Math 8669: Combinatorial Theory

HW 3: Due Monday April 30, 2018

Professor: Gregg Musiker

Remark: Please do at least six of the following nine problems.

1) Deduce and prove a formula for the $f^{k, 1^{n-k}}$, the number of Standard Young Tableaux of shape $\lambda=\left[k, 1^{n-k}\right]$.
2) (i) What is the image of $\operatorname{RSK}(\pi)$ where $\pi(1)=4, \pi(2)=3, \pi(3)=$ $2, \pi(4)=6, \pi(5)=5, \pi(6)=1$?
i.e. $\pi=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 5 & 1\end{array}\right)$
(ii) What is the image of

$$
R S K^{-1}\left(\begin{array}{cccccc}
1 & 2 & 5 & 1 & 4 & 5 \\
2 & 4 & 6 & 2 & 6 & 6 \\
3 & & & 3 & &
\end{array}\right) ?
$$

3) Prove the Newton-Girard Identities that state for all $k \geq 1$ that

$$
k h_{k}=\sum_{i=1}^{k} h_{k-i} p_{i}, \quad \text { and } k e_{k}=\sum_{i=1}^{k}(-1)^{i-1} e_{k-i} p_{i} .
$$

Hint: Recall how we proved $\sum_{i=0}^{k}(-1)^{i} h_{k-i} e_{i}=0$ for all $k \geq 1$; it may also be useful to consider logarithmic derivatives.
4) (i) Expand $h_{3,1}$ in terms of the e_{λ} 's
(ii) Expand $e_{2,2}$ in terms of the p_{λ} 's.
5) (i) Expand $s_{2,1}$ as a polynomial in variables $\left\{x_{1}, x_{2}, x_{3}\right\}$.

Hint: You may use a computer algebra package for this computation.
(ii) Expand $s_{3,2,1}$ as a polynomial in variables $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.

Hint: You may use a computer algebra package for this computation.
(iii) Conjecture and prove an expansion for $s_{k, k-1, \ldots, 3,2,1}$ in terms of $\left\{x_{1}, x_{2}, \ldots, x_{k+1}\right\}$.
6) (a)-(c) Compute (using combinatorial formulas rather than a computer algebra package) the Schur expansions of

$$
p_{3,2}, \quad h_{4} \cdot s_{2,2,2}, \quad \text { and } \quad s_{3,2} \cdot s_{4,1} .
$$

7) (a) How many Standard Young Tableaux are there of shape $(4,2,1,1)$?
(b) Draw all SYT of shape $(2,2,1,1)$.
(c) Find the number of permutations in S_{12} with a longest increasing sequence of length 6 and longest decreasing sequence of length 4 .
8) In this problem, you will give an inductive proof of the Hook Length Formula, i.e. the number of Standard Young Tableaux, of shape $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \vdash n$, is given by

$$
f^{\lambda}=\frac{n!}{\prod_{c \in \lambda} h_{c}},
$$

where h_{c} is the number of boxes in the hook emanating from cell c.
Let $\ell_{i}=\lambda_{i}+k-i$ (assuming that $\lambda_{1} \geq \lambda_{2} \geq \ldots$)
Let $\Delta\left(\ell_{1}, \ldots, \ell_{k}\right)=\prod_{i<j}\left(\ell_{i}-\ell_{j}\right)$.
Let $F\left(\ell_{1}, \ldots, \ell_{k}\right)=\frac{n!\Delta\left(\ell_{1}, \ldots, \ell_{k}\right)}{\ell_{1}!\ell_{2}!\cdots \ell_{k}!}$.
(a) Show that $\frac{n!}{\prod_{c \in \lambda} h_{c}}=F\left(\ell_{1}, \ldots, \ell_{k}\right)$.
(b) Show that

$$
\sum_{i=1}^{k} x_{i} \Delta\left(x_{1}, \ldots, x_{i}+t, \ldots, x_{k}\right)=\left(x_{1}+x_{2}+\cdots+x_{k}+\binom{k}{2} t\right) \Delta\left(x_{1}, \ldots, x_{k}\right)
$$

(c) Show that $n \cdot \Delta\left(\ell_{1}, \ldots, \ell_{k}\right)=\sum_{i=1}^{k} \ell_{i} \Delta\left(\ell_{1}, \ldots, \ell_{i}-1, \ldots, \ell_{k}\right)$.
(d) Show that $f^{\lambda}=\sum_{i=1}^{k} f^{\left(\lambda_{1}, \ldots, \lambda_{i}-1, \ldots, \lambda_{k}\right)}$, where we define $f^{\left(\lambda_{1}, \ldots, \lambda_{i}-1, \ldots, \lambda_{k}\right)}$ to be zero if $\lambda_{i}=\lambda_{i+1}$.
(e) Conclude that $f^{\lambda}=\frac{n!}{\prod_{c \in \lambda} h_{c}}$.
9) (a) Recall that the symmetry group of the cube is S_{4}. Let V be the the representation obtained by S_{4} acting on the six faces of the cube. How does V decompose into irreducibles?
(b) Consider the Spect module $V=S^{3,2}$ (an irreducible representation of $\left.S_{\{1,2,3,4,5\}}\right)$ and the trivial representation W for $S_{\{6,7,8\}} \cong S_{3}$. What is the decomposition of $V \otimes W \uparrow_{S_{5} \times S_{3}}^{S_{8}}$ into irreducible representations?

