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Abstract. This paper presents a theory of dynamics of closed relations on
compact Hausdorff spaces. It contains an investigation of set valued maps
and establishes generalizations for some topological aspects of dynamical sys-
tems theory, including recurrence, attractor-repeller structure and the Conley
Decomposition Theorem.

1. Introduction

The Conley Decomposition Theorem [3] is one of the most fundamental theorems
in the theory of dynamical systems. In the original setting of flows on compact
metric spaces, Conley introduced a very weak form of recurrence, which he called
“chain recurrence”. Roughly speaking, a point is chain recurrent if it returns to
itself by following the flow for an arbitrarily long time, making arbitrarily small
jumps, or errors, along the way. He then proved the existence of what he termed a
“Liapunov function”, a real-valued function strictly decreasing everywhere except
on components of the chain-recurrent set, where it is constant.

Our main point is to argue that the natural setting for the Conley Decomposition
Theorem is that of iterations of closed relations on compact spaces. (I.e. iterations
of closed subsets of X × X in the product topology.) This case has already been
made by Akin [1]. We provide here more evidence.

The reader may ask what relations have to do with dynamical systems. The
theory of dynamical systems is the study of how systems evolve with time. In the
early history of the subject, time was taken to be continuous, and the evolution
of the system was described by differential equations. The theory was quickly
extended to include discrete time systems, where the evolution of the system was
modeled by iteration of a map f , invertible at first, later noninvertible. If the state
of the system at time t is given by x, then the state of the system at time t + 1
is given by f(x) and the state of the system at time t + k is given by fk(x). If
the map f is invertible, then one can follow the system backward in time via the
inverse of the map, yielding f−k(x) as the state of the system at time t− k.

If the map f is noninvertible, then following the system backward in time re-
quires some interpretation. A point can have a unique preimage, as is the case
for an invertible map, or it can have many preimages, or it can have no preimage.
Following the system backward in time may be possible in a unique way, it may be
possible in many ways, or it may be impossible. However, most of the concepts used
in the study of invertible maps have reasonable extensions. For example, an “orbit”
for an invertible map is a bi-infinite sequence (. . . , f−1(x), x, f(x), f2(x), . . .). For
a noninvertible map, an orbit becomes a sequence (. . . , x−1, x0, x1, x2, . . .), either
finite or infinite, such that xk+1 = f(xk). If the sequence is finite, it is possible to

Date: 16 March 2005.

1



2 R. P. MCGEHEE & T. WIANDT

extend it forward in time to a semi-infinite sequence, but it may not be possible to
extend it backward.

This definition of orbit works just as well for multivalued maps or relations. A
relation on a space X is simply a subset f of X × X. Note that the graph of
a function is a special case of a relation. For a relation, we write y = f(x) as
equivalent to (x, y) ∈ f . An orbit is once again a sequence (. . . , x−1, x0, x1, x2, . . .),
either finite or infinite, such that xk+1 = f(xk). In this case, however, it may not
be possible to extend the sequence either forward or backward in time.

Relations can be composed and hence iterated. If f and g are both relations on
X, then the composition of f and g is the relation

f ◦ g = {(x, z) ∈ X ×X : (x, y) ∈ g and (y, z) ∈ f for some y ∈ X}.
We see that (x, y) ∈ fn if and only if there is an orbit of length n from x to y.

As we discuss below in detail, following a relation backward in time is equivalent
to iterating the transpose of the relation. The transpose of a relation f is the set
{(y, x) : (x, y) ∈ f}, which is itself another relation. Note that the transpose of the
graph of an invertible map is the graph of the inverse of the map.

This discussion of orbits and iteration of relations illustrates one of the main
points of this paper: the extension of the theory of dynamical systems from in-
vertible to noninvertible maps introduces a mathematically unnatural asymmetry
that is corrected by further extending the theory to relations. A noninvertible map
does not have an inverse, and following the system backward in time is very differ-
ent from following it forward in time. However, the graph of a noninvertible map
always has a transpose, and following the system backward in time is equivalent
to iterating this transpose as a relation. So we may as well start with relations in
the first place. Since the transpose of a relation is again a relation, the symmetry
between forward and backward iteration is restored.

One very well studied example for one-dimensional dynamics is the family of
quadratic maps fµ(x) = µx(1− x) on [0, 1]. This noninvertible map can be viewed
as a relation on [0, 1]× [0, 1],

fµ = {(x, y) : y = µx(1− x)}.
This is a closed relation in the product topology. Its transpose is also a closed
relation,

f∗µ = {(x, y) : x = µy(1− y)}.
We will investigate this example in more detail in Section 15.

The concept of a “pseudo-orbit” also fits naturally into the setting of relations.
An ε-pseudo-orbit for a map f on a metric space X is a finite or infinite sequence
satisfying d(f(xk), xk+1) ≤ ε. For maps, a point is called “chain-recurrent” if there
is an ε-pseudo-orbit from the point back to itself for arbitrarily small positive ε.
One can fatten up the graph of f to a relation g by letting

g = {(x, y) : d(y, f(x)) ≤ ε}.
Note that an orbit for the relation g is exactly an ε-pseudo-orbit for the map f .
Once again, the existing theory of dynamical systems leads naturally to the study
of relations.

Conley himself introduced a relation into his development of the decomposition
theorem. A point y is related to a point x if there exists an ε-pseudo-orbit from x
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to y for arbitrarily small positive ε. Thus a point is chain-recurrent if and only if
it is related to itself by the Conley relation.

For a map f on a space X, the associated Conley relation is indeed a relation
on X. As we show below, the notion of the Conley relation can be extended to the
case when f is itself a relation on X, yielding again a relation on X. (See Section
8.) Starting with relations instead of maps leads to a satisfying mathematical
completeness.

We like to think of the Conley relation as the “infinite iterate” of the map or
relation, since it provides information about the ultimate behavior of the dynamical
system as time goes to infinity. This thought is made more precise below, where we
denote the Conley relation for f by fΩ. In the process of developing this notation,
we introduce two more relations f∞ and fω, which can also be thought of as
“infinite iterates”. Roughly speaking, all three relations f∞, fω, and fΩ provide
information about the ultimate behavior of the iterates of f . The relation f∞ takes
no topology into account, whereas fω takes into account the topology of the state
space, and fΩ takes into account a topology on the space of relations.

The relations f∞ and fω are interesting in their own right. As mentioned above,
a point is chain recurrent if and only if it is related to itself by the Conley relation.
In other words, the chain recurrent set is exactly the fixed point set of the relation
fΩ. We show below that the fixed point set of f∞ is the set of periodic points,
while the fixed point set of fω is the nonwandering set.

Relations have been used by other authors in the study of dynamical systems.
Akin [1] developed a general theory for iterations of relations on compact metric
spaces. A theory of entropy for relations was created by Langevin, Walczak and
Przyticky [6, 7]. Barnsley [2] studied fractals generated by contraction mapping
systems, which are a special class of relations. McGehee and Sander [9] gave a new
proof of the stable manifold theorem using the abstract setting of relations. Sander
[11] developed a notion for hyperbolicity for noninvertible maps and relations.

The work for this paper began while McGehee was visiting the University of
Colorado in 1990. McGehee gratefully acknowledges the support of the Ulam Pro-
fessorship program at Colorado. The work evolved over the years, and both McGe-
hee and Wiandt received support from the Geometry Center at the University of
Minnesota.

Although not presented in this paper, Wiandt has established the existence of a
Liapunov function for any closed relation on a second countable compact Hausdorff
space [13], thus completing the extension of Conley’s theorem to this very general
setting.

In this paper, first we develop basic notions about set-valued maps. We will
need these results later, because relations generate set-valued maps in a natural
way. After obtaining these basic results, we will investigate what properties these
relation-generated set-valued maps have and we also generalize some of the basic
concepts of dynamical systems theory for the setting of relations. In Sections 6-8
the fundamental constructions are introduced. These constructions are the main
tools in the investigation of limit behavior and recurrence. In Sections 10-13 we
exploit the previous constructions again to develop the theory about attractors and
repellers and we prove the generalization of Conley’s decomposition theorem. The
last two sections contain some simple illustrating examples.
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2. Set-valued maps

In this section we formulate the setting of the paper and give the motivation for
the study of set-valued maps, then we state some elementary results as well.

Definition 2.1. A relation on a set X is a subset of X×X. The set of all relations
on X will be denoted by R(X).

Definition 2.2. If f is a relation on X and S ⊂ X, then the image of S under f
is the set

f(S) ≡ {y ∈ X : there exists x ∈ S satisfying (x, y) ∈ f}.
A relation f on a set X therefore can be thought of as a set-valued function

on X. A slightly different viewpoint is that a relation f on a set X induces a
map on the set of subsets of X, denoted by 2X throughout the paper. (Note that
R(X) = 2X×X . We will use both notations in the paper.)

Definition 2.3. If f is a relation on X, then the induced map f is the map

f : 2X → 2X : S 7→ f(S).

In order to examine the behavior of relations on sets, the previous definition
suggests that first we develop some theory about maps on the set of subsets of a
set. We will define now some elementary concepts and basic notions. First, we
will deal only with general sets without a topological structure, then we establish
important notions in the case when X is a topological space.

The first lemma is an elementary result about intersections.

Lemma 2.4. If S ⊂ 2X and T ⊂ 2X , then the following statements hold.
(a) If S ⊂ T, then

⋂
T ⊂ ⋂

S.
(b) If for every T ∈ T there exists an S ∈ S such that S ⊂ T , then

⋂
S ⊂ ⋂

T.

We will now define some self-explanatory notions for general maps on the set of
subsets of a set. Although relations induce maps from 2X to 2X , we will state our
results a little bit more generally, i.e. we will consider maps from 2X to 2Y , where
X and Y are (possibly) different sets. This way we will be able to apply our results
later at the construction of the composition map.

Definition 2.5. A map Θ : 2X → 2Y is said to preserve inclusion if and only if
Θ(S) ⊂ Θ(T ) whenever S ⊂ T ⊂ X. The map is said to preserve union if and only
if for all S ⊂ 2X

Θ(
⋃

S) =
⋃{Θ(S) : S ∈ S}.

The map is said to preserve intersection if and only if for all S ⊂ 2X

Θ(
⋂

S) =
⋂{Θ(S) : S ∈ S}.

The following lemma is an immediate consequence of the definitions.

Lemma 2.6. The map Θ : 2X → 2Y preserves inclusion if and only if for all
S ⊂ 2X

Θ(
⋂

S) ⊂ ⋂{Θ(S) : S ∈ S}.
Now if we have a map f : X → Y , then this map induces the following well-

known map on the set of subsets:

f−1 : 2Y → 2X : S 7→ {x : f(x) ∈ S}.
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Also, it will not cause any confusion if we denote another induced set-valued
map, namely

f : 2X → 2Y : S 7→ f(S)
with the same letter f . We will need the following simple fact later.

Lemma 2.7. If f : X → Y is a map, S ⊂ X and T ⊂ Y , then

f(f−1(T )) ⊂ T and S ⊂ f−1(f(S)).

The next elementary lemma can be deduced easily from the definitions.

Lemma 2.8. If f : X → Y is a map, then f−1 preserves inclusion, union and
intersection.

The usual “dot” notation will be used for two-variable maps: fixing one variable,
the dot denotes the place of the variable in the resulting one-variable map.

Definition 2.9. A map Θ : 2X × 2X → 2Y is said to preserve inclusion if and only
if for all S ⊂ X the maps Θ(·, S) and Θ(S, ·) preserve inclusion. The map is said
to preserve union if and only if for all S ⊂ X the maps Θ(·, S) and Θ(S, ·) preserve
union. The map is said to preserve intersection if and only if for all S ⊂ X the
maps Θ(·, S) and Θ(S, ·) preserve intersection.

The next four lemmas follow readily from the definitions.

Lemma 2.10. The map Θ : 2X × 2X → 2Y preserves inclusion if and only if
Θ(S1, S2) ⊂ Θ(T1, T2) whenever S1 ⊂ T1 ⊂ X and S2 ⊂ T2 ⊂ X.

Lemma 2.11. The map Θ : 2X × 2X → 2Y preserves inclusion if and only if for
all S ⊂ 2X and T ⊂ 2X

Θ(
⋂

S,
⋂

T) ⊂ ⋂{Θ(S, T ) : S ∈ S and T ∈ T}.
Lemma 2.12. The map Θ : 2X × 2X → 2Y preserves union if and only if for all
S ⊂ 2X and T ⊂ 2X

Θ(
⋃

S,
⋃

T) =
⋃{Θ(S, T ) : S ∈ S and T ∈ T}.

