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Invariants, Kronecker Products
and

Combinatorics of some Remarkable Diophantine systems
by

A. Garsia, G. Musiker, N. Wallach, G. Xin

Abstract. This work lies across three areas of investigation that are by themselves of independent interest.
A problem that arose in quantum computing [6], [7] led us to a link that tied these areas together. This
link consists of a single formal series with a multifaced interpretation. The deeper exploration of this link
yielded results as well as methods for solving some numerical problems in each of these separate areas.

Introduction
Since our work may be of interest to audiences of varied background we will try to keep our notation

as elementary as possible and entirely self contained.
The problem in invariant theory that was the point of departure in our investigation is best stated

in its simplest and most elementary version. Given two matrices A =
∣∣∣ a11 a12

a21 a22

∣∣∣ and B =
∣∣∣ b11 b12

b21 b22

∣∣∣ in

GL[2] := GL(2, C), we recall that their tensor product may be written in the block form

A ⊗ B =
[

a11B a12B
a21B a22B

]
. I.1

We also recall that the action of a matrix M = ‖mij‖n
i,j=1 on a polynomial P (x) ∈ Rn = C[x1, x2, . . . , xn]

may be defined by setting
TMP (x) = P (xM), I.2

where the symbol xM is to be interpreted as multiplication of a row n-vector by an n×n matrix. This given,
we denote by RGL[2]⊗GL[2]

4 the ring of polynomials in R4 that are invariant under the action of A ⊗ B for
all pairs A,B ∈ GL[2]. In symbols

RGL[2]⊗GL[2]
4 =

{
P ∈ R4 : TA⊗BP (x) = P (x)

}
. I.3

Since the action in I.2 preserves degree and homogeneity, then RGL[2]⊗GL[2]
4 , is graded, and as a vector space

it decomposes into the direct sum

RGL[2]⊗GL[2]
4 =

⊕
m≥0

Hm

(
RGL[2]⊗GL[2]

4

)
,

where the mth direct summand here denotes the subspace consisting of the GL[2] ⊗ GL[2]-invariants that
are homogenous of degree m. The natural problem then arises to determine the generating function

W2(q) =
∑
m≥0

qm dim Hm

(
RGL[2]⊗GL[2]

4

)
.

Now note that using I.1 iteratively we can define the k-fold tensor product

A1 ⊗ A2 ⊗ · · · ⊗ Ak ,
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thus extend I.3 to its general form

RGL[2]⊗GL[2]⊗···⊗GL[2]

2k =
{
P ∈ R2k : TA1⊗A2⊗···⊗Ak

P (x) = P (x)
}

I.4

and set

Wk(q) =
∑
m≥0

qm dim Hm

(
RGL[2]⊗GL[2]⊗···⊗GL[2]

2k

)
. I.5

Remarkably, to this date only the series W2(q), W3(q), W4(q), W5(q) are known explicitly. Moreover, al-
though the three series W2(q), W3(q), W4(q) may be hand computed, so far W5(q) has only been obtained
by computer.

The third named author using branching tables calculated to obtain the results in [7] was able to
predict the explicit form of W5(q) by computing a sufficient number of its coefficients. The computation of
those branching tables took approximately 50 hours using an array of 9 computers.

The series W4(q), W5(q) first appeared in print in works of Luque-Thibon [4] & [5] which were
motivated by the same problem of quantum computing. We understand that their computation of W5(q)
was carried out by a brute force use of the partial fraction Algorithm of the fourth named author, and it
required several hours with the computers of that time.

The present work was carried out whilst unaware of the work of Luque-Thibon. Our main goal is
to acquire a theoretical understanding of the combinatorics underlying such Hilbert series and give a more
direct construction of W5(q) and perhaps bring W6(q) within reach of present computers.

Fortunately, as is often the case with a difficult problem, the methods that are developed to solve it
may be more significant than the problem itself. This is no exception as we shall see.

Let us recall that the pointwise product of two characters χ(1) and χ(2) of the symmetric group Sn

is also a character of Sn, and we shall denote it here by χ(1) ∗ χ(2). This is usually called the “Kronecker ”
product of χ(1) and χ(2). An outstanding yet unsolved problem is to obtain a combinatorial rule for the
computation of the integer

cλ
λ(1),λ(2),...,λ(k) I.6

giving the multiplicity of χλ in the Kronecker product χλ(1) ∗ χλ(2) ∗ · · · ∗ χλ(k)
. Here χλ and each χλ(i)

are
irreducible Young characters of Sn. Using the Frobenius map F that sends the irreducible character χλ onto
the Schur function Sλ, we can define the Kronecker product of two homogeneous symmetric functions of the
same degree f and g by setting

f ∗ g = F
(
(F−1f) ∗ (F−1g)

)
.

With this notation the coefficient in I.6 may also be written in the form

cλ
λ(1),λ(2),...,λ(k) =

〈
sλ(1) ∗ sλ(2) ∗ · · · ∗ sλ(k) , sλ

〉
, I.7

where
〈

,
〉

denotes the customary Hall scalar product of symmetric polynomials. The relevancy of all this
to the previous problem is a consequence of the following identity.
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Theorem I.1
Wk(q) =

∑
d≥0

q2d
〈
sd,d ∗ sd,d ∗ · · · ∗ sd,d , s2d

〉
I.8

where, in each term, the Kronecker product has k factors.

For this reason, here and after we will refer to the task of constructing Wk(q) as the “Sdd Problem

”.
Using this connection and some auxiliary results on the Kronecker product of symmetric function

we derived in [2] that

W2(q) =
1

1 − q2
, W3(q) =

1
1 − q4

, W4(q) =
1

(1 − q2)(1 − q4)2(1 − q6)
. I.8

Although this approach is worth pursuing (see [2]), the present investigation led us to another surprising
facet of this problem.

