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An ecological problem

How can one model the carbon
content of an ecosystem with

randomly occurring disturbances
of random severity?
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Today’s plan

1 Discrete time and state
introduction

2 Continuous time and state
Semistochastic model
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Questions to keep in mind

1 What information can we
extract from equilibrium
distributions?

2 Why do convergence rates
matter?
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Markov chains

1 X : State space

2 µ0 : Initial distribution

3 Q : Transition matrix

JAMES BRODAConvergence and Equilibrium for Stochastic Models of Ecological Disturbances



Two-state Markov chain

1 X : {Fire, No Fire}
2 µ0 : Is there a fire now?

3 Q : Environment, beliefs
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Notebook example
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Evolved distributions

Probability vectors

µn =

(
Prob. of fire on nth day

Prob. of no fire on nth day

)T

Initial probability vector: µ0

µn = µ0
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n

= µ0Qn
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Equilibrium distributions

Limiting:

lim
n→∞

µn = π for any µ0

Invariant:

µ0 = π ⇒ µn = π for all n > 0

Note: These two characterizations are not always equivalent!
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An invariant approach

π = πQ

= π
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π is a left-eigenvector of the transition matrix, Q,
with eigenvalue 1.

π =
(1

6 ,
5
6

)
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Equilibrium distributions

Question:
What information can we extract from this
equilibrium distribution?

Answer:
In the long run, there will be fires on 1 out of
6 days.
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Realization of Markov chain
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Days
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What about the other eigenvalue?

The eigenvalues of Q satisfy λ1 = 1 and |λ2| = 1− β with
β = |1− 1

10 −
1
50 | = 6

50 .

Q =

 9
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50
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50


The other eigenvalue is related to the rate at which an
arbitrary initial distribution, µ0, converges to π. One can
show

dTV (µn, π) ≤ (1− β)n .
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Total variation distance

Given probability distributions, µ and ν:

dTV (µ, ν) = sup
A
|µ(A)− ν(A)|

dTV (µ, ν) = sup
0≤f≤1

|Eµ(f )− Eν(f )|
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Total variation distance

X

t

1
2dTV( , t)
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Total variation distance

X

t

dTV( , t)
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Total variation distance
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Convergence rates

Question:
Why do convergence rates matter?

Answer:
The “long run” may be a long time coming.

Markov chains are “memoryless”, but need
time to forget.
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Evolution of probabilities
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Evolution of probabilities
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FAST:
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FAST:
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FAST:
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Rewind

How can one model the carbon
content of an ecosystem and

account for randomly occurring
disturbances of random severity?
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Semistochastic model for the carbon content of an
ecosystem

Model design:

Carbon content increases deterministically
between disturbances.

Fires occur at random times and release
carbon.

Severity of fires is random.
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Semistochastic model
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Components of semistochastic model

Growth Rate – Deterministic evolution
dx
dt

= g(x) , x(t) = φt(x0)

Disturbance Rate – Probability per unit time

Λ(x)

Disturbance Kernel – Severity of disturbances

P(x ,A)
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Components of semistochastic model

Growth Rate – Deterministic evolution
dx
dt

= g(x) , x(t) = φt(x0)

Disturbance Rate – Probability per unit time

Λ(x)

Disturbance Kernel – Severity of disturbances

P(x ,A)

This state dependence is important!!
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Disturbance kernel

x

A
P(x,A)
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Stochastic flow-kick model

t

x0

X
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Many paths
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X
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Distribution of Xt

X

t
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Evolution operator

Initial Distribution:

µ0

Evolved Distributions:

µ0 → µt =: µ0U t
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JAMES BRODAConvergence and Equilibrium for Stochastic Models of Ecological Disturbances



A direct approach: Differential forward equation for
time-dependent density

For absolutely continuous distributions and disturbance kernel,

dµt

dx
= ρ(x , t) , P(x , dy) = p(x , y)dy

∂tρ(x , t) = −∂x (g(x)ρ(x , t))−Λ(x)ρ(x , t)+

∫
p(y , x)Λ(y)ρ(y , t) dy .
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A direct approach: Differential forward equation for
time-dependent density

For absolutely continuous distributions and disturbance kernel,

dµt

dx
= ρ(x , t) , P(x , dy) = p(x , y)dy

∂tρ(x , t) = −∂x (g(x)ρ(x , t))−Λ(x)ρ(x , t)+

∫
p(y , x)Λ(y)ρ(y , t) dy .