Lemma 2.13. The map Θ : 2X × 2X → 2Y preserves intersection if and only if
for all S ⊂ 2X and T ⊂ 2X

Θ(
⋂

S,
⋂

T) =
⋂{Θ(S, T ) : S ∈ S and T ∈ T}.

From now on, we will assume that X and Y are topological spaces. The addi-
tional structure will allow us to introduce new important notions for maps on the
set of subsets.

First we introduce the usual topological notations and define the neighborhood-
structure.

If S is a subset of a topological space X, then the closure of S is denoted by
S, the interior of S is denoted by So and the complement of S is denoted by Sc.
A neighborhood of S is a set U containing S in its interior. That is, there exists
an open set V , such that S ⊂ V ⊂ U . If U is itself open, it is called an open
neighborhood of S; if U is closed, it is called a closed neighborhood of S.

For a given subset S of the topological space X the set of open neighborhoods
will be denoted by No(S), the set of neighborhoods by N(S) and the set of closed
neighborhoods by N(S).

Before stating the results, we need one more construction.
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Definition 2.14. If S is a family of subsets of a fixed set, then S is called directed
if and only if the following statement holds. If S1 ∈ S and S2 ∈ S, then there
exists S3 ∈ S satisfying S3 ⊂ S1 ∩ S2.

Now we can start to establish the basics of set valued maps on topological spaces.

Definition 2.15. If X and Y are topological spaces, then a map Θ : 2X → 2Y is
said to preserve open sets if and only if Θ(S) is open whenever S ⊂ X is open. The
map is said to preserve closed sets if and only if Θ(S) is closed whenever S ⊂ X is
closed.

The next notion is fundamental.

Definition 2.16. If X and Y are topological spaces, then a map Θ : 2X → 2Y is
called semicontinuous if and only if it satisfies the following conditions.

(a) Θ preserves inclusion.
(b) Θ preserves closed sets.
(c) If K is a directed family of closed subsets of X, then

Θ(
⋂

K) =
⋂{Θ(K) : K ∈ K}.

The following lemma regards the composition of semicontinuous maps.

Lemma 2.17. If X, Y and Z are topological spaces and Θ : 2X → 2Y and
Ψ : 2Y → 2Z are semicontinuous, then so is Ψ ◦Θ.

Proof. Properties (a) and (b) are immediate, to check property (c) we only have to
prove that if K is a directed family of closed subsets, then {Θ(K) : K ∈ K} is also
a directed family of closed subsets. But this is true because of properties (a) and
(b) for Θ. ¤

We will also need the two-variable version of these properties.

Definition 2.18. If X and Y are topological spaces, then a map Θ : 2X×2X → 2Y

is said to preserve open sets if and only if for all open S ⊂ X the maps Θ(·, S) and
Θ(S, ·) preserve open sets. The map is said to preserve closed sets if and only if for
all closed S ⊂ X the maps Θ(·, S) and Θ(S, ·) preserve closed sets.

Definition 2.19. If X and Y are topological spaces, then a map Θ : 2X×2X → 2Y

is called semicontinuous if and only if it satisfies the following conditions.
(a) Θ preserves inclusion.
(b) Θ preserves closed sets.
(c) If K and L are directed families of closed subsets of X, then

Θ(
⋂

K,
⋂

L) =
⋂{Θ(K,L) : K ∈ K and L ∈ L}.

The next lemma is the two-variable counterpart of Lemma 2.17.

Lemma 2.20. If X, Y and Z are topological spaces and Θ : 2X × 2X → 2Y and
Ψ : 2Y → 2Z are semicontinuous, then so is Ψ ◦Θ.

Proof. It is easy to check that Ψ ◦Θ preserves inclusion and closed sets. Let K and
L be directed families of closed subsets of X. By properties (a) and (b) for Θ and
Lemma 2.4 {⋂{Θ(K, L) : L ∈ L} : K ∈ K} is a directed family of closed subsets.
Because Θ preserves inclusion, we also know {Θ(K, L) : L ∈ L} is a directed family
for any K ⊂ X. These imply that

Ψ(Θ(
⋂

K,
⋂

L)) =
⋂{Ψ(Θ(K, L)) : K ∈ K and L ∈ L}
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and we verified property (c) for Ψ ◦Θ. ¤

The next two lemmas follow immediately from the definitions and Lemma 2.13.

Lemma 2.21. If X and Y are topological spaces and Θ : 2X → 2Y preserves
inclusion, intersection and closed sets, then Θ is semicontinuous.

Lemma 2.22. If X and Y are topological spaces and Θ : 2X × 2X → 2Y preserves
inclusion, intersection and closed sets, then Θ is semicontinuous.

The convenient choice of topology for our investigation will be compact Hausdorff
topologies. We recall that these spaces are normal and compact subsets are closed
and vice versa. Also, the (closed) neighborhoods of a fixed set form a directed
family of (closed) subsets.

The proof of the following two lemmas are elementary.

Lemma 2.23. If S is a directed family of closed subsets of a compact Hausdorff
space X and K ⊂ ⋂

S, then the following statements are equivalent.
(a) K =

⋂
S.

(b) If V ∈ N(K), then there exists S ∈ S such that V ∈ N(S).

Lemma 2.24. If K is a closed subset of a compact Hausdorff space X, then

K =
⋂

N(K).

The next theorem sheds light on the name “semicontinuous” and gives a char-
acterization for this property.

Theorem 2.25. If X and Y are compact Hausdorff spaces and Θ : 2X → 2Y

preserves inclusion and closed sets, then the following two statements are equivalent.
(a) Θ is semicontinuous.
(b) If W ∈ N(Θ(S)), where S ⊂ X is closed, then there exists U ∈ N(S) such

that Θ(U) ⊂ W .

Proof. (a)⇒(b): Assume Θ is semicontinuous, let S ⊂ X be a closed set and W ⊂ Y
satisfy W ∈ N(Θ(S)). Now since N(S) is a directed family satisfying

⋂
N(S) = S

by Lemma 2.24 and since Θ is semicontinuous, it follows that

Θ(S) =
⋂

U∈N(S)

Θ(U).

Since Θ preserves inclusion and closed sets, the set {Θ(U) : U ∈ N(S)} is also
a directed family of closed sets, but then Lemma 2.23 implies the existence of
U ∈ N(S) such that Θ(U) ⊂ W , and the implication (a)⇒(b) is established.

(b)⇒(a): Let K be a directed family of closed subsets of X, and let K ≡ ⋂
K.

Since Θ preserves inclusion, the inclusion

(1) Θ(K) ⊂
⋂

L∈K

Θ(L)

follows immediately. Since Θ preserves closed sets, Θ(K) is closed and Lemma 2.24
implies that

Θ(K) =
⋂

W∈N(Θ(K))

W.
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Now if W ∈ N(Θ(K)), then by assumption there exists a U ∈ N(K) such that
Θ(U) ⊂ W . Since U ∈ N(K) and K =

⋂
K, by Lemma 2.23 there exists L ∈ K,

such that U ∈ N(L). Then Θ(L) ⊂ Θ(U) ⊂ W and by Lemma 2.4 we get
⋂

L∈K

Θ(L) ⊂
⋂

W∈N(Θ(K))

W = Θ(K),

which, with inclusion (1), implies that
⋂

L∈K

Θ(L) = Θ(K) = Θ(
⋂

K),

i.e., Θ is semicontinuous. The implication (b)⇒(a) is established, and the proof is
complete. ¤

We close this section with the following theorem, which will be very important
later.

Theorem 2.26. If X and Y are compact Hausdorff spaces and f : X → Y is a
continuous map, then the induced map f : 2X → 2Y : S 7→ f(S) is semicontinuous.

Proof. The induced map preserves inclusion and since X is compact, f is continuous
and Y is Hausdorff, the induced map preserves closed sets as well. Now let S ⊂ X
be closed and W ⊂ Y satisfy W ∈ N(f(S)). By definition, f(S) ⊂ W o. Since f is
continuous, U ≡ f−1(W o) is open. Now by Lemmas 2.7 and 2.8

S ⊂ f−1(f(S)) ⊂ f−1(W o) = U,

which implies S∩U c = ∅. This means S and U c are disjoint closed sets in a normal
space, so there exist open sets V and T in X, such that S ⊂ T , U c ⊂ V and
V ∩ T = ∅. Then V c is closed and

S ⊂ T ⊂ V c ⊂ U,

where T is open, but this means V c ∈ N(S) and using Lemmas 2.7 and 2.8 again
we conclude

f(V c) ⊂ f(U) = f(f−1(W o)) ⊂ W o ⊂ W.

Therefore, the induced map f satisfies statement (b) of Theorem 2.25, which implies
that f is semicontinuous and completes the proof. ¤

3. Relations on sets

In this section we recall the setting of the paper and state some elementary
results for relations on arbitrary sets. These results also can be found in [8]. We
saw the definition of a relation on a set X and the definition of the image of a
subset of X under a relation. The image of a set consisting of a single point occurs
often enough to warrant the following specific notation: f(x) ≡ f({x}).

We also saw how the relation induces a map on the set of subsets. It is easy to
check that this induced map preserves inclusion and union.

Lemma 3.1. If f is a relation on X, then the induced map f preserves inclusion
and union.
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The standard projection maps will be useful in the discussion. For i = 1, 2 denote

πi : X ×X → X : (x1, x2) 7→ xi.

The following lemmas are elementary, they can be checked easily by the defini-
tions.

Lemma 3.2. If f is a relation on X and S ⊂ X, then

f(S) = π2(π−1
1 (S) ∩ f).

Lemma 3.3. If f is a relation on X, S ⊂ X and T ⊂ X, then f(S) ⊂ T if and
only if (S × T c) ∩ f = ∅.
Lemma 3.4. If f and g are relations on X and S ⊂ X, then g(S) ⊂ f(S) whenever
g ⊂ f .

Lemma 3.5. If F ⊂ R(X) and S ⊂ X, then the following properties hold.
(a) (

⋃
F)(S) =

⋃{f(S) : f ∈ F}.
(b) (

⋂
F)(S) =

⋂{f(S) : f ∈ F}.
The following construction will be used extensively throughout the paper.

Definition 3.6. If f is a relation on X and S ⊂ X, then the inverse image of S is
the set

f−1(S) ≡ {x ∈ X : f(x) ⊂ S}.
Remark 3.7. In general, f−1 is not generated by a relation. We can check this
by considering the following example. Let X ≡ {0, 1}, f ≡ {(0, 0), (0, 1), (1, 0)},
S0 ≡ {0}, and S1 ≡ {1}. Were f−1 generated by a relation, Lemma 3.1 would imply
that f−1(S0 ∪ S1) = f−1(S0) ∪ f−1(S1). However, f−1(S0 ∪ S1) = f−1(Y ) = X,
while f−1(S0) ∪ f−1(S1) = {1} ∪ ∅ = {1} 6= X.

We will need the following elementary result later. Notice this is a version of
Lemma 2.7 for relations.

Lemma 3.8. If f is a relation on X and S ⊂ X, then

f(f−1(S)) ⊂ S ⊂ f−1(f(S)).

The next step is to find an “inverse” to the relation in the set of relations. This
will be the transpose.

Definition 3.9. If f is a relation on X, then the transpose of f is the relation f∗

on X defined by
f∗ ≡ {(y, x) ∈ X ×X : (x, y) ∈ f}.

The following two lemmas are elementary.

Lemma 3.10. If f and g are relations on X, then the following properties hold.
(a) (f∗)∗ = f.
(b) If g ⊂ f , then g∗ ⊂ f∗.

Lemma 3.11. If F ⊂ R(X), then the following properties hold.
(a) (

⋃
F)∗ =

⋃{f∗ : f ∈ F}.
(b) (

⋂
F)∗ =

⋂{f∗ : f ∈ F}.



10 R. P. MCGEHEE & T. WIANDT

The inverse image of a set and the image of the set under the transpose are not
identical in general, but they are related by the equality given by the following
lemma.

Lemma 3.12. If f is a relation on X and S ⊂ X, then

f−1(S)c = f∗(Sc).

Later on, we will iterate relations. To do this, we must be able to compose
them. The following definition is the customary generalization of the definition of
composition of maps.

Definition 3.13. If f and g are relations on X, then the composition of g with f
is the relation g ◦ f on X defined by

g ◦ f ≡ {(x, z) ∈ X ×X : ∃ y ∈ X such that (x, y) ∈ f and (y, z) ∈ g}.
The next two lemmas will be important for the iteration of relations.

Lemma 3.14. If f , g and h are relations on X, then

(h ◦ g) ◦ f = h ◦ (g ◦ f).

Lemma 3.15. If f and g are relations on X and S ⊂ X, then

(g ◦ f)(S) = g(f(S)).

We have the following elementary result for the transpose of compositions.

Lemma 3.16. If f and g are relations on X, then

(g ◦ f)∗ = f∗ ◦ g∗.