Again we will start with a special case. We are asked to place integers weights on the vertices of
the unit square so that all the sides have equal weights. Denoting the vertices P00, P01, P10, P11 (see figure)
and their weights p00, p01, p10, p11 we are led to the following Diophantine system

S2 :
∥∥∥∥ p00 + p01 − p10 − p11 = 0

p00 − p01 + p10 − p11 = 0
.

The general solution to this problem may be expressed as the formal series

F2(y00, y01, y10, y11) =
∑
p∈S2

yp00
00 yp01

01 yp10
10 yp11

11 =
1

(1 − y00y11)(1 − y01y10)
. I.9

In particular, making the substitution y00 = y01 = y10 = y11 = q we derive that the enumerator of solutions
by total weight is given by the generating function

G2(q) =
∑
d≥0

md(2)q2d =
1

(1 − q2)2
.

with md(2) giving the number of solutions of total weight 2d.

This problem generalizes to arbitrary dimensions. That is we seek to enumerate the distinct ways
of placing weights on the vertices of the unit k-dimensional hypercube so that all hyperfaces have the same
weight. Denoting by pε1ε2···εk

the weight we place on the vertex of coordinates (ε1, ε2, . . . , εk) we obtain a
Diophantine system Sk of k equations in the 2k variables {pε1ε2···εk

}εi=0,1.

For instance, using this notation, for the 3-dimensional cube we obtain the system

S3 :

∥∥∥∥∥∥∥
p000 + p001 + p010 + p011 − p100 − p101 − p110 − p111 = 0

p000 + p001 − p010 − p011 + p100 + p101 − p110 − p111 = 0

p000 − p001 + p010 − p011 + p100 − p101 + p110 − p111 = 0

.
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In this case the enumerator of solutions by total weight is

G3(q) =
∑
d≥0

md(3)q2d =
1 − q8

(1 − q2)4(1 − q4)2
.

The relevance of all this to the previous problem is a consequence of the following identity

Theorem I.2
Denoting by md(k) the number of solutions of the system Sk of total weight 2d and setting

Gk(q) =
∑
d≥0

md(k)q2d, I.10

we have

Gk(q) =
∑
d≥0

q2d
〈
hd,d ∗ hd,d ∗ · · · ∗ hd,d , S2d

〉
, I.11

where, hd,d denotes the homogenous basis element indexed by the two part partition (d, d) , and in each term,

the Kronecker product has k factors.

For this reason, we will refer to the task of constructing the series Gk(q) as the “Hdd Problem ”.
Theorem I.2 shows that the algorithmic machinery of Diophantine analysis may be used in the

construction of generating functions of Kronecker coefficients as well as Hilbert series of ring of invariants.
More precisely we are referring here to the “constant term methods” of MacMahon partition analysis which
have been recently translated into computer software by Andrews et al [1] and G. Xin in [8].

To see what this leads to, we start by noting that using MacMahon’s approach the solutions of S2

may be obtained by the following identity

F2(y00, y01, y10, y11) =
∑
p∈S2

yp00
00 yp01

01 yp10
10 yp11

11 ap00+p01 − p10−p11
1 ap00−p01 + p10−p11

2

∣∣∣
a0
1a0

2

,

where the symbol “
∣∣∣
a0
1a0

2

” denotes the operator of taking the constant term in a1, a2. This identity may also

be written in the form

F2(y00, y01, y10, y11) =
1

(1 − y00a1a2)(1 − y01a1/a2)(1 − y10a2/a1)(1 − y11/a1a2)

∣∣∣
a0
1a0

2

.

In particular the enumerator of the solutions of S2 by total weight may be computed from the identity

G2(q) =
1

(1 − qa1a2)(1 − qa1/a2)(1 − qa2/a1)(1 − q/a1a2)

∣∣∣
a0
1a0

2

.

More generally we have

Gk(q) =
1∏

S⊆[1,k]

(
1 − q

∏
i∈S ai/

∏
j �∈Saj

)∣∣∣
a0
1a0

2···a0
k

. I.12
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Now, standard methods of Invariant Theory yield that we also have

Wk(q) =

∏k
i=1

(
1 − 1

a2
i

)
∏

S⊆[1,k]

(
1 − q

∏
i∈S ai/

∏
j �∈Saj

)∣∣∣∣
a0
1a0

2···a0
k

. I.13

A comparison of I.12 and I.13 strongly suggests that a close study of the combinatorics of Diophantine
systems such as Sk should yield a more revealing path to the construction of such Hilbert series. This idea
turned out to be fruitful, as we shall see, in that it permitted the solution of a variety of similar problems
(see [2], [3]). In particular, we were eventually able to obtain that

G5(
√

q) =
Num(5)

(1 − q)9(1 − q2)8(1 − q3)6(1 − q4)3(1 − q5)
. I.14

with

Num(5) = q44 + 7 q43 + 220 q42 + 2606 q41 + 24229 q40 + 169840 q39 + 951944 q38

+ 4391259 q37 + 17128360 q36 + 57582491 q35 + 169556652 q34 + 442817680 q33

+ 1036416952 q32 + 2192191607 q31 + 4219669696 q30 + 7433573145 q29 + 12041305271 q28

+ 18003453305 q27 + 24921751416 q26 + 32017113319 q25 + 38243274851 q24 + 42524815013 q23

+ 44052440432 q22 + 42524815013 q21 + 38243274851 q20 + 32017113319 q19 + 24921751416 q18

+ 18003453305 q17 + 12041305271 q16 + 7433573145 q15 + 4219669696 q14 + 2192191607 q13

+ 1036416952 q12 + 442817680 q11 + 169556652 q10 + 57582491 q9 + 17128360 q8 + 4391259 q7

+ 951944 q6 + 169840 q5 + 24229 q4 + 2606 q3 + 220 q2 + 7 q + 1

.

