Math 8669: Combinatorial Theory

HW 2 (Due Wednesday March 7, 2018)
Professor: Gregg Musiker

Remark: Please do at least seven of the following thirteen problems.

1) Exercises mentioned in Lectures 12-13:
(a) Consider the representation $\rho: S_{4} \rightarrow G L_{2}(\mathbb{C})$ given by

$$
\begin{gathered}
\rho((12))=\rho((34))=\left[\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right], \\
\rho((13))=\rho((24))=\left[\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right], \\
\rho((14))=\rho((23))=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],
\end{gathered}
$$

Extending by multiplication (i.e. linearly), what do (123), (1324), $(12)(34)$, and (132) map to under ρ ?
(b) Letting $g=(1234), h=(132)$, verify that

$$
\rho(g)^{4}=\rho(h)^{3}=\rho(g h g h)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

(b') Alternatively: verify the braid relations for S_{4}, i.e.

$$
\left.\rho((12))^{2}=\rho((23))^{2}=\rho((34))^{2}=\rho((12)(34))^{2}=\rho((12)(23))^{3}=\rho((23)(34))\right)^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

(c) Verify that the symmetric function (pattern repeats with an infinite number of variables)

$$
x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}+x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3} x_{4}+\ldots
$$

decomposes as
$\frac{p_{1}^{4}}{12}-\frac{p_{3} p_{1}}{3}+\frac{p_{2} p_{2}}{4}=\frac{1}{24}\left(1 \cdot 2 \cdot p_{1}^{4}+6 \cdot 0 \cdot p_{2} p_{1} p_{1}+8 \cdot(-1) \cdot p_{3} p_{1}+6 \cdot 0 \cdot p_{4}+3 \cdot 2 \cdot p_{2} p_{2}\right)$.
2) (a) (Exercise 1 in Section 1.13 of Sagan) An inversion in a permutation $\pi=x_{1}, x_{2}, \ldots, x_{n} \in S_{n}$ (in one-line notation) is a pair x_{i}, x_{j} such that $i<j$ and $x_{i}>x_{j}$.
Show that if π can be written as a product of k transpositions, then $k \equiv \operatorname{inv}(\pi) \bmod 2$. Note that this shows that the sign of π, defined as $\operatorname{sgn}(\pi)=(-1)^{k}$, is well-defined.
(b) Exercise 7.3 in EC 2.
3) (Sagan, Problem 1.13.4) Let G be an abelian group. Find all inequivalent irreducible representations of G. Hint: Use the fundamental theorem of abelian groups.
4) (Sagan, Problem 1.13.10) Verify that the map $X: \mathbb{R}_{>0} \rightarrow G L_{2}$ by $X(r)=\left[\begin{array}{cc}1 & \log r \\ 0 & 1\end{array}\right]$ is a representation and that $W=\left\{\left[\begin{array}{l}c \\ 0\end{array}\right]: c \in \mathbb{C}\right\}$ is invariant.
5) (Sagan, Problem 1.13.12) Let X be an irreducible matrix representation of G. Show that if $g \in Z_{G}$ (the center of G), then $X(g)=c I$ for some scalar c.
6) (Sagan, Problem 1.13.13) Let $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \subseteq G L_{d}$ be a subgroup of commuting matrices. Show that these matrices are simultaneously diagonalizable using representation theory.
7) (Sagan, Problem 1.13.15) Let X and Y be representations of G. The inner tensor product, $X \hat{\otimes} Y$, assigns to each $g \in G$ the matrix $(X \hat{\otimes} Y)(g)=$ $X(g) \otimes Y(g)$.
a) Verify that $X \hat{\otimes} Y$ is a representation of G.
b) Show that if X, Y, and $X \hat{\otimes} Y$ have characters denoted as χ, ϕ, and $\chi \hat{\otimes} \phi$, respectively, then $(\chi \hat{\otimes} \phi)(g)=\chi(g) \phi(g)$.
c) Find a group with irreducible representations X and Y such that $X \hat{\otimes} Y$ is not irreducible.
d) However, prove that if X is of degree 1 and Y is irreducible, then so is $X \hat{\otimes} Y$.
8) (Sagan, Problem 1.13.17) Let D_{n} be the Dihedral group of symmetries (rotations and reflections) of a regular n-gon.
c) Find the conjugacy classes of D_{n}.
d) Find all the inequivalent irreducible representations of D_{n}. H int: Use the fact that C_{n} is a normal subgroup of D_{n}.
9) (Sagan, Problem 1.13.16) Construct the character table of S_{4}.
10) (Sagan, Problem 2.12.4) Consider $S^{(n-1,1)}$, where each tabloid is identified with the element in its second row. Prove the following facts about this module and its character.
a) We have $S^{(n-1,1)}=\left\{c_{1} \mathbf{1}+c_{2} \mathbf{2}+\cdots+c_{n} \mathbf{n}: c_{1}+c_{2}+\cdots+c_{n}=0\right\}$.
b) For any $\pi \in S_{n}, \chi^{(n-1,1)}(\pi)=($ the number of fixed points of $\pi)-1$.
11) (Sagan, Problem 2.12.6) Show that every irreducible character of S_{n} is an integer-valued function.
12) (Sagan, Problem 2.12.15-17) Compute the character table of the alternating group A_{4}. Hint: You might find it useful to consider the character table of S_{4} and how the conjugacy classes of A_{n} and S_{n} compare.
13) Use Frobenius Reciprocity to verify the following identities involving induced representations:
(a) $(\text { trivial })_{\mathbb{Z}_{2}}^{S_{3}}=($ two - dim irrep $) \oplus($ trivial $)$,
(b) $(\text { sign })_{\mathbb{Z}_{2}}^{S_{3}}=($ two $-\operatorname{dim}$ irrep $) \oplus($ sign $)$,
(c) $(\text { trivial })_{\mathbb{Z}_{3}}^{S_{3}}=($ trivial $) \oplus($ sign $)$,
(d) $(\omega)_{\mathbb{Z}_{3}}^{S_{3}}=(\omega)_{\mathbb{Z}_{3}}^{2_{3}}=($ two - dim irrep $)$. where ω is the representation that sends the generator of \mathbb{Z}_{3} to a primitive cube root of unity.