Definition 3.17. The map

R(X)× R(X) → R(X) : (f, g) 7→ g ◦ f

will be called the composition map.

The composition of two relations can be characterized in terms of the following
projection maps. For each of the three pairs (i, j), where 1 ≤ i < j ≤ 3, let

πij : X ×X ×X → X ×X : (x1, x2, x3) 7→ (xi, xj).

The following lemma is immediate.

Lemma 3.18. If f and g are relations on X, then

g ◦ f = π13(π−1
12 (f) ∩ π−1

23 (g)).

The next lemma can be checked easily by means of the previous construction.

Lemma 3.19. The composition map preserves inclusion and union, i.e. if f1 ⊂
f2 ⊂ X ×X and g1 ⊂ g2 ⊂ X ×X, then g1 ◦ f1 ⊂ g2 ◦ f2 and

⋃
G ◦⋃

F =
⋃{g ◦ f : g ∈ G and f ∈ F}

where F ⊂ R(X) and G ⊂ R(X).
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4. Relations on topological spaces

If X is a topological space, then notions of open and closed subsets of X × X
will be extended to relations, using the product topology on X ×X. Some of the
lemmas of this section can be found in [8].

Definition 4.1. If X is a topological space, then a relation f on X is called open
if and only if f is an open subset of X ×X. It is called closed if and only if f is a
closed subset of X ×X.

The operations topological closure and interior also will be extended to relations
and will be denoted in the same manner, i.e. if f is a relation on a topological space
X, then the closure of f is denoted by f , the interior of f is denoted by fo and the
complement of f is denoted by f c.

The next lemma is elementary.

Lemma 4.2. If f is a relation on a topological space X, then the following state-
ments hold.

(a) f is open if and only if f∗ is open.
(b) f is closed if and only if f∗ is closed.
(c) f∗ = (f)∗.

The notation N(f) will be used to denote the set of all neighborhoods of the
relation f in X × X. Similarly, No(f) will denote the set of open neighborhoods
and N(f) will denote the set of closed neighborhoods. Note the convenient fact
that a neighborhood of a relation is again a relation.

The next three lemma show how the induced map acts on subsets of X.

Lemma 4.3. If f is an open relation on a topological space X and S ⊂ X, then
f(S) is open in X.

Proof. Let y ∈ f(S). There exists a point x ∈ S such that (x, y) ∈ f . By the
definition of the product topology and since f is open, there exist open sets U and
V such that (x, y) ∈ U × V ⊂ f . If η ∈ V , then (x, η) ∈ U × V ⊂ f . Lemma 3.1
therefore implies that η ∈ f(x) ⊂ f(S), which implies that V ⊂ f(S) and completes
the proof. ¤
Lemma 4.4. If f is a relation on a topological space X, K is a closed subset of X
and U ∈ No(f(K)), then there exists φ ∈ No(f) such that φ(K) ⊂ U .

Proof. Let φ ≡ (K×U c)c. Since f(K) ⊂ U , Lemma 3.3 implies that (K×U c)∩f =
φc ∩ f = ∅ and hence that f ⊂ φ. Since φ is open, it is an open neighborhood of
f . It follows that φc ∩ φ = (K × U c) ∩ φ = ∅. Lemma 3.3 therefore implies that
φ(K) ⊂ U , and the proof is complete. ¤
Lemma 4.5. If f is a closed relation on a compact Hausdorff space X, K is a closed
subset of X and U ∈ N(f(K)), then there exists V ∈ N(K) such that f(V ) ⊂ U .

Proof. We can assume U is open. Since f(K) ⊂ U , Lemma 3.3 implies that
(K×U c)∩f = ∅, which means K×U c ⊂ f c. Now f c is open and U c is closed, hence
compact. By a standard result about the product topology, there exist neighbor-
hoods V of K and W of U c such that V × W ⊂ f c. Then (V × U c) ∩ f ⊂
(V ×W )∩ f = ∅, but then f(V ) ⊂ U by Lemma 3.3 and the proof is complete. ¤

The next lemma shows that neighborhoods behave in a way we expect.
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Lemma 4.6. If f is a relation on a topological space X and S ⊂ X, then the
following statements hold.

(a) If φ ∈ No(f), then φ(S) ∈ No(f(S)).
(b) If φ ∈ N(f), then φ(S) ∈ N(f(S)).

Proof. First assume that φ ∈ No(f). Lemma 4.3 implies that φ(S) is open, while
Lemma 3.4 implies that f(S) ⊂ φ(S). Therefore, φ(S) ∈ No(f(S)), and property
(a) is established.

Now assume that φ ∈ N(f). There exists an open neighborhood ψ of f such
that ψ ⊂ φ. Property (a) implies that ψ(S) ∈ No(f(S)), while Lemma 3.4 implies
that ψ(S) ⊂ φ(S). Therefore, φ(S) is a neighborhood of f(S), which establishes
property (b) and completes the proof. ¤

The following two theorems will be fundamental later.

Theorem 4.7. If X is a topological space, then the composition map preserves
open sets.

Proof. Recall Lemma 3.18 and assume that f ∈ R(X) and g ∈ R(X) are open. Since
the projection maps π12 and π23 are continuous, π−1

12 (f) and π−1
23 (g) are open, and

so is their intersection. Since the projection π13 preserves open sets, Lemma 3.18
implies that g ◦ f is open and completes the proof. ¤

Theorem 4.8. If X is a compact Hausdorff space, then the composition map is
semicontinuous.

Proof. Recall Lemma 3.18 again. Since the maps π−1
23 and π−1

12 preserve inclusion,
intersection and closed sets, it follows that the map

Θ : 2X×X × 2X×X → 2X×X×X : (f, g) 7→ π−1
12 (f) ∩ π−1

23 (g)

also preserves inclusion, intersection and closed sets. Lemma 2.22 therefore implies
that Θ is semicontinuous. Since π13 is continuous, Theorem 2.26 implies that the
induced map π13 : 2X×X×X → 2X×X is semicontinuous. Lemma 3.18 implies that
composition can be written as the composition of semicontinuous maps, that is,
g ◦ f= π13(Θ(f, g)). Lemma 2.20 therefore implies that the map (f, g) 7→ g ◦ f is
semicontinuous, and the proof is complete. ¤

Corollary 4.9. If X is a compact Hausdorff space, then the composition map
preserves closed sets, i.e. if f and g are closed relations on X, then so is g ◦ f .

We have the following counterpart of Lemma 4.3 for closed relations.

Lemma 4.10. If f is a closed relation on a compact Hausdorff space X and K ⊂ X
is compact, then f(K) is closed.

Proof. Let y ∈ f(K)c. Then K × {y} ⊂ f c. Since K is compact and f is closed,
there exists V ∈ No(y) such that K × V ⊂ f c, which implies that V ⊂ f(K)c and
we established that f(K) is closed. ¤

The following lemmas will be important later, when we iterate relations. They
are built on each other.

Lemma 4.11. If f and h are relations on a set X and (y, z) ∈ X ×X, then

h ◦ {(y, z)} ◦ f = f∗(y)× h(z).
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Lemma 4.12. If f , g and h are relations on a topological space X, then h ◦ g ◦ f
is open whenever f and h are open.

Proof. By Lemma 3.19, the composition map preserves union, it follows that for
fixed f and h, the map

R(X) → R(X) : g 7→ h ◦ g ◦ f

also preserves union. Therefore, it suffices to prove that whenever (y, z) ∈ g,
h ◦ {(y, z)} ◦ f is open, which, in view of Lemma 4.11, is equivalent to proving that
f∗(y) × h(z) is an open subset of X ×X. Since f is open, f∗ is open by Lemma
4.2. Lemma 4.3 implies that both f∗(y) and h(z) are open, which implies that
f∗(y)× h(z) is open and completes the proof. ¤

Lemma 4.13. If f , g and h are relations on a topological space X, then the fol-
lowing properties hold.

(a) If φ ∈ No(f) and ψ ∈ No(h), then ψ ◦ g ◦ φ ∈ No(h ◦ g ◦ f).
(b) If φ ∈ N(f) and ψ ∈ N(h), then ψ ◦ g ◦ φ ∈ N(h ◦ g ◦ f).
(c) If φ ∈ N(f) and ψ ∈ N(h), then h ◦ g ◦ f ⊂ ψ ◦ g ◦ φ.
(d) If f and h are open, then h ◦ g ◦ f = h ◦ g ◦ f .

Proof. First assume that φ ∈ No(f) and ψ ∈ No(h). Lemma 4.12 implies that
ψ ◦ g ◦ φ is open, while Lemma 3.19 implies that h ◦ g ◦ f ⊂ ψ ◦ g ◦ φ. Therefore,
ψ ◦ g ◦ φ is an open neighborhood of h ◦ g ◦ f , and property (a) is established.

Now assume that φ ∈ N(f) and ψ ∈ N(h). There exist relations φ′ ∈ No(f) and
ψ′ ∈ No(h) such that φ′ ⊂ φ and ψ′ ⊂ ψ. Property (a) implies that ψ′ ◦ g ◦ φ′ ∈
No(h ◦ g ◦ f), while Lemma 3.19 implies that ψ′ ◦ g ◦ φ′ ⊂ ψ ◦ g ◦ φ. Therefore,
ψ ◦ g ◦ φ is a neighborhood of h ◦ g ◦ f , and property (b) is established.

Now let (x, w) ∈ h ◦ g ◦ f . This means there exists a point (y, z) ∈ g such
that (x, y) ∈ f , (y, z) ∈ g and (z, w) ∈ h. Lemma 4.11 implies that (x, w) ∈
h ◦ {(y, z)} ◦ f = f∗(y) × h(z), which implies that (y, z) ∈ f(x) × h∗(w). In view
of Lemma 3.19, it is enough to establish property (c) for open φ and ψ. f ⊂ φ and
h ⊂ ψ, so (y, z) ∈ φ(x) × ψ∗(w). This set is open by Lemma 4.3, so there exists
(η, ζ) ∈ g∩(φ(x)×ψ∗(w)), but then (x,w) ∈ φ∗(η)×ψ(ζ) = ψ◦{(η, ζ)}◦φ ⊂ ψ◦g◦φ
and property (c) is established.

Property (d) is a simple consequence of property (c) and Lemma 3.19. ¤

The last result in this section is the following theorem. It is basically the two-
variable version of Theorem 2.25.

Theorem 4.14. If f and g are closed relations on a compact Hausdorff space X
and h ∈ N(g ◦ f), then there exist f ′ ∈ N(f) and g′ ∈ N(g) such that g′ ◦ f ′ ⊂ h.

Proof. Again, let πij : X ×X ×X → X ×X : (x1, x2, x3) 7→ (xi, xj). It suffices to
assume that h is open. By Lemma 2.24 f =

⋂
N(f) and g =

⋂
N(g). By Lemma

2.21 it follows that

π−1
12 (f) =

⋂

φ∈N(f)

π−1
12 (φ),

π−1
23 (g) =

⋂

ψ∈N(g)

π−1
23 (ψ).
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Let ϕ ≡ π−1
12 (f) ∩ π−1

23 (g) and

K ≡ {π−1
12 (φ) ∩ π−1

23 (ψ) : φ ∈ N(f) and ψ ∈ N(g)}.
Then clearly ϕ =

⋂
K. Now let

η ≡ π−1
13 (h).

Since h is open and π13 is continuous, it follows that η is open. Lemma 3.18 implies
that g◦f = π13(ϕ), which, since g◦f ⊂ h, implies that ϕ ⊂ π−1

13 (g◦f) ⊂ π−1
13 (h) = η.

Therefore, η is a neighborhood of ϕ. Since any φ and ψ are closed and since π12

and π23 are continuous, each π−1
12 (φ) ∩ π−1

23 (ψ) is closed; hence K is a set of closed
subsets of X ×X ×X. Since ϕ =

⋂
K, the compactness of X implies the existence

of a finite subset of K whose intersection is a subset of η. Therefore,
n⋂

k=1

(π−1
12 (φk) ∩ π−1

23 (ψk)) ⊂ η,

where φk ∈ N(f) and ψk ∈ N(g) for k = 1, 2, . . . , n.
Now let f ′ ≡ ⋂n

k=1 φk and g′ ≡ ⋂n
k=1 ψk. Note that f ′ ∈ N(f) and g′ ∈ N(g).

Furthermore,

π−1
12 (f ′) ∩ π−1

23 (g′) = π−1
12 (

⋂n
k=1 φk) ∩ π−1

23 (
⋂n

j=1 ψj) =

= (
⋂n

k=1 π−1
12 (φk)) ∩ (

⋂n
j=1 π−1

23 (ψj)) =
⋂n

k=1

⋂n
j=1(π

−1
12 (φk) ∩ π−1

23 (ψj)) ⊂
⊂ ⋂n

k=1(π
−1
12 (φk) ∩ π−1

23 (ψk)) ⊂ η.

