. The gravitational two-body problem is a special
case in which the two-bodies interact by a central force F , that varies
in strength as the inverse of the distance, r, between them.

� m1, x1

� m2, x2

� F = Gm1m2
r2

m1

m2

r
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The Kepler Problem

The Two-Body Problem

The differential equations for the gravitational two-body problem are
m1ẍ1 = F · x2 − x1

r

m2ẍ2 = F · x1 − x2
r

with initial conditions

x1(t0), x2(t0), ẋ1(t0), ẋ2(t0)

for some initial time t0.
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The Kepler Problem

The Kepler Problem

We can reduce the two-body problem into a simpler problem by letting

q = x2 − x1.

Then, we get the single second order ODE

q̈ = −G(m1 +m2) q

|q|3
.

This is called the Kepler problem.

Now we turn our second order ODE into a system of first order ODEs
and we have the familiar q̇ = p

ṗ = − µq

|q|3
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Conserved Quantities & Orbital Elements

Conserved Quantities

A conserved quantity of a dynamical system is a function of the
dependent variables whose value remains constant along each
trajectory of the system.

Note:
Emmy Noether’s first theorem states that every differentiable
symmetry of the action of a physical system has a corresponding
conservation law. All the conserved quantities in the Kepler problem
relate to a symmetry in the system.
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Conserved Quantities & Orbital Elements

The Conservation of Angular Momentum

Angular momentum is the rotational analog of linear momentum. It
is defined for a point particle to be the vector

q × p.

We can then show that

d

dt
(q × p) = q × ṗ + p× p = −µ|q|−3(q × q) + p× p = 0.

So, we have q × p = c, a constant vector. We will refer to c as the
angular momentum.
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Conserved Quantities & Orbital Elements

The Conservation of Energy
The gravitational interaction as described earlier was an internal
conservative force and as such we can conclude that the energy is
conserved in this system. We can can find an expression for this
mathematically as follows:

p · ṗ = p · − µq

|q|3

p · ṗ = −µ|q|−3(q · q̇)

p · ṗ = −µ|q|−2 dq

dt

Integrate both sides and you’ll see that

1
2 |p|

2 = µ

|q|
+ h,

where h is our constant of integration and also our energy.

Note: Hamiltonians!
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Conserved Quantities & Orbital Elements

Orbital Elements

Figure: orbital plane, yellow, intersects reference plane, grey
(wikipedia)

� eccentricity vector,
eccentricity (e)

� semi-major axis (a)
� argument of the

periapsis (ω)
� true anomaly (ν)
� inclination (i)
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Conserved Quantities & Orbital Elements

Another Conserved Quantity!

Another constant of motion is actually the eccentric axis, e. It can be
show using vector identities that

d

dt

(
q

|q|

)
= c× q

|q|3
.

Then multiplying both sides of this equation by −µ we can derive the
following:

µ
d

dt

(
q

|q|

)
= ṗ× c.

Integrating this statement, we get

µ

(
e + q

|q|

)
= p× c,

where e is the constant of integration.
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Conserved Quantities & Orbital Elements

The Solution to Kepler’s Problem

This can be derived by taking the dot product of both sides of our last
equation with q, then changing coordinates (polar coordinates), with
coordinates (|q|, ν). We find that the solution is given by

|q| = |c|2/µ
1 + e cos(ν) .

The conic particle moves on a conic section of eccentricity e with one
focus at the origin → this is Kepler’s first law!
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Regularization

Regularization

m1

m2

|q|

The collision set, i.e.

∆ =
{
q
∣∣ |q| = 0

}
,

is the set of points where the
distance to the origin is 0.

A singularity t0 of the Kepler problem is a collision singularity when
q(t) approaches a specific point of ∆ as t→ t0.

A regularization is a transformation (q,p)→ (u,w) where q = 0
corresponds to some u = u0 and |w(s)| → w0 as s→ s0.
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Regularization

Levi-Civita Regularization
Consider the problem in R2 ∼= C, that is, instead of the vector
q = (q1, q2) ∈ R2 we use the complex notation q = q1 + iq2 ∈ C.

The Levi-Civita transformation isq = 2z2

p = w

z̄

where q, p, z, w ∈ C. We can also utilize the use of a time change.

New differential equations: z
′ = w

2
w′ = hz

where
h = |p|

2

2 − µ

|q|
= |w|

2

2|z|2 −
µ

2|z|2 .
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Regularization

Levi-Civita Regularization

z
′ = w

2
w′ = hz

What is this regularization doing?
� Removes the singularity at the origin
� Singularities now lie at infinity
� Double cover
� Go around once in the z-plane → go

around twice in the q-plane
� Bounce
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Other Important Topics

Other Important Topics

� n-body problem
� Hamiltonian systems
� Lagrangian points
� Modern celestial mechanics
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Other Important Topics

Thank You!
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