Surprisingly, the presence of the numerator factor in I.13 absent in I.12 does not increase the complexity of
the result, as we see by comparing I.14 to the Luque-Thibon result

W5(
√

q) =
P5(q)

(1 − q2)4(1 − q3)(1 − q4)6(1 − q5)(1 − q6)5

with

P5(q) = q54 + q52 + 16q50 + 9q49 + 98q48 + 154q47 + 465q46 + 915q45 + 2042q44 + 3794q43 + 7263q42

+ 12688q41 + 21198q40 + 34323q39 + 52205q38 + 77068q37 + 108458q36 + 147423q35 + 191794q34

+ 241863q33 + 292689q32 + 342207q31 + 386980q30 + 421057q29 + 443990q28 + 451398q27

+ 443990q26 + 421057q25 + 386980q24 + 342207q23 + 292689q22 + 241863q21 + 191794q20 I.15

+ 147423q19 + 108458q18 + 77068q17 + 52205q16 + 34323q15 + 21198q14 + 12688q13

+ 7263q12 + 3794q11 + 2042q10 + 915q9 + 465q8 + 154q7 + 98q6 + 9q5 + 16q4 + q2 + 1

.

It should be apparent from the size of the numerators of W5(q) and G5(q) that the problem of computing
these rational functions explodes beyond k = 4. In fact it develops that all available computer packages
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(including “Omega” and “Latte” ) fail to directly compute the constant terms in I.12 for k = 5. This
notwithstanding, we were eventually able to get the partial fraction algorithm of G. Xin to deliver us G5(q).

This paper covers the variety of techniques we developed in our efforts to compute these remarkable
rational functions.

Our efforts in obtaining W6(q) and G6(q) are still in progress, so far they only resulted in reducing
the computer time required to obtain W5(q) and G5(q). Using combinatorial ideas, in conjunction with
the partial fraction algorithm of Xin, we developed three essentially distinct algorithms for computing these
rational functions as well as other closely related families. The most successful of these algorithms got
the computation time for W5(q) down to ten minutes. The crucial feature of this latter algorithm is an
inductive process for successively computing the series Gk(q) and Wk(q), based on a surprising role of
divided differences.

The contents are divided into four sections. In the first section we relate these Hilbert series to
constant terms and derive a collection of identities to be used in later sections. In the second section we
develop the combinatorial model that reduces the computation of our Kronecker products to solutions of
Diophantine systems. In the third section we develop the divided difference algorithm for the computation
of the complete generating functions yielding Wk(q) and Gk(q). In the fourth and final section, after an
illustration of what can be done with bare hands we expand the combinatorial ideas acquired from this
experimentation into our three algorithms that yielded G5(q) and our fast computation of W5(q).

The reader is referred to the papers of Luque-Thibon [4],[5] and Wallach [7] for an understanding of
how these Hilbert series are related to problem arising in the study of quantum computing.

1. Hilbert series of invariants as constant terms.
Let us recall that given two matrices A = ‖aij‖m

i,i=1 and B = ‖bij‖n
i,i=1 we use the notation A ⊗ B

to denote the nm × nm block matrix
A ⊗ B = ‖aijB‖m

i,i=1 . 1.1

For instance, if

A =
[

a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
, 1.2

then

A ⊗ B =

⎡⎢⎣
a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

⎤⎥⎦ . 1.3

Here and in the following the action of an m×m matrix A = ‖aij‖m
i,j=1 on a polynomial P (x) = P (x1, x2, . . . , xn)

is denoted TAP (x) and is defined by setting

TAP (x1, x2, . . . , xn) = P
( m∑

i=1

xiai1 ,

m∑
i=1

xiai2 , . . . ,

m∑
i=1

xiaim

)
. 1.4

In matrix notation (viewing x = (x1, x2, . . . , xn) as a row vector) we may simply rewrite this as

TAP (x) = P
(
xA

)
. 1.5
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Recall that if G is a group of m×m matrices we say that P ∈ C[x1, x2, . . . , xn] is “G-invariant” if and only if

TAP (x) = P (x) ∀ A ∈ G. 1.6

The subspace of C[x] = C[x1, x2, . . . , xn] of G-invariant polynomials is usually denoted C[x]G. Clearly, the
action in 1.4 preserves homogeneity and degree, thus we have the direct sum decomposition

C[x]G = Ho

(
C[x]G

)
⊕H1

(
C[x]G

)
⊕H2

(
C[x]G

)
⊕ · · · ⊕ Hd

(
C[x]G

)
⊕ · · ·

where Hd

(
C[x]G

)
denotes the subspace of G-invariants that are homogeneous of degree d. The “Hilbert

series” of C[x]G is simply given by the formal power series

FG(q) =
∑
d≥0

qd dim
(
Hd

(
C[x]G

))
. 1.7

Since dimHd

(
C[x]G

)
≤ dim

(
Hd

(
C[x]

))
=

(
d+m−1

m−1

)
we see that this is a well defined formal power series.

In the case that G is a finite group the Hilbert series FG(q) is immediately obtained from Molien’s
formula

FG(q) =
1
|G|

∑
A∈G

1
det

(
I − qA

) .