Therefore, Lemma 3.18 implies that

g′ ◦ f ′ = π13(π−1
12 (f ′) ∩ π−1

23 (g′)) ⊂ π13(η) = h

and the proof is complete. ¤

5. Iteration and orbits

To define precisely the nth iterate of a relation it is convenient to introduce the
diagonal (or identity) relation defined as

ι ≡ {(x, x) ∈ X ×X : x ∈ X}.
This relation has the property that for any relation f ,

f ◦ ι = ι ◦ f = f.

Definition 5.1. If f is a relation on a set X and n is a nonnegative integer, then
the relation fn is defined inductively by

f0 = ι and fn = f ◦ fn−1 for n = 1, 2, 3, . . . .

A standard argument and Lemma 3.14 (the associativity of composition) imply
the next lemma.

Lemma 5.2. If f is a relation on a set X and n and m are nonnegative integers,
then fn+m = fn ◦ fm.

The next lemma also follows by standard induction arguments. Property (a) is
implied by Lemma 3.19, while property (b) is implied by Lemma 3.16.

Lemma 5.3. If f and g are relations on a set X and n is a nonnegative integer,
then the following properties hold.
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(a) If g ⊂ f , then gn ⊂ fn.
(b) (fn)∗ = (f∗)n.

Of primary interest in this paper are the relations on compact Hausdorff spaces.
We will use the following lemmas later.

Lemma 5.4. If X is a compact Hausdorff space, then ι is a closed relation.

Lemma 5.5. If f is a closed relation on a compact Hausdorff space X and g ∈
N(f), then there exist ι′, ι′′ ∈ N(ι) such that ι′ ◦ f ◦ ι′′ ⊂ g.

Proof. We will use Theorem 4.14 twice. g ∈ N(f) = N(ι ◦ f), so by Theorem 4.14
there exists f ′ ∈ N(f) and ι′ ∈ N(ι) such that ι′ ◦ f ′ ⊂ g. Now f ′ ∈ N(f) ⊂
N(f) = N(f ◦ ι), so by Theorem 4.14 there exists f ′′ ∈ N(f) and ι′′ ∈ N(ι) such
that f ′′ ◦ ι′′ ⊂ f ′. This means

ι′ ◦ f ◦ ι′′ ⊂ ι′ ◦ f ′′ ◦ ι′′ ⊂ ι′ ◦ f ′ ⊂ g

and the proof is complete. ¤

A basic notion in dynamical systems is that of an orbit. For a map, an orbit is
the succession of images of a point. For a relation, a point may have no or many
image points. An orbit for a relation is one of the possible successions of images.

Definition 5.6. If f is a relation on a set X, then an orbit for f is a pair (p, I),
where I is an interval of Z, either finite or infinite, and where p : I → X satisfies
(pi, pi+1) ∈ f whenever i ∈ I and i + 1 ∈ I.

We have the following natural connection between iterations of a relation and
orbits of a relation. The proof of this theorem can be found in [8].

Theorem 5.7. If f is a relation on a set X, I is an interval of Z and p : I → X,
then the following statements are equivalent.

(a) (p, I) is an orbit for f .
(b) pi+j ∈ f j(pi) whenever j ≥ 0, i ∈ I, and i + j ∈ I.

A very important notion which requires certain care in case of relations is in-
variance. In case of a bijective map f , a set S is called “invariant” if f(S) = S,
“forward invariant” if f(S) ⊂ S and “backward invariant” if f−1(S) ⊂ S. In the
case of relations, some confusion develops: for example, the statements f(S) = S
and f∗(S) = S are identical for bijective maps, but logically independent for re-
lations. The terminology for the different kinds of invariance for relations was
developed in a clear and comprehensive way in [8]. The important parts of this
terminology for us are the following.

Definition 5.8. If f is a relation on a set X and S ⊂ X, then S is called confining
whenever f(S) ⊂ S. It is called invariant whenever f(S) = S.

These notions will be utilized later.

6. The limit relation f∞

Our first construction uses only the relation itself, it does not exploit the structure
of the underlying space.
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Definition 6.1. If f is a relation on a set X, then the limit relation of f is

f∞ ≡
⋂

n≥0

⋃

k≥n

fk.

Theorem 6.2. If f and g are relations on a set X, then the following properties
hold.

(a) If g ⊂ f , then g∞ ⊂ f∞.
(b) (f∞)∗ = (f∗)∞.

Proof. Let g ⊂ f . Lemma 5.3 implies that gk ⊂ fk for every nonnegative integer
k. Therefore, ⋃

k≥n

gk ⊂
⋃

k≥n

fk

for every nonnegative integer n, and then Lemma 2.4 implies that

g∞ =
⋂

n≥0

⋃

k≥n

gk ⊂
⋂

n≥0

⋃

k≥n

fk = f∞

and establishes property (a).
Lemmas 3.11 and 5.3 imply that

(f∞)∗ = (
⋂

n≥0

⋃

k≥n

fk)∗ =
⋂

n≥0

(
⋃

k≥n

fk)∗ =

=
⋂

n≥0

⋃

k≥n

(fk)∗ =
⋂

n≥0

⋃

k≥n

(f∗)k = (f∗)∞,

which establishes property (b) and completes the proof. ¤
Theorem 6.3. If f is a relation on a set X, then the following inclusions hold.

(a) f ◦ f∞ ⊂ f∞.
(b) f∞ ◦ f ⊂ f∞.
(c) f∞ ◦ f∞ ⊂ f∞.

Proof. Lemma 3.19 implies that for any relations f and g,

g ◦ (
⋂

n≥0

⋃

k≥n

fk) ⊂
⋂

n≥0

(g ◦
⋃

k≥n

fk) =
⋂

n≥0

⋃

k≥n

g ◦ fk,

which implies that

(2) g ◦ f∞ ⊂
⋂

n≥0

⋃

k≥n

g ◦ fk.

In particular,
f ◦ f∞ ⊂

⋂

n≥0

⋃

k≥n

f ◦ fk =
⋂

n≥0

⋃

k≥n

fk+1 = f∞,

which establishes inclusion (a).
Now let h ≡ f∗. Theorem 6.2, Lemma 3.16, inclusion (a) of this theorem and

Lemma 3.10 imply that

(h∗)∞ ◦ h∗ = (h∞)∗ ◦ h∗ = (h ◦ h∞)∗ ⊂ (h∞)∗ = (h∗)∞,

which, since Lemma 3.10 implies that h∗ = f , establishes inclusion (b).
A simple induction argument applied to inclusion (b) of this theorem produces

the inclusion
f∞ ◦ fk ⊂ f∞
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for all nonnegative integers k. For g = f∞, inclusion (2) becomes

f∞ ◦ f∞ ⊂
⋂

n≥0

⋃

k≥n

f∞ ◦ fk ⊂
⋂

n≥0

⋃

k≥n

f∞ = f∞.

which establishes inclusion (c) and completes the proof. ¤

Remark 6.4. It is not necessarily true, that f ◦ f∞ = f∞, f∞ ◦ f = f∞ or
f∞ ◦ f∞ = f∞. Let X ≡ [0, 1] and

f ≡ {(1, x) ∈ X ×X : 0 ≤ x ≤ 2
3} ∪

∪ {(x, y) ∈ X ×X : y = 2x− 2
3 , where 1

3 ≤ x ≤ 2
3}.

It is easy to check that

f∞ = {(1, x) ∈ X ×X : 0 ≤ x ≤ 2
3
} ∪ {(2

3
,
2
3
)}.

Clearly (1, 0) ∈ f∞, but (1, 0) /∈ f∞ ◦ f and (1, 0) /∈ f∞ ◦ f∞. Also, g ◦ g∞ 6= g∞

for g ≡ f∗.

7. The ω-limit relation fω

Our second construction will be similar to the first one, but here we will use the
topology of the space the relation is defined on.

Definition 7.1. If f is a relation on a topological space X, then the ω-limit relation
of f is

fω ≡
⋂

n≥0

⋃

k≥n

fk.

Theorem 7.2. If f and g are relations on a topological space X, then the following
properties hold.

(a) f∞ ⊂ fω.
(b) If g ⊂ f , then gω ⊂ fω.
(c) (fω)∗ = (f∗)ω.
(d) fω is closed.

Proof. Property (a) follows directly from the definitions, while property (b) follows
from the definition and from Lemma 5.3. Property (d) also follows from the defini-
tion, since the intersection of closed sets is closed. Lemmas 3.11, 4.2, and 5.3 imply
that

(fω)∗ = (
⋂

n≥0

⋃

k≥n

fk)∗ =
⋂

n≥0

(
⋃

k≥n

fk)∗ =
⋂

n≥0

(
⋃

k≥n

fk)∗ =

=
⋂

n≥0

⋃

k≥n

(fk)∗ =
⋂

n≥0

⋃

k≥n

(f∗)k = (f∗)ω,

which establishes property (c) and completes the proof. ¤

Compare the next theorem to Theorem 6.3.

Theorem 7.3. If f is a closed relation on a compact Hausdorff space X, then the
following inclusions hold.

(a) f ◦ fω ⊃ fω.
(b) fω ◦ f ⊃ fω.
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(c) fω ◦ fω ⊃ fω.

Proof. Let f and g be closed relations on a compact Hausdorff space X. Note that
{g} and {⋃k≥n fk : n ≥ 0} are both directed families of closed subsets of X ×X.
Since the composition map is semicontinuous, it follows that

(3) g ◦ fω = g ◦
⋂

n≥0

⋃

k≥n

fk =
⋂

n≥0

(g ◦
⋃

k≥n

fk).

Since the composition map preserves union, inclusion and closed sets, it follows
that for each nonnegative integer n,

⋃

k≥n

g ◦ fk = g ◦
⋃

k≥n

fk ⊂ g ◦
⋃

k≥n

fk = g ◦
⋃

k≥n

fk,

which, with equality (3) and by Lemma 2.4, implies that

(4)
⋂

n≥0

⋃

k≥n

g ◦ fk ⊂ g ◦ fω.

For g = f this inclusion becomes

fω =
⋂

n≥0

⋃

k≥n

fk+1 =
⋂

n≥0

⋃

k≥n

f ◦ fk ⊂ f ◦ fω,

which establishes inclusion (a).
Now let h ≡ f∗. Theorem 7.2, Lemma 3.16, inclusion (a) of this theorem and

Lemma 3.10 imply that

(h∗)ω = (hω)∗ ⊂ (h ◦ hω)∗ = (hω)∗ ◦ h∗ = (h∗)ω ◦ h∗,

which, since Lemma 3.10 implies that h∗ = f , establishes inclusion (b).
A simple induction argument applied to inclusion (b) of this theorem produces

the inclusion
fω ⊂ fω ◦ fk

for all nonnegative integers k. For g = fω, inclusion (4) becomes

fω =
⋂

n≥0

⋃

k≥n

fω ⊂
⋂

n≥0

⋃

k≥n

fω ◦ fk ⊂ fω ◦ fω

which establishes inclusion (c) and completes the proof. ¤

Remark 7.4. It is not necessarily true, that f ◦fω = fω, fω ◦f = fω or fω ◦fω =
fω. Let X ≡ [0, 1] and

f ≡ {(0, 1)} ∪ {(x, y) ∈ X ×X : x = 2y}.
Also, let S ≡ {1/2n : n = 0, 1, 2, . . .} ∪ {0} ⊂ X. It is easy to check that

fω = {(0, x) : x ∈ S} ∪ {(x, 0) : x ∈ X}.
Clearly (1, 1/2) /∈ fω, but (1, 1/2) ∈ f ◦fω, (1, 1/2) ∈ fω ◦f and (1, 1/2) ∈ fω ◦fω.

The next lemma gives a nontrivial connection between the limit relation and the
ω-limit relation.

Lemma 7.5. If f is a closed relation on a compact Hausdorff space X and g ∈
N(f), then g∞ ∈ N(fω).
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Proof. In view of Theorem 6.2, it suffices to establish the conclusion under the
assumption that g is open. Lemma 5.5 implies the existence of relations ι′, ι′′ ∈ N(ι)
such that ι′ ◦ f ◦ ι′′ ⊂ g. Lemma 3.19 implies that ι = ι ◦ ι ⊂ ι′′ ◦ ι′. A simple
induction argument therefore establishes that

ι′ ◦ fk ◦ ι′′ ⊂ gk

for all positive k. Lemmas 4.13 and 3.19 therefore imply that
⋃

k≥n

fk ⊂ ι′ ◦ (
⋃

k≥n

fk) ◦ ι′′ =
⋃

k≥n

ι′ ◦ fk ◦ ι′′ ⊂
⋃

k≥n

gk,

for every nonnegative integer n. By Lemma 2.4 it follows that

fω ⊂ g∞.

