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Differential Equations

We often study autonomous differential equations:

ẋ = f (x)

A solution to this equation is a differentiable function

x : I → X

that satisfies the equality

d

dt
x(t) = f (x(t))

on some interval I ∈ R.
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Flows and Differential Equations

A flow is a continuous map ϕ : R× X → X satisfying the
group properties

ϕ(0, x) = x

ϕ(s, ϕ(t, x)) = ϕ(s + t, x)

The flow relates to the differential equation

ẋ = f (x)

by letting ϕ(t, x0) correspond to the solution x(t) with the
initial condition x(0) = x0.
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Differential Inclusions

We want to study differential inclusions

ẋ ∈ F (x)

where F is a set-valued map.

A solution to this differential inclusion is an absolutely
continuous function

x : I → Rn

that satisfies the inclusion

d

dt
x(t) ∈ F (x(t))

almost everywhere on some interval I ∈ R.
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Filippov Systems Introduction

Filippov Domain:

Start with open set
G ⊂ Rn

G divided into open
domains Gi

Σ is set of boundary
points of the Gi

G is the union of all Gi

and Σ

Filippov Convex Combination [4]:

Continuous fi (x) defined in Gi

For x ∈ Gi , F (x) = {fi (x)}
For x ∈ Σ, F (x) is the convex
hull of all fi (x) such that x is
a boundary point of Gi

This defines a differential
inclusion ẋ ∈ F (x)
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Filippov Systems Introduction

Σ

G1

G2

f1

f2

Figure: A planar Filippov system with R2 split into two regions.

ẋ ∈ F (x) =


f1(x), x ∈ G1

f2(x), x ∈ G2

{αf2(x) + (1− α)f1(x) : α ∈ [0, 1]} x ∈ Σ



Filippov
Systems and
Multiflows

Cameron
Thieme

Introduction:
Filippov
Systems and
Goals

Welander’s
Ocean Box
Model

Behaviour of
Filippov
Systems

Multiflows

Conclusions
and Future
Work

Behavior Near Splitting Boundary
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Figure: Crossing Region
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Figure: Attracting Region
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Figure: Repelling Region
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Goal: Generalize Flows for Filippov Systems

Filippov systems have:

Intersecting trajectories

Non-unique solutions

This prevents Filippov systems from being flows:

No group action

Cannot be a map

Richard McGehee’s Idea: Multiflows
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Welander’s Model: Atlantic Overturning Circulation

Atlantic meridional overturning circulation has changed
convective strength in the past. Image: [16]

Welander’s goal: Prove these changes could be internally
driven, instead of relying on outside forcing [15].
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Welander’s Model

Figure: Deep Ocean and Shallow
Ocean [15]

Ocean circulation box model:
Planar system, salt (S) and
temperature (T) are dynamic
variables.

Welander’s goal: Show
internally driven ocean
convection strength
oscillations, instead of relying
on outside forcing.
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Welander’s Model

Figure: Deep Ocean and Shallow
Ocean [15]

Ṫ = kT (TA − T )− k(ρ)T

Ṡ = kS (SA − S)− k(ρ)S

ρ = −αT + γS

Smooth Version:

k(ρ) =
1

π
tan−1(

ρ− ε
a

) +
1

2

Nonsmooth Version:

k(ρ) =

{
k1 ρ > ε

0, ρ < ε

Σ: Line ρ = ε
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Welander’s Model: Fused Focus Bifurcation
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(d) Periodic Orbit, ε < 0

Figures and Analysis: Julie Leifeld [7]
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Welander’s Model: Border Collision Bifurcation
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A prominent paper [6] claimed to classify all planar bifurcations
in Filippov systems, but missed this one [7].
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Behaviour of Filippov Systems

We want to understand some of the strange behaviour of
Filippov systems.

Our goal is to see what features of a flow must be changed in
order to fit Filippov systems.
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Almost Everywhere Condition

Solutions typically lose differentiabililty when they reach the
splitting boundary Σ. For this reason, we only demand that
ẋ ∈ F (x) almost everywhere.
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Figure: Solution x(t) to ẋ ∈ F (x)
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Intersecting Trajectories
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Figure: Intersecting Trajectories in a simple Filippov System

Cannot obey group properties:

φt(φ−t(x)) = φt−t(x) 6= φ0(x) = x
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Intersecting Trajectories
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Figure: Intersecting Trajectories in a Filippov System

Solution: Monoid Action (Semiflow)
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Multiple Solutions
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Figure: Four different solutions of a Filippov system

˙(x , y) ∈ H(x , y) :=


{(1, x)}, y > 0

{(1, β) : β ∈ [−x , x ]} y = 0

{(1,−x)}, y < 0
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Dealing with Nonuniqueness
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Figure: Four different solutions of
a Filippov system

Can we ignore nonuniquness?