For an infinite group G which possess a unit invariant measure ω this identity becomes

FG(q) =
∫

A∈G

1
det

(
I − qA

) dω. 1.8

For the present developments we need to specialize all this to the case G = SL[2]⊗k, that is the group of
2k × 2k matrices obtained by tensoring a k-tuple of elements of SL[2]. More precisely

SL[2]⊗k =
{
A1 ⊗ A2 ⊗ · · · ⊗ Ak : Ai ∈ SL[2] ∀ i = 1, 2, . . . , k

}
. 1.9

Our first task in this section is to derive the identity in I.12. That is

Theorem 1.1
Setting for k ≥ 1

Wk(q) = FSL[2]⊗k(q) =
∑
d≥0

qd dim
(
Hd

(
C[x]SL[2]⊗k))

, 1.10

we have

Wk(q) =
∏k

i=1

(
1 − a2

i

)∏
S⊆[1,k]

(
1 − q

∏
i∈S ai/

∏
j �∈Saj

)∣∣∣∣
a0
1a0

2···a0
k

. 1.11

Proof
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To keep our exposition within reasonable limits we will need to assume here some well known
facts (see [7] for proofs). Since SL[2] has no finite measure the first step is to note that a polynomial
P (x) ∈ C[x1, x2, . . . , x2k ] is SL[2]⊗k-invariant if and only if it is SU [2]⊗k-invariant. Where as in 1.9

SU [2]⊗k =
{
A1 ⊗ A2 ⊗ · · · ⊗ Ak : Ai ∈ SU [2] ∀ i = 1, 2, . . . , k

}
. 1.11

In particular we derive that
FSL[2]⊗k(q) = FSU [2]⊗k(q). 1.12

This fact allows us to compute FSL[2]⊗k(q) using Molien’s identity 1.8. Note however that if

A = A1 ⊗ A2 ⊗ · · · ⊗ Ak

and Ai has eigenvalues ti, 1/ti then (using plethistic notation) we have

1
det

(
I − qA)

=
∑
m≥0

qmhm

[
(t1 + 1/t1)(t2 + 1/t2) · · · (tk + 1/tk)

]
. 1.13

Denoting by dωi the invariant measure of the ith copy of SU [2] we see that in this case 1.8 reduces to

FSU [2]⊗k(q) =
∑
m≥0

qm

∫
SU [2]

· · ·
∫

SU [2]

hm

[
(t1 + 1/t1) · · · (tk + 1/tk)

]
dω1 · · · dωk. 1.14

Now it is well know that if an integrand f(A) of SU [2] is invariant under conjugation then∫
SU [2]

f(A)dω =
1
π

∫ π

−π

f
( [

eiθ 0
0 e−iθ

])
sin2 θdθ.

This identity reduces 1.14 to

FSU [2]⊗k(q) =
∑
m≥0

qm 1
πk

∫ π

−π

· · ·
∫ π

−π

hm

[
(eiθ1 + e−iθ1) · · · (eiθk + e−iθk)

]
sin2 θ1 · · · sin2 θk dθ1 · · · dθk. 1.15

This given, the identity in 1.11 is an immediate consequence of the following simple fact.

Proposition 1.1
If Q(a1, a2, . . . , ak) is a Laurent polynomial in Q[a1, a2, . . . , ak; 1/a1, 1/a2, . . . , 1/ak] then

(
1
2π

)k ∫ π

−π

∫ π

−π

· · ·
∫ π

−π

Q[(eiθ1 , eiθ2 , . . . , eiθk
]
dθ1dθ2 · · · dθk = Q(a1, a2, . . . , ak)

∣∣∣
a0
1

∣∣∣
a0
2

· · ·
∣∣∣
a0

k

. 1.16

Proof
By linearity, it suffices to consider Q(a1, a2, . . . , ak) = ar1

1 ar2
2 · · · ark

k , in which case 1.16 obviously
holds.
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Going back to 1.15 the substitution

sin2 θj =
1 − e2iθj +e−2iθj

2

2

reduces the coefficient of qn to

1
(2π)k

∫ π

−π

· · ·
∫ π

−π

hm

[
(eiθ1 + e−iθ1) · · · (eiθk + e−iθk)

] k∏
i=1

(
1 − e2iθj + e−2iθj

2

)
dθ1 · · · dθk. 1.17

However the factor
hm

[
(eiθ1 + e−iθ1) · · · (eiθk + e−iθk)

]
is invariant under any of the interchanges eiθj ←→ e−iθj . Thus the integral in 1.22 may be simplified to

1
(2π)k

∫ π

−π

· · ·
∫ π

−π

hm

[
(eiθ1 + e−iθ1) · · · (eiθk + e−iθk)

] k∏
i=1

(
1 − e2iθj

)
dθ1 · · · dθk. 1.18

Proposition 1.1 then yields that this integral may be computed as the constant term

hm

[
(a1 + 1/a1)(a1 + 1/a1) · · · (a1 + 1/a1)

] k∏
i=1

(
1 − a2

i

) ∣∣∣∣
a0
1a0

2···a0
k

.

Using this in 1.15 we derive that

FSU [2]⊗k(q) =
∑
m≥0

qmhm

[
(a1 + 1/a1)(a1 + 1/a1) · · · (a1 + 1/a1)

] k∏
i=1

(
1 − a2

i

) ∣∣∣∣
a0
1a0

2···a0
k

=
∑
m≥0

qmhm

[ ∑
S⊆[1,k]

∏
i∈S ai∏
j �∈S aj

] k∏
i=1

(
1 − a2

i

) ∣∣∣∣
a0
1a0

2···a0
k

=

( ∏
S⊆[1,k]

1(
1 − q

∏
i∈S

ai∏
j �∈S

aj

)
)

k∏
i=1

(
1 − a2

i

) ∣∣∣∣
a0
1a0

2···a0
k

This completes the proof of Theorem 1.1.

Note that if we restrict our action of SU [2]⊗k to the subgroup of matrices

T⊗k
2 =

{[
t1 0
0 t1

]
⊗

[
t2 0
0 t2

]
⊗ · · · ⊗

[
tk 0
0 tk

]
: tr = eiθr

}
then a similar use of Molien’s theorem yields the following result.

Theorem 1.2
The Hilbert series of the ring of invariants RT⊗k

2
2k is given by the constant term

FT⊗k
2

(q) =
1∏

S⊆[1,k]

(
1 − q

∏
i∈S ai/

∏
j �∈Saj

)∣∣∣∣
a0
1a0

2···a0
k

. 1.19
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Proof
The integrand 1/ det(1−qA) is the same as in the previous proof and only the Haar measure changes.