This inclusion, combined with inclusions (a) and (b) of Theorem 7.3, Lemma 3.19
and inclusions (a) and (b) of Theorem 6.3 implies that

fω ⊂ f ◦ fω ◦ f ⊂ g ◦ g∞ ◦ g ⊂ g∞.

Since g is open by assumption, Lemma 4.12 implies that g ◦ g∞ ◦ g is open, which
implies that g∞ ∈ N(fω), and the lemma is proved. ¤

8. The Conley relation fΩ

Our third construction is the most important. It uses the first construction and
exploits how the relation “sits” in the topological space X×X via the neighborhood
structure.

Definition 8.1. If f is a relation on a topological space X, then the Conley relation
of f is

fΩ ≡
⋂

φ∈N(f)

φ∞.

Theorem 8.2. If f and g are relations on a topological space X, then the following
properties hold.

(a) f∞ ⊂ fΩ.
(b) If g ⊂ f , then gΩ ⊂ fΩ.
(c) (fΩ)∗ = (f∗)Ω.

Proof. Theorem 6.2 implies that f∞ ⊂ φ∞ whenever f ⊂ φ. Therefore,

f∞ ⊂
⋂

φ∈N(f)

φ∞ = fΩ,

which establishes property (a).
Let φ ∈ N(f). g ⊂ f implies that φ ∈ N(g), and then Theorem 6.2 together

with Lemma 2.4 implies that

gΩ =
⋂

ψ∈N(g)

ψ∞ ⊂
⋂

φ∈N(f)

φ∞ = fΩ,

which establishes property (b).
Note that Lemmas 3.10 and 4.2 imply that ψ ∈ N(f∗) if and only if ψ∗ ∈ N(f),

which implies that
(f∗)Ω =

⋂

ψ∈N(f∗)

ψ∞ =
⋂

ψ∗∈N(f)

ψ∞.
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Lemma 3.11, Theorem 6.2 and Lemma 3.10 therefore imply that

(fΩ)∗ = (
⋂

φ∈N(f)

φ∞)∗ =
⋂

φ∈N(f)

(φ∞)∗ =

=
⋂

φ∈N(f)

(φ∗)∞ =
⋂

ψ∗∈N(f)

ψ∞ = (f∗)Ω,

which establishes property (c) and completes the proof. ¤

The next theorem shows that fΩ is “maximal” in the sense that we do not get
more information if we replace φ∞ with φω or with φΩ in the construction.

Theorem 8.3. If f is a closed relation on a compact Hausdorff space X, then the
following properties hold.

(a) fω ⊂ fΩ.
(b) fΩ =

⋂{φΩ : φ ∈ N(f)}.
(c) fΩ =

⋂{φω : φ ∈ N(f)}.
(d) fΩ is closed.

Proof. Lemma 7.5 implies that fω ⊂ φ∞ whenever φ ∈ N(f). Therefore,

fω ⊂
⋂

φ∈N(f)

φ∞ = fΩ,

and property (a) is established.
Theorem 8.2 implies that fΩ ⊂ φΩ whenever φ ∈ N(f). Therefore,

(5) fΩ ⊂
⋂

φ∈N(f)

φΩ.

Now let ψ ∈ N(f). The normality of the space X × X implies the existence of a
relation φ ∈ N(f) such that ψ ∈ N(φ). The definition of φΩ implies that φΩ ⊂ ψ∞.
Lemma 2.4 therefore implies that

⋂

φ∈N(f)

φΩ ⊂
⋂

ψ∈N(f)

ψ∞ = fΩ,

which, with inclusion (5), establishes property (b).
Next note that Theorem 7.2 and property (a) of this theorem imply that φ∞ ⊂

φω ⊂ φΩ for every φ ∈ N(f). Property (b) of this theorem therefore implies that

fΩ =
⋂

φ∈N(f)

φ∞ ⊂
⋂

φ∈N(f)

φω ⊂
⋂

φ∈N(f)

φΩ = fΩ,

which establishes property (c).
Finally, property (c) of this theorem implies that fΩ can be written as the

intersection of closed sets and thus is itself closed. Property (d) is established, and
the proof is complete. ¤

Corollary 8.4. If f is a closed relation on a compact Hausdorff space X and K
is a closed subset of X, then fΩ(K) is closed.

Proof. Theorem 8.3 implies that fΩ is closed, so Lemma 4.10 implies that fΩ(K)
is closed. ¤
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Compare the next theorem to Theorems 6.3 and 7.3.

Theorem 8.5. If f is a closed relation on a compact Hausdorff space X, then the
following properties hold.

(a) f ◦ fΩ = fΩ.
(b) fΩ ◦ f = fΩ.
(c) fΩ ◦ fΩ = fΩ.

Proof. Since composition preserves union, inclusions (a) and (c) from Theorem 6.3
imply that

(φ ∪ φ∞) ◦ φ∞ = (φ ◦ φ∞) ∪ (φ∞ ◦ φ∞) ⊂ φ∞.

Since composition preserves inclusion, if φ ∈ N(f), then

(f ◦ fΩ) ∪ (fΩ ◦ fΩ) = (f ∪ fΩ) ◦ fΩ ⊂ (φ ∪ φ∞) ◦ φ∞ ⊂ φ∞,

which implies that

(6) (f ◦ fΩ) ∪ (fΩ ◦ fΩ) ⊂ fΩ.

Theorem 7.2 implies that {φω : φ ∈ N(f)} is a directed family of closed relations.
Since {φ : φ ∈ N(f)} is also a directed family of closed relations and since compo-
sition is semicontinuous by Theorem 4.8, it follows (with the aid of Theorem 8.3
and Lemma 2.24) that for any closed relation f ,

f ◦ fΩ = (
⋂

ψ∈N(f)

ψ) ◦ (
⋂

φ∈N(f)

φω) =
⋂

ψ∈N(f)

⋂

φ∈N(f)

ψ ◦ φω

and
fΩ ◦ fΩ = (

⋂

ψ∈N(f)

ψω) ◦ (
⋂

φ∈N(f)

φω) =
⋂

ψ∈N(f)

⋂

φ∈N(f)

ψω ◦ φω.

Since ψ ∈ N(f) and φ ∈ N(f) implies that ψ ∩ φ ∈ N(f), it follows that

f ◦ fΩ =
⋂

φ∈N(f)

φ ◦ φω

and
fΩ ◦ fΩ =

⋂

φ∈N(f)

φω ◦ φω.

Inclusions (a) and (c) of Theorem 7.3 and Theorem 8.3 therefore imply that

fΩ =
⋂

φ∈N(f)

φω ⊂ (f ◦ fΩ) ∩ (fΩ ◦ fΩ).

This inclusion, together with inclusion (6), produces

fΩ ⊂ (f ◦ fΩ) ∩ (fΩ ◦ fΩ) ⊂ (f ◦ fΩ) ∪ (fΩ ◦ fΩ) ⊂ fΩ,

which implies that
f ◦ fΩ = fΩ ◦ fΩ = fΩ

and establishes properties (a) and (c).
Now let h ≡ f∗. Theorem 8.2, Lemma 3.16, property (a) of this theorem and

Lemma 3.10 imply that

(h∗)Ω ◦ h∗ = (hΩ)∗ ◦ h∗ = (h ◦ hΩ)∗ = (hΩ)∗ = (h∗)Ω,

which, since Lemma 3.10 implies that h∗ = f , establishes property (b) and com-
pletes the proof. ¤



22 R. P. MCGEHEE & T. WIANDT

We will use the following lemmas later. They describe how the Conley relation
behaves for “close” relations.

Lemma 8.6. If f is a closed relation on a compact Hausdorff space X and g ∈
N(f), then gΩ ∈ N(fΩ).

Proof. The normality of the space X ×X implies that there exists h ∈ N(f), such
that g ∈ N(h). Now from Lemma 7.5 we know that g∞ ∈ N(hω), so there exists
an open relation ξ such that hω ⊂ ξ ⊂ g∞. But then

fΩ =
⋂

φ∈N(f)

φ∞ ⊂ h∞ ⊂ hω ⊂ ξ ⊂ g∞ ⊂ gΩ,

which proves the claim. ¤

Lemma 8.7. If f is a closed relation on a compact Hausdorff space X and (x, y) /∈
fΩ, then there exists g ∈ N(f) such that (x, y) /∈ gΩ.

Proof. By the definition of fΩ, (x, y) /∈ fΩ if and only if there exists φ ∈ N(f) such
that (x, y) /∈ φ∞. By the normality of the space X ×X there exists g ∈ N(f), such
that φ ∈ N(g). But then

gΩ =
⋂

ψ∈N(g)

ψ∞ ⊂ φ∞,

which implies (x, y) /∈ gΩ and proves the claim. ¤

The next theorem shows that the Conley relation is semicontinuous on compact
Hausdorff spaces.

Theorem 8.8. If X is a compact Hausdorff space, then the map Ω : 2X×X →
2X×X , f 7→ fΩ is semicontinuous.

Proof. Ω preserves inclusion and closed sets by Theorems 8.2 and 8.3, so by Theorem
2.25 we only have to prove that if ψ ∈ N(fΩ), then there exists g ∈ N(f) such that
gΩ ⊂ ψ. There exists φ ∈ No(fΩ) such that φ ⊂ ψ. For every (x, y) ∈ φc

(x, y) /∈ fΩ, and by Lemma 8.7 there exists g(x,y) ∈ N(f) such that (x, y) /∈ gΩ
(x,y),

which implies (x, y) ∈ (gΩ
(x,y))

c. This way we obtained an open cover of the compact
set φc, so there exist finitely many (gΩ

(xi,yi)
)c, i = 1, 2, . . . n such that

φc ⊂
n⋃

i=1

(gΩ
(xi,yi)

)c.

Let g ≡ ⋂n
i=1 g(xi,yi). g is clearly a closed neighborhood of f and by Theorem 8.2

gΩ = (
n⋂

i=1

g(xi,yi))
Ω ⊂

n⋂

i=1

gΩ
(xi,yi)

⊂ φ ⊂ ψ

and the proof is complete. ¤

The last theorem of this section gives the result that the Conley relation of a
Conley relation is itself.

Theorem 8.9. If f is a closed relation on a compact Hausdorff space X, then

(fΩ)Ω = fΩ.
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Proof. If ψ is a closed relation on X, then by Theorem 8.5 and an induction argu-
ment (ψΩ)k = ψΩ for k = 1, 2, . . .. Then by the definition of the limit relation,

(ψΩ)∞ =
⋂

n≥0

⋃

k≥n

(ψΩ)k =
⋂

n≥1

ψΩ = ψΩ.

By Theorem 8.2 we get immediately that

fΩ = (fΩ)∞ ⊂ (fΩ)Ω.

Suppose now that (x, y) /∈ fΩ. By Theorem 8.3 this means there exists φ ∈ N(f)
such that (x, y) /∈ φΩ. This implies that (x, y) /∈ (φΩ)∞ = φΩ, but by Lemma 8.6
φΩ ∈ N(fΩ), so there exists a closed neighborhood of fΩ such that (x, y) is not
in the limit relation of that neighborhood, which means (x, y) /∈ (fΩ)Ω and this
implies

(fΩ)Ω ⊂ fΩ,

which proves the claim. ¤

9. Recurrence

In this section, we generalize the well-known notions of periodic point, nonwan-
dering set and chain recurrent set to dynamical systems generated by iterating
relations. These notions will be natural extensions of the already known ones. We
will find a connection between these recurrent sets and the previously defined re-
lations f∞, fω and fΩ. At the end of the section, we will define an interesting
equivalence relation.

First we define the simplest case of recurrence.

Definition 9.1. If f is a relation on a set X, then a point x ∈ X is called a fixed
point for f if (x, x) ∈ f . The set of all fixed points will be denoted

F(f) ≡ {x ∈ X : (x, x) ∈ f}.
This definition is clearly consistent with the definition of fixed points in the case

of a map on a set X; (x, x) ∈ f if and only if x ∈ f(x), in the case of a map x ∈ f(x)
if and only if x = f(x).

The following lemmas are elementary; we omit the proofs.

Lemma 9.2. If f is a relation on a set X, then

F(f) = π1(f ∩ ι),

where π1 : X ×X → X : (x, y) 7→ x is the standard projection map.

Lemma 9.3. If g is a closed relation on a compact Hausdorff space X, then π1(g)
is a closed subset of X.

We will use the next lemma later.

Lemma 9.4. If f is a closed relation on a compact Hausdorff space X, then F(f)
is a closed subset of X.