”Repelling sliding motion
cannot be reached by follow-
ing the system flow forward in
time.” [2]

The example to the left (as well
as Welander’s model) indicate
that this method is not robust.
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Dealing with Nonuniqueness

We can follow a unique vector
during sliding motion (the
vector that stays on the
splitting boundary).

This approach is followed by
Kuznetsov et. al.[6]

The phase portraits are
different in forward and
backwards time.
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Figure: A unique sliding solution is
chosen
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Nearby Smooth Systems

We often want to use
nonsmooth systems to
understand nearby smooth
systems [5].
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Figure: Four different solutions of
a Filippov system
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Figure: ˙(x , y) = (1, tanh(γy)x)

As γ →∞, this system limits
to the Filippov system on the
left.
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Theorems about Solutions

For a Filippov system ẋ ∈ F (x) on an open domain G , the
following results hold [4]:

For each initial condition, solutions exist on some interval
(−δ, δ).

|F (x)| is bounded in a compact domain.

Solutions lying in a compact domain are equicontinuous.

Solutions are continued up to the boundary of any
compact domain.

The limit of a uniformly convergent sequence of solutions
is a solution.
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Multiflows

A multiflow is an object that is intended to generalize the
concept of flows to Filippov systems.

Before we define multiflows, we need some background.
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Relations

A relation on a topological space X is a subset of X × X .

If F and G are both relations on X , then we can define the
composition:

F ◦ G = {(x , z) ∈ X × X : ∃y ∈ X s.t. (x , y) ∈ G , (y , z) ∈ F}
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The Closed Graph Theorem

Let X be a topological space and let Y be a Hausdorff space.

f : X → Y is continuous

↓

The graph of f is closed
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The Closed Graph Theorem

Let X be a topological space and let Y be a compact
Hausdorff space.

f : X → Y is continuous

l

The graph of f is closed
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Graph of a Flow

The graph of a flow φ on a compact set X is a closed subset of
R× X × X such that for each t ∈ R, φt contains exactly one
pair (x , y) ∈ X × X for each x ∈ X and the group properties
hold:

φ0 = {(x , x) : x ∈ X}
φt+s = φt ◦ φs

Where φt := {(x , y) ∈ X × X : (t, x , y) ∈ φ}
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Can we modify flows to fit Filippov Systems?

The graph of a flow φ on a compact set X is a closed subset of
R+ × X × X such that for each t ∈ R, φt contains exactly one
pair (x , y) ∈ X × X for each x ∈ X and the group monoid
properties hold:

φ0 = {(x , x) : x ∈ X}
φt+s = φt ◦ φs

Where φt := {(x , y) ∈ X × X : (t, x , y) ∈ φ}
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Multiflows

A multiflow Φ on a compact space X is a closed subset of
R+ × X × X satisfying the monoid properties:

Φ0 = {(x , x) : x ∈ X}
Φt+s = φt ◦ φs

Where Φt := {(x , y) ∈ X × X : (t, x , y) ∈ Φ}
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Filippov Systems give rise to Multiflows

Theorem: Let ẋ ∈ F (x) be a
Filippov system on an open
domain G ⊂ Rn, and let
K ⊂ G be compact. Let Φ be
the set of all points

{(T , a, b) ∈ R+ × K × K}

such that there exists a solution
x : [0,T ]→ K satisfying
x(0) = a and x(T ) = b.

Then the set Φ is a
multiflow over K .

Figure: Once solutions leave K ,
they are no longer included in Φ.
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Concepts Related to Multiflows

Several other researchers have attempted to generalize the
concept of a flow to systems with nonuniqueness [11][14][3][1].

The set-valued dynamical system described by Oyama [13] is
particularly close to multiflows.

The key distinction between multiflows and these other objects
is that multiflows do not demand that solutions exist for all
time.
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Concepts Related to Multiflows

A correspondence Φ : [0,∞)× X → X on a compact subset
X ⊂ Rn is a set-valued dynamical system [13] if it meets the
following conditions:

1 Φt(x) is nonempty for all t, x

2 Φ0(x) = x

3 Φt(Φs(x)) = Φt+s(x)

4 Φ is compact valued and upper-semicontinouous.

Filippov systems cannot be described by this object because
their solutions do not (in general) remain in a compact set for
all time.
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Future Work

Rewrite Filippov’s Proofs
Generalize some topological concepts from flows to multiflows:

ω-limit sets [12]

Chain Recurrence

Attractors and Attractor Blocks [12]

Conley Index Theory
Semicontinuity of Multiflows
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