In this case we must take to dw = dθ1dθ2 · · · dθk/(2π)k in 1.8, and Molien’s theorem gives

FT⊗k
2

(q) =
1

(2π)k

∫ π

−π

∫ π

−π

· · ·
∫ π

−π

1∏
S⊆[1,k]

(
1 − q

∏
i∈S ti/

∏
j �∈Stj

)dθ1dθ2 · · · dθk.

Thus 1.19 follows from Proposition 1.1.

Remark 1.2
There is another path leading to the same result that is worth mentioning here since it gives a direct

way of connecting Invariants to Diophantine systems. For notational simplicity we will deal with the case
k = 3. Note that the element [

t1 0
0 t1

]
⊗

[
t2 0
0 t2

]
⊗

[
t3 0
0 t3

]
∈ T⊗3

2

is none other than the 8 × 8 matrix

A(t1, t2, t3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1t2t3 0 0 0 0 0 0 0
0 t1t2/t3 0 0 0 0 0 0
0 0 t1t3/t2 0 0 0 0 0
0 0 0 t1/t2t3 0 0 0 0
0 0 0 0 t2t3/t1 0 0 0
0 0 0 0 0 t2/t1t3 0 0
0 0 0 0 0 0 t3/t1t2 0
0 0 0 0 0 0 0 1/t1t2t3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This gives that for any monomial xp = xp1
1 xp2

2 · · ·xp8
8 we have

A(t1, t2, t3)xp = tp1+p2+p3+p4−p5−p6−p7−p8
1 tp1+p2−p3−p4+p5+p6−p7−p8

2 tp1−p2+p3−p4+p5−p6+p7−p8
3 × xp.

Thus all the monomials are eigenvectors and a polynomial P (x1, x2, . . . , x8) will be invariant if and only
if all its monomials are eigenvectors of eigenvalue 1. It then follows that the Hilbert series FT⊗3

2
(q) of

Q[x1, x2, . . . , x8]T
⊗3
2 is obtained by q-counting these monomials by total degree. That is q-counting by the

statistic p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 the solutions of the Diophantine system

S3 =

∥∥∥∥∥∥
p1 + p2 + p3 + p4 − p5 − p6 − p7 − p8 = 0
p1 + p2 − p3 − p4 + p5 + p6 − p7 − p8 = 0
p1 − p2 + p3 − p4 + p5 − p6 + p7 − p8 = 0

1.20

and MacMahon partition analysis gives

FT⊗3
2

(q) = 1
1−qa1a2a3

1
1−qa1a2/a3

1
1−qa1a3/a2

1
1−qa1/a2a3

1
1−qa2a3/a1

1
1−qa2/a1a3

1
1−qa3/a1a2

1
1−qa/a1a2a3

∣∣∣
a0
1a0

2a0
3

.

This gives another proof of the case k = 3 of 1.19. It is also clear that the same argument can be used for
all k > 3 as well.
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Remark 1.3
Full information about the solutions of our systems is given by the complete generating function

Fk(x1, x2, . . . , x2k) =
∑
p∈Sk

xp1
1 xp2

2 · · ·xp2k

2k . 1.21

Using the notation adopted for S3 in 1.20, our system Sk may be written in vector form

p1V1 + p2V2 + · · · + p2kV2k = 0, 1.22

where V1, V2, . . . , V2k are the k-vectors (±1,±1, . . . ,±1) yielding the vertices of the hypercube of semiside
1 centered at the origin. In this notation, MacMahon partition analysis gives that the rational function in
1.21 is obtained by taking the constant term

Fk(x1, x2, . . . , x2k) =
2k∏
i=1

1
1 − xiAi

∣∣∣∣
a0
1a0

2···a0
k

1.23

with the Ai Laurent monomials in a1, a2, . . . ak which may be written in the form

Ai =
k∏

i=1

a1−2εi
i

where ε1ε2 · · · εk are the binary digits of i − 1.
In the same vein the companion rational function W (x1, x2, . . . , x2k) associated to the Sdd problem

is obtained by taking the constant term

Wk(x1, x2, . . . , x2k) =
k∏

j=1

(1 − a2
j )

2k∏
i=1

1
1 − xiAi

∣∣∣∣
a0
1a0

2···a0
k

. 1.24

Of course we have

Gk(q) = Fk(x1, x2, . . . , x2k)
∣∣∣
xi=q

and Wk(q) = Wk(x1, x2, . . . , x2k)
∣∣∣
xi=q

.

In section 3 we will show that, at least in principle, these rational functions could be constructed by a
succession of elementary steps interspersed by single constant term extractions.
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2. Diophantine systems, Constant terms and Kronecker products
We have seen, by MacMahon partition analysis, that the generating function defined in I.10

Gk(q) =
∑
d≥0

md(k)q2d,

which counts solutions of the diophantine system Sk, is given by the constant term identity in I.12:

Gk(q) =
1∏

S⊆[1,k]

(
1 − q

∏
i∈S ai/

∏
j �∈Saj

)∣∣∣∣
a0
1a0

2···a0
k

. 2.1

In the last section we proved (Theorem 1.1) that the Hilbert series of invariants

Wk(q) =
∑
m≥0

qm dim Hm

(
RGL[2]⊗GL[2]⊗···⊗GL[2]

2k

)
is given by the constant term

Wk(q) =
∏k

i=1

(
1 − a2

i

)∏
S⊆[1,k]

(
1 − q

∏
i∈S ai/

∏
j �∈Saj

)∣∣∣∣
a0
1a0

2···a0
k

. 2.2

A comparison of 2.1 and 2.2 clearly suggests that these two results must be connected. This connection has
a beautiful combinatorial underpinning which leads to yet another interpretation of the these remarkable
constant terms. The idea is best explained in the simplest case k = 2. Then 2.2 reduces to

W2(q) =
1 − a2

1 − a2
2 + a2

1a
2
2

(1 − qa1a2)(1 − qa1/a2)(1 − qa2/a1)(1 − q/a1a2)

∣∣∣∣
a0
1a0

2

.