Proof. This is a simple consequence of Lemmas 5.4, 9.3 and 9.2. ¤

A straightforward induction argument establishes inclusion (a) of the following
lemma. Inclusion (b) is an immediate consequence.
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Lemma 9.5. If f is a relation on a set X and q and n are positive integers, then
the following inclusions hold.

(a) F(f) ⊂ F(fn).
(b) F(fq) ⊂ F(fnq).

The next lemma follows directly from the definitions.

Lemma 9.6. If F ⊂ R(X), then

F(
⋂

F) =
⋂

f∈F

F(f).

Now we define the next simplest case of recurrence: periodicity.

Definition 9.7. If f is a relation on a set X and q is a positive integer, then x ∈ X
is called a periodic point for f of period q if x is a fixed point for fq. The set of
periodic points of period q will be denoted

Pq(f) ≡ F(fq).

The set of periodic points of arbitrary period will be denoted

P(f) ≡
⋃

q≥1

Pq(f).

The definition is clearly consistent again with the definition of periodic points
for maps on a set X; (x, x) ∈ fq if and only if x ∈ fq(x), in the case of a map
x ∈ fq(x) if and only if x = fq(x). If f is a relation on a set X and x is a periodic
point of period q, Theorem 5.7 implies the existence of an orbit (p, (−∞,∞)) such
that pkq = x and pt = ps if t ≡ s (mod q), for all k ∈ Z.

The following theorem characterizes the periodic points of a relation as the fixed
points of the relation f∞.

Theorem 9.8. If f is a relation on a set X, then

P(f) = F(f∞).

Proof. Let x ∈ F(f∞). Since (x, x) ∈ ⋃
k≥1 fk, there exists a positive integer q

such that (x, x) ∈ fq. Therefore, x ∈ F(fq) = Pq(f) ⊂ P(f), which implies that

F(f∞) ⊂ P(f).

Now let x ∈ P(f), and let n be a positive integer. Note that x ∈ Pq(f) for
some q ≥ 1, and choose a positive integer j such that jq ≥ n. Lemma 9.5 implies
that x ∈ F(fq) ⊂ F(f jq), which implies that (x, x) ∈ f jq ⊂ ⋃

k≥n fk. Since n is
arbitrary, (x, x) ∈ ⋂

n≥0

⋃
k≥n fk = f∞. Therefore, x ∈ F(f∞), which implies that

P(f) ⊂ F(f∞)

and completes the proof. ¤

We see from here that periodicity is a “topology-independent” property: in the
constructions, we did not use the properties of the space X.

The next part will concern the nonwandering set. In order to give motivation to
this part, we define in two easy steps the nonwandering set for flows. We follow the
treatment of Conley [3]. The first step is the definition of the ω-limit set of a set.
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Definition 9.9. If ϕt is a flow on a topological space X, then the ω-limit set of a
set U ⊂ X is

ω(U) ≡
⋂

t≥0

ϕ[t,∞)(U).

The second step is the actual definition of the nonwandering set.

Definition 9.10. If ϕt is a flow on a topological space X, then x ∈ X is called
nonwandering for ϕt if x ∈ ω(U) for every neighborhood U of x in X. The set of
nonwandering points is usually denoted by Nω(ϕt).

Now we will try to generalize this notion to relations. ω-limit sets of sets for
relations were generalized by McGehee [8]. One of these generalizations is the so
called “strict ω-limit set”. It is easy to see, that this is the discrete analogy of the
ω-limit set of a set for flows.

Definition 9.11. If f is a relation on a topological space X, then the strict ω-limit
set of a set U ⊂ X is

ω̂(U) ≡
⋂

n≥0

⋃

k≥n

fk(U).

Remark 9.12. In the same article [8], McGehee gave another generalization of the
ω-limit set of a set for relations. We will give that definition later, when we will
use it in the study of attractors and repellers. In the special case of maps, the two
generalizations produce the same sets.

Now the definition of the nonwandering set is immediate.

Definition 9.13. If f is a closed relation on a compact Hausdorff space X, then
x ∈ X is called nonwandering for f if x ∈ ω̂(U) for every neighborhood U of x in
X. The set of nonwandering points will be denoted by Nω(f).

In order to prove the main result, the characterization of this set with the aid of
fω, we will need the following lemmas.

Lemma 9.14. If g is a relation on a compact Hausdorff space X and U ⊂ X is
closed, then

g(U) ⊂ g(U).

Proof. This is an immediate consequence of Lemma 4.10. ¤

Lemma 9.15. If f is a closed relation on a compact Hausdorff space X and U ⊂ X
is closed, then

ω̂(U) ⊂ fω(U).

Proof. Let g ≡ ⋃
k≥n fk and use Lemmas 2.4, 3.5 and 9.14. ¤

Remark 9.16. It is not necessarily true that ω̂(U) = fω(U), not even for maps,
as the following example shows. Let X ≡ [0, 1] and

f ≡ {(x, y) ∈ X ×X : y = x2}.
It is easy to check that

fω = {(x, y) ∈ X ×X : x = 0 or y = 1}.
Clearly ω̂({1}) = {1}, but fω({1}) = X.



26 R. P. MCGEHEE & T. WIANDT

The following theorem characterizes the nonwandering set of a relation as the
fixed point set of the relation fω.

Theorem 9.17. If f is a closed relation on a compact Hausdorff space X, then

Nω(f) = F(fω).

Proof. Let x /∈ F(fω). This means x /∈ fω(x). By Lemma 4.5 there exists V ∈ N(x)
such that x /∈ fω(V ), which by Lemma 9.15 means x /∈ ω̂(V ), but then x /∈ Nω(f).
This implies that

Nω(f) ⊂ F(fω).
Now let x /∈ Nω(f). This means there exists a W neighborhood of x, such

that x /∈ ω̂(W ). ω̂(W ) is a closed set by its definition, x is closed, so there exists
V ∈ N(x) such that V ⊂ W and V ∩ ω̂(W ) = ∅. Clearly ω̂(V ) ⊂ ω̂(W ), so
V ∩ ω̂(V ) = ∅. Suppose now that x ∈ F(fω). This means that for every n ≥ 0

(x, x) ∈
⋃

k≥n

fk,

which means that for every n ≥ 0 and for every U neighborhood of x

(U × U) ∩ (
⋃

k≥n

fk) 6= ∅,

which is equivalent to ⋃

k≥n

((U × U) ∩ fk) 6= ∅.

This implies that for every n ≥ 0 and for every U neighborhood of x there exists
k ≥ n such that

fk(U) ∩ U 6= ∅.
But this means that the above statement is true for V , i.e. for every n ≥ 0 there
exists k ≥ n such that

fk(V ) ∩ V 6= ∅.
Then for every n ≥ 0 ⋃

k≥n

(fk(V ) ∩ V ) 6= ∅,

which is equivalent to
(
⋃

k≥n

fk(V )) ∩ V 6= ∅.

But then for every n ≥ 0

(
⋃

k≥n

fk(V )) ∩ V 6= ∅,

which implies ⋂

n≥0

(
⋃

k≥n

fk(V ) ∩ V ) 6= ∅

and we conclude
V ∩ ω̂(V ) = V ∩ (

⋂

n≥0

⋃

k≥n

fk(V )) 6= ∅

which is a contradiction, so x /∈ F(fω) and this implies that

F(fω) ⊂ Nω(f)
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and completes the proof. ¤
Corollary 9.18. If f is a closed relation on a compact Hausdorff space X, then
Nω(f) is closed.

Proof. This is an immediate consequence of Theorem 7.2, Lemma 9.4 and Theorem
9.17. ¤

The next part will concern the chain recurrent set. In order to give motivation
to this part, first we need the notion of a chain or pseudo-orbit for a map.

Definition 9.19. If f is a map on a metric space X, then an ε-chain (or ε-pseudo-
orbit) for f is a sequence of points pi ∈ X, i = 0, 1, . . . n satisfying d(pi+1, f(pi)) ≤ ε.

We have the following well-known definition for the chain recurrent set of a map
on a metric space X.

Definition 9.20. If f is a map on a metric space X, then x ∈ X is called chain
recurrent if for every ε > 0 there exists an ε-chain {pi : i = 0, 1, . . . n} such that
p0 = pn = x. The set of chain recurrent points is usually denoted by R(f).

Now it is easy to see, that if f is a map on a metric space X, then an ε-chain
for f is an orbit for the relation

fε ≡ {(x, y) : d(y, f(x)) ≤ ε}.
This means we have the following theorem, which is an immediate consequence

of the above definitions.

Theorem 9.21. If f is a map on a metric space X, then

R(f) =
⋂
ε>0

P(fε).

The relation fε is clearly a neighborhood of the map, and hence the relation f .
A natural generalization of this definition is then the following.

Definition 9.22. If f is a closed relation on a compact Hausdorff space X, then
x ∈ X is called chain recurrent for f if for every closed neighborhood φ of f , x is
periodic for φ. The set of chain recurrent points will be denoted by

R(f) =
⋂

φ∈N(f)

P(φ).

The following theorem characterizes the chain recurrent set of a relation as the
fixed point set of the relation fΩ.

Theorem 9.23. If f is a closed relation on a compact Hausdorff space X, then

R(f) = F(fΩ).

Proof. Lemma 9.6 and Theorem 9.8 imply that

R(f) =
⋂

φ∈N(f)

F(φ∞) = F(
⋂

φ∈N(f)

φ∞) = F(fΩ)

and the proof is complete. ¤
Corollary 9.24. If f is a closed relation on a compact Hausdorff space X, then
R(f) is closed.
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Proof. This is an immediate consequence of Theorem 8.3, Lemma 9.4 and Theorem
9.23. ¤

The last part of this section is a construction of an equivalence relation on R(f).
Let

E(f) ≡ fΩ ∩ (fΩ)∗.
We claim that this is an equivalence relation on R(f).

Lemma 9.25. If f is a closed relation on a compact Hausdorff space X, then the
following properties hold.

(a) E(f) = E(f∗).
(b) E(f) is an equivalence relation on R(f).

Proof. Property (a) is an immediate consequence of the construction and Theorem
8.2.

Clearly E(f) ⊂ R(f)× R(f): if (x, y) ∈ E(f), then (x, y) ∈ fΩ, (x, y) ∈ (f∗)Ω =
(fΩ)∗, so (y, x) ∈ fΩ, but then by Theorem 8.5 (x, x) ∈ fΩ and (y, y) ∈ fΩ, which
means (x, y) ∈ R(f)×R(f). To prove that E(f) is an equivalence relation on R(f),
we show that E(f) is reflexive, symmetric and transitive. Reflexivity: if x ∈ R(f),
then (x, x) ∈ fΩ, so (x, x) ∈ (fΩ)∗ = (f∗)Ω, but then (x, x) ∈ fΩ ∩ (fΩ)∗ = E(f).
Symmetry: this is trivial by the construction of E(f), using again Theorem 8.2.
Transitivity: if (x, y) ∈ E(f) and (y, z) ∈ E(f), then again by the construction and
by Theorem 8.5 (x, z) ∈ fΩ and (z, x) ∈ fΩ, which implies that (x, z) ∈ E(f). ¤
Definition 9.26. The equivalence classes on R(f) defined by this equivalence re-
lation are called chain components.

We close this section with the following easy lemma.

Lemma 9.27. If f is a closed relation on a compact Hausdorff space X and (x, y) ∈
E(f), then fΩ(x) = fΩ(y).

Proof. Let z ∈ fΩ(x). This means (x, z) ∈ fΩ, and because (x, y) ∈ E(f) we know
(y, x) ∈ fΩ. By Theorem 8.5 this means that (y, z) ∈ fΩ, so z ∈ fΩ(y), which
proves fΩ(x) ⊂ fΩ(y), but then by the symmetry of E(f) clearly fΩ(y) ⊂ fΩ(x)
and we proved the claim. ¤

10. Attractors and repellers

The concept of attraction is widely used in dynamical systems theory. First we
will define the notion of attractor for closed relations, then we establish the corre-
sponding theory about repellers and connecting orbits. In the subsequent sections
we prove that this notion is really a generalization of the well-known definitions of
attractor for maps.

Definition 10.1. If f is a closed relation on a compact Hausdorff space X, then
A ⊂ X is called an attractor for f if there exists G ∈ N(A) such that

fΩ(G) = A.

The set of attractors for f will be denoted by A(f). The basin of the attractor A
is the set

B(A) ≡ (fΩ)−1(A).

The following lemma gives some fundamental properties of attractors.
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Lemma 10.2. If A is an attractor for a closed relation f on a compact Hausdorff
space X, then the following properties hold.

(a) A is closed.
(b) fΩ(A) = f(A) = A.
(c) S ⊂ B(A) if and only if fΩ(S) ⊂ A.
(d) A ⊂ B(A).
(e) fΩ(B(A)) = A.