Deterministic evolution
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A direct approach: Differential forward equation for
time-dependent density

For absolutely continuous distributions and jump kernel,

dµt

dx
= ρ(x , t) , P(x , dy) = p(x , y)dy

∂tρ(x , t) = −∂x (g(x)ρ(x , t))−Λ(x)ρ(x , t)+

∫
p(y , x)Λ(y)ρ(y , t) dy .

Disturbance occurrence
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A direct approach: Differential forward equation for
time-dependent density

For absolutely continuous distributions and jump kernel,

dµt

dx
= ρ(x , t) , P(x , dy) = p(x , y)dy

∂tρ(x , t) = −∂x (g(x)ρ(x , t))−Λ(x)ρ(x , t)+

∫
p(y , x)Λ(y)ρ(y , t) dy .

Disturbance severity
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Fundamental questions

Does there exist a distribution π on X with

dTV (µt , π)→ 0 as t →∞?

Given δ > 0, how large must t be so that

dTV (µt , π) < δ ?
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Evolved distributions

X

t

dTV( , t)
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Evolved distributions
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Evolved distributions
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JAMES BRODAConvergence and Equilibrium for Stochastic Models of Ecological Disturbances



Evolved distributions
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dTV( , t)
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Equilibrium distributions

Question:
What information can we extract from this
equilibrium distribution?

Answer:
We can compute the fraction of time (in the
long run) that the process Xt spends in any
measurable subset of our state space.
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Theorem (B.)
Under appropriate assumptions, Xt is uniformly
ergodic with a unique stationary distribution, π,
and

dTV (µt , π) ≤ (1− β)t

for any initial distribution µ0.

Note: The value of β is explicitly constructed.
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How is β computed?

1 Discretize the process (in time).

2 Develop minorization for the discretization.

3 Deduce bounds for the original
continuous-time process.
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Discrete time transition kernel

x

A
U∆t(x,A)
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Uniform minorization

Ingredients:

1 Probability measure η on X
2 β > 0

With
U∆t(x ,A) ≥ βη(A)

for any measurable set A and all x ∈ X .
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Weak formulation

Let f : X 7→ R be an observable, then

〈µ∆t , f 〉 = 〈µ0U∆t , f 〉
= 〈µ0,U∆t f 〉

with
[U∆t f ](x) ..= E[f (X∆t) |X0 = x ]

and
〈µ0,U∆t f 〉 =

∫
[U∆t f ](x)dµ0(x)
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Alternative characterization of minorization

The minorization condition

U∆t(x ,A) ≥ βη(A)

is equivalent to requiring for any nonnegative
observable f , and for all x ∈ A,

[U∆t f ](x) ≥ β

∫
f (y)dη(y) .
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Infinitesimal generator

To control the discrete-time evolution operator, U∆t , we
can study the infinitesimal generator L of U t .

L acts on observables, f , according to

[Lf ](x) = lim
t↘0

U t f (x)− f (x)

t
.

In our case,

[Lf ](x) = f ′(x)g(x) + Λ(x)

∫
P(x , dy)[f (y)− f (x)] .
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0 ∆t

x

φ∆t(0)

φ∆t(x)
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Uniform minorization for compact one-dimensional
state spaces

1 dη
dx = ∆t−ψ(0,x)

C1
1{0 ≤ x ≤ φ∆t(0)}

2 β∆t = e−λ∆tC2

φ∆t (0)∫
0

[∆t − ψ(0, x)] dx

with ψ defined by

x1 = φt(x0) ⇐⇒ t = ψ(x0, x1)

and
λ ≥ Λ(x) for all x ∈ X
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Optimal ∆t

Plots of (1− β∆t )
bt/∆tc vs. t for various ∆t
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Convergence rates

Question:
Why do convergence rates matter?

Answers:
Determine how long before “long-run” averages are
realized.

Provide guidance for numerical methods of approximating
stationary distributions.

Relevant for sub-sampling techniques used with Monte
Carlo methods in likelihood-based inference.
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Applications of semistochastic /
piecewise-deterministic models

Ecological disturbances

Precipitation models

Growth-fragmentation processes

Human behaviour

Viral reproduction
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