Expanding the inner rational function as product of four formal power series in q we get

W2(q) =
∑

p00≥0

∑
p01≥0

∑
p10≥0

∑
p11≥0

qp00+p01+p10+p11ap00+p01−p10−p11
1 ap00−p01+p10−p11

2

∣∣∣∣
a0
1a0

2

+

−
∑

p00≥0

∑
p01≥0

∑
p10≥0

∑
p11≥0

qp00+p01+p10+p11ap00+p01−p10−p11+2
1 ap00−p01+p10−p11

2

∣∣∣∣
a0
1a0

2

+

−
∑

p00≥0

∑
p01≥0

∑
p10≥0

∑
p11≥0

qp00+p01+p10+p11ap00+p01−p10−p11
1 ap00−p01+p10−p11+2

2

∣∣∣∣
a0
1a0

2

+
∑

p00≥0

∑
p01≥0

∑
p10≥0

∑
p11≥0

qp00+p01+p10+p11 ap00+p01−p10−p11+2
1 ap00−p01+p10−p11+2

2

∣∣∣∣
a0
1a0

2

. 2.3

Now the first term is none other than 2.1 for k = 2 and thus it counts solutions of the diophantine system

S2 =
∥∥∥∥p00 + p01 − p10 − p11 = 0

p00 − p01 + p10 − p11 = 0
. 2.4
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In the same vein, by MacMahon partition analysis, we see that the second term counts solutions of the
system

S10
2 =

∥∥∥∥∥p00 + p01 − p10 − p11 = −2
p00 − p01 + p10 − p11 = 0

; 2.5

analogously the third and fourth terms are respectively counting solutions of the two following systems

S01
2 =

∥∥∥∥∥ p00 + p01 − p10 − p11 = 0
p00 − p01 + p10 − p11 = −2

, 2.6

S11
2 =

∥∥∥∥∥p00 + p01 − p10 − p11 = −2
p00 − p01 + p10 − p11 = −2

. 2.7

Applying the same decomposition in the general case we see that the series Wk(q) may be viewed as the end
product of an inclusion exclusion process applied to a family of Diophantine systems. To derive some further
consequences of this fact, it is more convenient to use another combinatorial model for these systems.

In this alternate model our family of objects consists of the collection Fd of d-subsets of the 2d-
element set

Ω2d = {1, 2, 3, . . . , 2d}.

For a given A = {1 ≤ i1 < i2 < · · · < id ≤ 2d} ∈ Fd and σ in the symmetric group S2d we set

σA = {σi1 , σi2 , . . . , σid
}.

This clearly defines an action of S2d on Fd as well as on the k-fold cartesian product

F⊗k
d = Fd ×Fd ×Fd × · · · × Fd.

Theorem 2.1
The number md(k) of solutions of the diophantine system Sk is equal to the number of orbits in the

action of S2d on F⊗k
d .

Proof
It will be sufficient to see this for k = 2. Then leaving d generic we

can visualize an element of Fd×Fd by the Ven diagram of Fig. 1. There we
have depicted the pair (A1, A2) as it lies in Ω2d. Using these two sets we can
decompose Ω2d into 4 parts we labeled A00,A01,A10,A11. More precisely
“A00” labels the set A1 ∩ A2, “A01” labels the set A1 ∩ Ac

2, “A10” labels
the set Ac

1 ∩ A2 and “A11” labels the set Ac
1 ∩ Ac

2. Here we use “Ac
i ” to

denote the complement of Ai in Ω2d. This given, if we let p00, p01, p10, p11

denote the respective cardinalities of these sets, the
Fig.1

condition that the pair (A1, A2) belongs top Fd ×Fd yields that we must have

p00 + p01 + p10 + p11 = 2d

p00 + p01 = |A1| = d

p00 + p10 = |A2| = d

.
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Note that this system of equations is equivalent to the system

p00 + p01 + p10 + p11 = 2d

p00 + p01 − p10 − p11 = 0

p00 − p01 + p10 − p11 = 0

.

It easily seen that, given any solution (p00, p01, p10, p11) of this system, we can immediately construct a pair
of subsets (A1, A2) ∈ Fd × Fd by simply filling the sets A00,A01,A10,A11 in the diagram of Fig 1 with
p00, p01, p10, p11 respective elements from the set Ω2d. Moreover, any two such fillings can be seen to be
images of each other under suitable permutations of S2d. In other words by this construction we obtain a
bijection between the orbits of Fd × Fd under S2d and the solutions of the system S2 we have previously
encountered. This proves the theorem for k = 2. The general case follows by an entirely analogous argument.

Theorem 2.1 immediately leads to a

Proof of Theorem I.2
We are to show that

mk(d) =
〈
hd,d ∗ hd,d ∗ · · · ∗ hd,d , s2d

〉
. 2.8

It is well known that a transitive action of a group G on a set Ω is equivalent to the action of G on the left G-
cosets of the stabilizer of any element of Ω. In our case, if we take this element to be subset {1, 2, . . . , d} of Ω2d

then the stabilizer is the Young subgroup S{1,...,d}×S{d+1,...,2d} of S2d and thus the Frobenius characteristic
of this action is the homogeneous basis element hd,d = hdhd. It follows then that the Frobenius characteristic
of the action of S2d on the k-tuples (A1, A2, . . . , Ak) of d-subsets of Ω2d is given by the k-fold Kronecker
product

hd,d ∗ hd,d ∗ · · · ∗ hd,d.