Proof. By definition, there exists G ∈ N(A) such that fΩ(G) = A. Since G is closed,
Corollary 8.4 implies that A is closed, and property (a) is established. Property (b)
is an immediate consequence of Theorem 8.5, while property (c) follows immediately
from Lemma 3.8. Property (d) is implied by properties (b) and (c). Properties (b),
(c) and (d) imply that

A = fΩ(A) ⊂ fΩ(B(A)) ⊂ A

and we verified property (e) and the proof is complete. ¤
Our next notion is the dual notion to attractor: the repeller.

Definition 10.3. If A is an attractor for a closed relation f on a compact Hausdorff
space X, then the dual repeller of A is the set

A∗ ≡ B(A)c.

It is natural to think that A∗ is an attractor for the “backward” relation, i.e.
for the transpose. It will turn out that this is indeed the case. First we prove the
following lemma.

Lemma 10.4. If A is an attractor for a closed relation f on a compact Hausdorff
space X, then

A∗ = (f∗)Ω(Ac).

Proof. The definitions, Lemma 3.12 and Theorem 8.2 imply that

A∗ = B(A)c = ((fΩ)−1(A))c = (fΩ)∗(Ac) = (f∗)Ω(Ac),

and the proof is complete. ¤
Theorem 10.5. If A is an attractor for a closed relation f on a compact Hausdorff
space X, then A∗ is an attractor for f∗.

Proof. First note that Lemma 4.2, Theorem 8.5 and Lemma 10.4 imply that

(7) (f∗)Ω(A∗) = A∗.

Next note that, by definition, there exists G ∈ N(A) such that fΩ(G) = A. Lemma
10.2 implies that G ⊂ B(A). By the definition of neighborhood there exists an open
set U such that

A ⊂ U ⊂ G ⊂ B(A),
which implies that

A∗ = B(A)c ⊂ Gc ⊂ U c ⊂ Ac.

Since Gc is open and U c is closed, U c ∈ N(A∗). Equation (7), Lemma 3.1 and
Lemma 10.4 imply that

A∗ = (f∗)Ω(A∗) ⊂ (f∗)Ω(U c) ⊂ (f∗)Ω(Ac) = A∗.

Therefore, A∗ = (f∗)Ω(U c), and the proof is complete. ¤
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Because A∗ is an attractor for f∗, we can create the dual repeller to it. The
following theorem justifies the name “dual repeller” in the definition.

Theorem 10.6. If A is an attractor for a closed relation f on a compact Hausdorff
space X, then

(A∗)∗ = A,

where the second ∗ operation corresponds to f∗.

Proof. Using the definition of basin and dual repeller and Lemma 3.12, Theorem
8.2, Lemma 3.10 and Lemma 10.2 we deduce

(A∗)∗ = B(A∗)c = ((f∗)Ω)−1(A∗)c = ((f∗)Ω)∗((A∗)c) =

= (fΩ)((A∗)c) = fΩ(B(A)) = A

and the proof is complete. ¤

Lemma 10.7. If A is an attractor for a closed relation f on a compact Hausdorff
space X, x ∈ A and y ∈ A∗, then (x, y) /∈ E(f).

Proof. By Lemma 10.2 fΩ(x) ⊂ fΩ(A) = A and fΩ(y) /⊂A, this implies fΩ(x) 6=
fΩ(y) and Lemma 9.27 implies that (x, y) /∈ E(f) and the proof is complete. ¤

The following lemma investigates the basin.

Lemma 10.8. If A is an attractor for a closed relation f on a compact Hausdorff
space X, then the following properties hold.

(a) B(A) is open.
(b) f−1(B(A)) = B(A).

Proof. Property (a) is an immediate consequence of the definitions, Theorem 10.5
and Lemma 10.2. By Lemmas 3.12 and 10.2 and Theorem 10.5

f−1(B(A))c = f∗(B(A)c) = f∗(A∗) = A∗ = B(A)c

and we established property (b). ¤

We introduced two fundamental objects, the attractor and the corresponding
dual repeller. We give the following name for the remaining part of the space.

Definition 10.9. If A is an attractor for a closed relation f on a compact Hausdorff
space X, then the set of connecting orbits associated with A is given by

C(A) ≡ (A ∪A∗)c.

Lemma 10.10. If A is an attractor for a closed relation f on a compact Hausdorff
space X, then X breaks into the disjoint union of A, A∗ and C(A).

Proof. By Lemma 10.2 A ⊂ B(A) = (A∗)c, so we conclude that A ∩ A∗ = ∅, and
the definition of C(A) completes the proof. ¤

We close this section with the following lemma, which will play a key role in
the proof of the Conley decomposition theorem. The lemma gives a method for
creating an attractor for a relation.

Lemma 10.11. If f is a closed relation on a compact Hausdorff space X, g is
a closed neighborhood of f and K is a closed subset of X, then fΩ(gΩ(K)) is an
attractor for f .
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Proof. Let
G ≡ gΩ(K) and A ≡ fΩ(G).

Corollary 8.4 implies that G is closed, while Theorem 8.5 implies that gΩ(G) = G.
Since Lemma 8.6 implies that gΩ ∈ N(fΩ), Lemma 4.6 implies that

G = gΩ(G) ∈ N(fΩ(G)) = N(A),

which implies that A is an attractor and completes the proof. ¤

11. Attractor blocks

In order to establish that the notion of attractor defined in the previous section
gives the same objects for maps as the already well-known definitions, we will have
to introduce the following important construction.

Definition 11.1. If f is a closed relation on a compact Hausdorff space X, then
B ⊂ X is called an attractor block for f if

f(B) ⊂ Bo.

A basic property of an attractor is that it can be surrounded by an attractor
block; conversely, if we have an attractor block, (i.e. a set whose image lies strictly
inside itself) then inside the attractor block we have an attractor. Our aim in this
section is to prove this connection between attractors and attractor blocks. Note
that in the definition of the attractor block we did not use any of the constructions
given before: it is strictly a statement about the image of a set under the relation.

First we prove the following lemma.

Lemma 11.2. If A is an attractor for a closed relation f on a compact Hausdorff
space X, then for any V ∈ N(A) there exists g ∈ N(f) such that gΩ(A) ⊂ V o.

Proof. By Lemma 4.4 there exists φ ∈ No(f) such that φ(A) ⊂ V o. Theorem 8.8
implies there exists g ∈ N(f) such that gΩ ⊂ φ. Then gΩ(A) ⊂ φ(A) ⊂ V o and the
proof is complete. ¤

The following two theorems give the above mentioned connection between at-
tractors and attractor blocks: every attractor block has an attractor in its interior
and every attractor can be surrounded by an attractor block.

Theorem 11.3. If B is an attractor block for a closed relation f on a compact
Hausdorff space X, then fΩ(B) ⊂ Bo and fΩ(B) is an attractor for f .

Proof. First we prove that fΩ(Bo) = fΩ(B) = fΩ(B). By the assumption f(B) ⊂
Bo and by Theorem 8.5

fΩ(B) = fΩ(f(B)) ⊂ fΩ(Bo),

by Lemma 3.1 fΩ(Bo) ⊂ fΩ(B) ⊂ fΩ(B) and we conclude that fΩ(Bo) = fΩ(B) =
fΩ(B).

Next we prove that fΩ(B) ⊂ B. By the definition of fΩ and Lemma 3.5

fΩ(B) = (
⋂

φ∈N(f)

φ∞)(B) =
⋂

φ∈N(f)

φ∞(B).
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This means we have to prove that there exists φ ∈ N(f) such that φ∞(B) ⊂ B. In
order to prove this statement, we first show that there exists φ ∈ N(f) such that
φ(B) ⊂ B. By assumption f(B) ⊂ Bo, by Lemma 3.3 this means that

(B × (Bo)c) ∩ f = ∅.
B, (Bo)c and f is closed, so by the normality of X ×X there exists φ ∈ N(f) such
that

(B × (Bo)c) ∩ φ = ∅,
which means φ(B) ⊂ Bo ⊂ B. Now by an induction argument we get easily that
φk(B) = φ(φk−1(B)) ⊂ φ(B) ⊂ B for any k > 0, this means

⋃
k≥n φk(B) ⊂ B for

any n ≥ 0 and then by Lemma 3.5

φ∞(B) =
⋂

n≥0

⋃

k≥n

φk(B) ⊂ B.

We proved that there exists φ ∈ N(f) such that φ∞(B) ⊂ B, and then we estab-
lished that fΩ(B) ⊂ B. Now with the aid of Theorem 8.5 and the above

fΩ(B) = fΩ(B) = f(fΩ(B)) ⊂ f(B) ⊂ Bo ⊂ B,

which means that B is a neighborhood of fΩ(B) and by the definition of attractor
this means that fΩ(B) is an attractor for f and the proof is complete. ¤

Theorem 11.4. If A is an attractor for a closed relation f on a compact Hausdorff
space X and V is a neighborhood of A, then there exists a closed attractor block B
for f such that B ⊂ V and fΩ(B) = A.

Proof. By Lemma 10.8 B(A) is open and by Lemma 10.2 A ⊂ B(A). By assumption
A ⊂ V o, this means that W ≡ B(A) ∩ V o ∈ No(A). Now by Lemma 11.2 there
exists g ∈ N(f) such that

gΩ(A) ⊂ W ⊂ B(A).

Let B ≡ gΩ(A). By Lemma 10.2, Theorem 8.3 and Lemma 4.10 B is closed. By
Lemma 10.2

fΩ(B) = fΩ(gΩ(A)) ⊂ fΩ(B(A)) = A.

On the other hand, A = fΩ(A) ⊂ gΩ(A) = B, then by Theorem 8.5

A = fΩ(A) = fΩ(fΩ(A)) ⊂ fΩ(B),

which means A = fΩ(B). In order to finish the proof, we have to prove only that
B is an attractor block, i.e. f(B) = f(B) ⊂ Bo. g is a closed neighborhood of f ,
this implies that there exists an open φ such that f ⊂ φ ⊂ g. Then

f(B) ⊂ φ(B) ⊂ g(B) = g(gΩ(A)) = gΩ(A) = B

and by Lemma 4.3 φ(B) is open, which means B is really an attractor block for f
and the proof is complete. ¤

We close this section with the following theorem, which basically states that
attractors are “robust for small perturbations”.

Theorem 11.5. [12] If A is an attractor for a closed relation f on a compact
Hausdorff space X, then for any V ∈ N(A) there exists g ∈ N(f) such that g has
an attractor A′ in V and A ⊂ A′.
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Proof. Lemma 11.2 implies there exists h ∈ N(f) such that hΩ(A) ⊂ V o. Let
B ≡ hΩ(A). By the normality of X there exists g ∈ N(f) such that h ∈ N(g), i.e.
g ⊂ ξ ⊂ h where ξ is open. By Lemma 10.2, Theorem 8.3 and Lemma 4.10 B is
closed. Then by Theorem 8.5

g(B) = g(hΩ(A)) ⊂ ξ(hΩ(A)) ⊂ h(hΩ(A)) = hΩ(A) = B,

and by Lemma 4.3 ξ(B) is open, which means B is an attractor block for g and
Theorem 11.3 implies the claim. ¤

12. Comparison

In [8], McGehee defined attractors for closed relations on compact Hausdorff spaces
in a different way. He proved that that notion is a natural generalization of attrac-
tors for maps and as such, in the special case of maps the definition gives us the
already known ones. In this section we give this alternative definition for attractors,
then we show that the two definitions are equivalent.

First we will define the omega limit set of a set. Recall Definition 5.8. Now if f
is a closed relation on a compact Hausdorff space X and S ⊂ X, then let

K(S) ≡ {K : K is a closed confining set satisfying fn(S) ⊂ K for some n ≥ 0}.
Definition 12.1. [8] The omega limit set of a set S under the relation f is the set

ω(S) ≡ ⋂
K(S).

Now we are ready for the alternative definition of an attractor for a closed relation
f on a compact Hausdorff space X. Compare this definition to Definition 10.1.

Definition 12.2. [8] If f is a closed relation on a compact Hausdorff space X, then
A ⊂ X is called an attractor for f if there exists G ∈ N(A) such that

ω(G) = A.

Remark 12.3. It is not necessarily true that for G ⊂ X, fΩ(G) = ω(G). Consider
the example of Remark 9.16. It is easy to check that

fΩ = {(x, y) ∈ X ×X : x = 0 or y = 1}.
Clearly ω({1}) = {1}, but fΩ({1}) = X.

We will show now that the two definitions are equivalent, i.e. if A is an attractor
according to one of the definitions, then it is an attractor according to the other
definition as well.

Theorem 12.4. The two definitions of the attractor for a closed relation are equiv-
alent.

Proof. Let f be a closed relation on a compact Hausdorff space X, A be an attractor
according to Definition 12.2 and V ∈ N(A). By Theorem 7.3 in [8], there exists
a closed attractor block B for f such that B ⊂ V and ω(B) = A. We will show
that ω(B) is a closed invariant set in B, which is not contained in any other closed
invariant set in B. By Lemma 7.1 in [8] ω(B) = A is a closed invariant set. Suppose
now that C ⊂ B, f(C) = C, C is closed and ω(B) = A ⊂ C. By Theorem 5.10 in
[8], if S ⊂ S′, then ω(S) ⊂ ω(S′). By Theorem 5.12 in [8], if S is a closed invariant
set, then ω(S) = S. C is a closed invariant set, this means

C = ω(C) ⊂ ω(B) ⊂ C,
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but this implies C = ω(B) = A, so we conclude that A is a closed invariant set in
the attractor block B, which is not contained in any other closed invariant set in B.
Consider now fΩ(B). It is a closed, invariant set in B according to Theorem 11.3.
Suppose fΩ(B) ⊂ C, where C is a closed invariant set in B. Then fΩ(B) ⊂ C ⊂ B,
and by Theorem 8.5

fΩ(B) = fΩ(fΩ(B)) ⊂ fΩ(C) ⊂ fΩ(B),

which means fΩ(C) = fΩ(B), and because C is invariant, C ⊂ fΩ(C) = fΩ(B)
and then C = fΩ(B), so fΩ(B) is a closed invariant set in B, which is not contained
in any other closed invariant set in B. If S and T are closed invariant sets, then
S ∪ T is closed and invariant. This implies that fΩ(B) = ω(B) = A. B is a closed
attractor block for f , and then by Theorem 11.3 fΩ(B) = A is an attractor for f
according to Definition 10.1. The proof of the opposite direction is identical. ¤

13. Decomposition

In this section we prove the main result: the generalization of Conley’s decompo-
sition theorem for relations, which states that the chain recurrent set is determined
by the attractors and dual repellers. Recall that the set of attractors for a closed
relation f is denoted by A(f).

Theorem 13.1. If f is a closed relation on a compact Hausdorff space X, then

R(f)c =
⋃

A∈A(f)

C(A).

Proof. Let x ∈ C(A) for some attractor A. Since x ∈ B(A), it follows that fΩ(x) ⊂
A, which, since x /∈ A, implies that x /∈ fΩ(x). Therefore, x /∈ R(f), which
establishes that ⋃

A∈A(f)

C(A) ⊂ R(f)c.

Now suppose that x ∈ R(f)c, this is equivalent to (x, x) /∈ fΩ. Now by Lemma
8.7 there exists g ∈ N(f), such that (x, x) /∈ gΩ. This means x /∈ gΩ(x) ≡ U . Now
by Lemma 10.11 A = fΩ(gΩ(x)) = fΩ(U) is an attractor for f . Also, by Lemma
8.6 gΩ ∈ N(fΩ), and by Lemma 4.6 and Theorem 8.5 it follows that

U = gΩ(U) ∈ N(fΩ(U)) = N(A),

and then x /∈ U implies that x /∈ A. On the other hand,

fΩ(x) ⊂ gΩ(x) = U,

which implies, together with Theorem 8.5 that

fΩ(x) = fΩ(fΩ(x)) ⊂ fΩ(U) = A,

which implies x ∈ (fΩ)−1(A), i.e., x ∈ B(A), and then x /∈ A∗. This together with
x /∈ A implies that

R(f)c ⊂
⋃

A∈A(f)

C(A),

and completes the proof. ¤
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14. Simple examples

We give some illustrating examples in this section. The topology is the standard
topology of R1 restricted to the given closed intervals.

Example 14.1. Let X ≡ [0, 1] and f ≡ ι. By the definitions it is easy to check
that

f∞ = fω = ι

and
fΩ = X ×X.

We can see from here that X is an attractor with dual repeller ∅ and ∅ is an attractor
with dual repeller X. C(X) = ∅, C(∅) = ∅ and we see that

F(fΩ) = R(f) = (
⋃

A∈A(f)

C(A))c = X.

Also, E(f) = X ×X and we have one chain component: X.

Example 14.2. Let X ≡ [0, 1] and

f ≡ {(x, y) ∈ X ×X : y = x2}.
By the definitions it is easy to check that

f∞ = {(0, 0)} ∪ {(1, 1)}
and

fω = fΩ = {(x, y) ∈ X ×X : x = 1 or y = 0}.
We can see from here that {0} is an attractor with dual repeller {1}. Also, X
is an attractor with dual repeller ∅ and ∅ is an attractor with dual repeller X.
C({0}) = (0, 1), C(X) = ∅, C(∅) = ∅ and we see that

F(fΩ) = R(f) = (
⋃

A∈A(f)

C(A))c = {0, 1}.

Also, E(f) = {(0, 0), (1, 1)} and we have two chain components: {0} and {1}.
Example 14.3. Let X ≡ [0, 1] and

f ≡ {(0, 1)} ∪ {(x, y) ∈ X ×X : x = 2y}.
Also, let S ≡ {1/2n : n = 0, 1, 2, . . .} ∪ {0} ⊂ X. By the definitions it is easy to
check that

f∞ = {(0, x) : x ∈ S},
fω = {(0, x) : x ∈ S} ∪ {(x, 0) : x ∈ X}

and
fΩ = {(x, y) ∈ X ×X : x ∈ X, y ∈ S}.

We can see from here that S ⊂ X is an attractor with dual repeller ∅. Also, ∅ is an
attractor with dual repeller X. C(S) = Sc, C(∅) = ∅ and we see that

F(fΩ) = R(f) = (
⋃

A∈A(f)

C(A))c = S.

Also, E(f) = S × S and we have one chain component: S.
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The next two examples are familiar from the classical theory of maps. The
second example is the general case, but the first helps to see the structure of these
relations.

Example 14.4. Let X ≡ [−1, 1], 1 < α and

f ≡ {(x, y) ∈ X ×X : y = αx}.
By the definitions it is easy to check that

f∞ = {(0, 0)}
and

fω = fΩ = {(0, x) : x ∈ X}.
We can see from here that X is an attractor with dual repeller ∅. Also, ∅ is an
attractor with dual repeller {0}. C(X) = ∅, C(∅) = {0}c and we see that

F(fΩ) = R(f) = (
⋃

A∈A(f)

C(A))c = {0}.

Also, E(f) = {(0, 0)} and we have one chain component: {0}.
Example 14.5. Let X ≡ [−1, 1]× [−1, 1], 0 < β < 1 < α and

f ≡ {(x, y) ∈ X ×X : y = Ax}
where

A =
[

α 0
0 β

]
.

By the definitions it is easy to check that

f∞ = {((0, 0), (0, 0))}
and

fω = fΩ = {((0, x), (y, 0)) : x, y ∈ [−1, 1]}.
We can see from here that H ≡ fΩ(X) = {(x, 0) : x ∈ [−1, 1]} (the horizontal axis)
is an attractor with dual repeller ∅. Also, ∅ is an attractor with dual repeller V ≡
((fΩ)−1(∅))c = {(0, x) : x ∈ [−1, 1]} (the vertical axis). C(H) = Hc, C(∅) = V c

and we see that

F(fΩ) = R(f) = (
⋃

A∈A(f)

C(A))c = {(0, 0)}.

Also, E(f) = {((0, 0), (0, 0))} and we have one chain component: {(0, 0)}.
Barnsley has studied fractals generated by sets of contraction mappings (called

Iterated Function Systems or IFS), i.e. relations in [2]. It can be shown that his
definition of attractor for IFS is identical to the one given here (for a proof, see [8]).
The next example possesses the standard middle-third Cantor set as an attractor.

Example 14.6. Let X ≡ [0, 1] and

f ≡ {(x, y) ∈ X ×X : 3y = x or 3y = x + 2}.
Also, let

C ≡ {x ∈ X : x has only 0’s and 2’s in its ternary expansion},
i.e. the standard middle-third Cantor set on [0, 1].
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By the definitions it is easy to check that

fω = fΩ = {(x, y) ∈ X ×X : x ∈ X, y ∈ C}.
We can see from here that C is an attractor with dual repeller ∅. Also, ∅ is an
attractor with dual repeller X. C(C) = Cc, C(∅) = ∅ and we see that

F(fΩ) = R(f) = (
⋃

A∈A(f)

C(A))c = C.

Also, E(f) = C × C and we have one chain component: C.

15. The quadratic map

The family of quadratic maps fµ(x) = µx(1 − x) on [0, 1] is a very well studied
example for one-dimensional dynamics. We can find a thorough examination of the
period-doubling route to chaos for this family in [5] or [10]. We will analyze now
what happens to the Conley relation during this route.

Example 15.1. Let X ≡ [0, 1] and fµ ≡ {(x, y) ∈ X × X : y = µx(1 − x)}. It
is not hard to show that if 1 < µ < 3, then fµ has an attracting fixed point at
pµ = (µ−1)/µ and a repelling fixed point at 0. In order to find f∞µ , fω

µ and fΩ
µ , we

might invoke the help of a mathematical computer package. On Figure 1 we can
see the first 15 iteration of fµ for µ = 2.8.
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0.6
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1

Figure 1. µ = 2.8

A very interesting question arises, which could be the topic of a lengthy inves-
tigation. What do we see exactly on this picture? Just by the definition of the
limiting relations, we are tempted to say that the picture helps us to understand
the structure of f∞µ or fω

µ . However, after careful considerations of the processes
used in the program, we can conclude that we get an insight to the properties of
fΩ

µ . Indeed, after analyzing the map we obtain Figure 2 for fΩ
µ . It consists three

line segments, a horizontal one for 0 ≤ x ≤ 1 with value (µ− 1)/µ and two vertical
ones, at x = 0 and at x = 1, with maximum value µ/4.

As we pass through µ = 3, the fixed point loses its stability and a stable period
2 orbit is born. The dynamics is the same for 3 < µ < 1+

√
6, let us pick the value

µ = 3.1 to analyze the properties. On Figure 3 we can see the first 15 iteration of
fµ for µ = 3.1.

This changes fΩ
µ : it consists infinitely many line segments, two horizontal ones

for 0 ≤ x ≤ 1, with the values of the stable period 2 orbit, two vertical ones at
x = 0 and at x = 1, with maximum value µ/4, and infinitely many vertical line
segments at the preimages of the now unstable fixed point with values between the
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Figure 2. fΩ
µ , µ = 2.8
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Figure 3. µ = 3.1

values of the stable period 2 orbit. Let us denote the nonzero unstable fixed point
by p0 and the stable period 2 orbit by p1 and p2.
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Figure 4. fΩ
µ , µ = 3.1

We can graph fΩ
µ and (fΩ

µ )∗ = (f∗µ)Ω together; this gives us an easy way to
identify the attractors and corresponding dual repellers with the aid of Lemma
10.4.

The attractor-repeller pairs are the following.
(1) A1 = ∅, A∗1 = (f∗µ)Ω(X) = X.
(2) A2 = [p1, p2], A∗2 = (f∗µ)Ω([0, p1) ∪ (p2, 1]) = {0, 1}.
(3) A3 = {p1, p2}, A∗3 = (f∗µ)Ω(X − {p1, p2}) = {0, 1, p0} ∪ { preimages of p0}.
(4) A4 = [0, µ/4], A∗4 = (f∗µ)Ω((µ/4, 1]) = ∅.

Also,
F(fΩ) = R(f) = {0, p0, p1, p2}.

E(f) = {(0, 0), (p0, p0), (pi, pj) : i, j = 1, 2} and there are three chain components:
{0}, {p0} and {p1, p2}.
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Figure 5. fΩ
µ ∪ (fΩ

µ )∗, µ = 3.1

As µ is increasing, the period 2 orbit loses its stability and a period 4 stable orbit
is born, etc. We know that the system goes through a period-doubling route to
chaos. The period-doubling changes the picture of fΩ

µ in the above illustrated way.
First the stable fixed point for µ = 2.8 corresponds to the horizontal line segment
on the second picture. As µ passes through 3, the horizontal line segment splits up
into two horizontal line segments, which correspond to the period 2 stable orbit.
The vertical line segments between are at the preimages of the now unstable fixed
point. As µ passes through the next critical µ value, 1 +

√
6, the horizontal line

segments split up again into two pairs of horizontal line segments, corresponding to
the stable period 4 orbit, and between each pair new vertical line segments appear,
at the preimages of the now unstable period 2 orbit. This process continues as
µ passes through the consecutive critical values, where the stable period 2n orbit
loses its stability and a new 2n+1 period orbit is born, until µ reaches the value
µ∞ ≈ 3.5699.
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