Thus the scalar product 〈
hd,d ∗ hd,d ∗ · · · ∗ hd,d , s2d

〉
yields the multiplicity of the trivial under this action. But it is well known, and easy to see that this
multiplicity is also equal to the number of orbits under this action. Thus Theorem 2.1 gives 2.8.

We can now give a
Proof of Theorem I.1

Again we will only need to do it for k = 2. To this end note that by Theorem I.2 the number of
solutions of the system in 2.4 is given by the scalar product〈

hd,d ∗ hd,d , s2d

〉
. 2.9

In the same vein we see that the number of solutions to the system in 2.4 may be viewed as the number of
orbits in the action of S2d on the pairs of subsets (A1, A2) of Ω2d where A2 and its complement Ac

2 have the
same cardinality but A1 has one more element than its complement Ac

1. We have seen that the Frobenius
characteristic of the action of S2d on subsets of cardinality d is hd,d. On the other hand the action of S2d on
sets of cardinality d + 1 is equivalent to the action of S2d on left cosets of S1,2...,d+1 ×Sd+2...,2d yielding that
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the Frobenius characteristic for this action is hd+1hd−1. Thus the Frobenius characteristic of the action of
S2d on such pairs must be the Kronecker product

hd+1hd−1 ∗ hdhd.

It follows then that the number of solutions of the system in 2.5 is given by the scalar product〈
hd+1hd−1 ∗ hdhd , s2d

〉
. 2.10

The same reasoning gives that the number of solutions of the systems in 2.6 and 2.7 are given by the scalar
products 〈

hdhd ∗ hd+1hd−1 , s2d

〉
and

〈
hd+1hd−1 ∗ hd+1hd−1 , s2d

〉
. 2.11

It follows then that the coefficient of q2d in the formal power series resulting from the alternating sum in 2.3
is none other than the same alternating sum of the scalar products in 2.9. 2.10 and 2.11. That is

W2(q)
∣∣∣
q2d

=
〈
hdhd ∗ hdhd , s2d

〉
−

〈
hd+1hd−1 ∗ hdhd , s2d

〉
−

〈
hdhd ∗ hd+1hd−1 , s2d

〉
+

〈
hd+1hd−1 ∗ hd+1hd−1 , s2d

〉
=

〈(
hdhd − hd+1hd−1

)
∗

(
hdhd − hd+1hd−1

)
, s2d

〉
=

〈
sd,d ∗ sd,d , s2d

〉
.

This gives
W2(q) =

∑
d≥0

q2d
〈
sd,d ∗ sd,d , s2d

〉
.

An entirely analogous argument proves the general identity in I.8.

3. Enter divided difference operators
There is a truly remarkable approach to the solutions of a variety of constant term problems which

exhibit the same types of symmetries of the Hdd and Sdd problems. We will introduce the approach in some
simple cases first. We define as the “double ” of the Diophantine system

S2 =
∥∥∥∥ p1 + p2 − p3 − p4 = 0

p1 − p2 + p3 − p4 = 0 3.1

the system

SS2 =
∥∥∥∥ p1 + p2 − p3 − p4 + p5 + p6 − p7 − p8 = 0

p1 − p2 + p3 − p4 + p5 − p6 + p7 − p8 = 0 . 3.2

As we can easily see we have simply repeated twice each linear form and appropriately increased the indices
of the variables. Now suppose that we are in possession of the complete generating function of S2, that is

FS2(x1, x2, x3, x4) =
∑
p∈S2

xp1
1 xp2

2 xp3
3 xp4

4 . 3.3

Then the complete generating function of SS2 is simply given by

FSS2(x1, x2, . . . , x8) = δ1,5δ2,6δ3,7δ4,8FS2(x1, x2, x3, x4), 3.4
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where for any pair of indices (i, j) we let δi,j denote the divided difference operator

δi,j =
1

xi − xj
(1 − si,j) 3.5

with si,j denoting the transposition that interchanges the pair xi, xj . This is proved as follows.
By MacMahon partition analysis we have

FS2(x1, x2, x3, x4) =
1

(1 − x1a1a2)
1

(1 − x2a1/a2)
1

(1 − x3a2/a1)
1

(1 − x4/a1a2)

∣∣∣∣
a0
1a0

2

. 3.6

Now note that since

δ1,5
1

(1 − x1a1a2)
=

(
1

(1 − x1a1a2)
− 1

(1 − x5a1a2)

)
1

x1 − x5

=
(

1 − x5a1a2 − 1 + x1a1a2

(1 − x1a1a2)(1 − x5a1a2)

)
1

x1 − x5
=

a1a2

(1 − x1a1a2)(1 − x5a1a2)

,

we obtain similarly

δ2,6
1

(1 − x2a1/a2)
=

a1/a2

(1 − x2a1/a2)(1 − x6a1/a2)
,

δ3,7
1

(1 − x3a2/a1)
=

a2/a1

(1 − x3a2/a1)(1 − x7a2/a1)
,

δ4,8
1

(1 − x4/a1a2)
=

1/a1a2

(1 − x4/a1a2)(1 − x8/a1a2)
.

Thus applying the operator δ1,5δ2,6δ3,7δ4,8 to both sides of 3.6 gives

δ1,5δ2,6δ3,7δ4,8FS2(x1, x2, x3, x4) =
1

(1 − x1a1a2)(1 − x2a1/a2)(1 − x3a2/a1)(1 − x4/a1a2)

(1 − x5a1a2)(1 − x6a1/a2)(1 − x7a2/a1)(1 − x8/a1a2)

∣∣∣∣
a0
1a0

2

. 3.7

Now we can easily recognize that 3.7 is precisely the constant term that MacMahon partition analysis would
yield for the system SS2. This proves 3.4.

Note that to obtain the equality in 3.7 we have used the simple fact that the divided difference
operator and the constant term operator do commute. This is the fundamental property which is at the root
of the present algorithm. This example should make it evident that we have here a general result that may
be stated as follows
Theorem 3.1

If FS(x1, x2, . . . , xn) is the complete generating function of a Diophantine system S then the rational

function

FSS(x1, x2, . . . , xn) = δ1,n+1δ2,n+2 · · · δn,2nFS(x1, x2, . . . , xn)

is the complete generating function of the system SS obtained by doubling S.
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This result combined with the next simple observation yields a powerful algorithm for computing a
variety of complete generating functions.

Theorem 3.2
Let FS(x1, x2, . . . , xn) be the complete generating function of a Diophantine system S then the complete

generating function FSE(x1, x2, . . . , xn) of the system SE obtained by adding the equation

E = r1p1 + r2p2 + · · · + rnpn = 0 3.8

to S is obtained by taking the constant term

FSE(x1, x2, . . . , xn) = FS(ar1x1, a
r2x2, . . . , a

rnxn)
∣∣∣
a0

. 3.9

Proof
By assumption

FS(x1, x2, . . . , xn) =
∑
p∈S

xp1
1 xp2

2 · · ·xpn
n .

Now we have

FS(ar1x1, a
r2x2, . . . , a

rnxn)
∣∣∣
a0

=
∑
p∈S

xp1
1 xp2

2 · · ·xpn
n ar1p1+r2p2+···+rnpn

∣∣∣
a0

=
∑

p∈SE
xp1

1 xp2
2 · · ·xpn

n

= FSE(x1, x2, . . . , xn).
These two results provide us with an algorithm for (at least in principle) computing all the Hdd

series
Gk(q) =

∑
n≥0

〈
hd,d ∗ · · · ∗ hd,d , s2d

〉
q2d

as well as the Sdd series
Wk(q) =

∑
n≥0

〈
sd,d ∗ · · · ∗ sd,d , s2d

〉
q2d.

The algorithm for the Hdd series proceeds as follows.
Step 1

a1) Compute the complete generating function for the trivial system S1 : ‖p1−p2 = 0. That is compute
the constant term

FS1(x1, x2) =
1

(1 − x1a)(1 − x2/a)

∣∣∣
a0

.

Step 2
a2) Compute the complete generating function for the double SS1 : ‖p1 − p2 + p3 − p4 = 0. That is

FSS1(x1, x2, x3, x4) = δ1,3δ2,4FS1(x1, x2).

b2) Then, by Theorem 3.2, the complete generating function for the system S2 :
∥∥p1+p2−p3−p4=0

p1−p2+p3−p4=0 is
given by the constant term

FS2(x1, x2, x3, x4) = FSS1(ax1, ax2, x3/a, x4/a)
∣∣∣
a0

.
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Step k
ak) Compute the complete generating function for the double SSk−1 of the system Sk−1. That

is
FSSk−1(x1, . . . , x2k) = δ1,1+2k−1 · · · δ2k−1,2kFSk−1(x1, . . . , x2k−1).

bk) Then by Theorem 3.2, the complete generating function for the system Sk is given by the
constant term

FSk
(x1, x2, . . . , x2k) = FSSk−1(ax1, ax2, . . . , ax2k−1 , x2k−1+1/a, . . . , x2k/a)

∣∣∣
a0

.

This sequence of steps can be terminated by replacing step bk) by
b′

k) The q-generating function Gk(q) is given by the constant term

Gk(q) = FSSk−1(aq, aq, . . . , aq, q/a, . . . , q/a)
∣∣∣
a0

.

The first three steps can be carried out by hand, for step 4 we need a computer, and to carry out
step 5 by computer we have to introduce one more tool as we shall see. Unfortunately Step 6 appears beyond
reach at the moment.

It will be instructive to see what steps 1,2,3 give.

Step 1 :
a1)

FS1(x1, , x2) =
1

1 − x1x2
.

Step 2 :
a2)

FSS1(x1, x2, x3, x4) =
(1 − x1x2x3x4)

(1 − x1x2)(1 − x2x3)(1 − x1x4)(1 − x3x4)
.

b2)

FS2(x1, x2, x3, x4) =
(1 − x1x2x3x4)

(1 − a2x1x2)(1 − x2x3)(1 − x1x4)(1 − x3x4/a2)

∣∣∣
a0

=
1

(1 − x2x3)(1 − x1x4)
.

Step 3 :
a3)

FSS2(x1, . . . , x8) =
(1 − x1x4x5x8)(1 − x2x3x6x7)

(1 − x1x8)(1 − x2x7)(1 − x3x6)(1 − x4x5)

× 1
(1 − x1x4)(1 − x2x3)(1 − x6x7)(1 − x5x8)

.

b3)

FS3(x1, . . . , x8) =
(1 − x1x4x5x8)(1 − x2x3x6x7)

(1 − x1x8)(1 − x2x7)(1 − x3x6)(1 − x4x5)

× 1
(1 − a2x1x4)(1 − a2x2x3)(1 − x6x7/a2)(1 − x5x8/a2)

∣∣∣
a0

. 3.10
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We can compute this constant term in many ways. In particular we could use one of the MacMahon
identities given by Andrews in [1]. But it is interesting to point out that our divided difference algorithm
has already provided us (in step a2)) a formula we can use in step b3). In fact, the output of step a2)

FSS1(x1, x2, x3, x4) =
(1 − x1x2x3x4)

(1 − x1x2)(1 − x2x3)(1 − x1x4)(1 − x3x4)

is the complete generating function of the system p1 − p2 + p3 − p4 = 0, so by MacMahon partition analysis
we should also have

FSS1(x1, x2, x3, x4) =
1

(1 − ax1)(1 − x2/a)(1 − ax3)(1 − x4/a)

∣∣∣
a0

.

This implies that

1
(1 − a2x1x4)(1 − a2x2x3)(1 − x6x7/a2)(1 − x5x8/a2)

∣∣∣∣
a0

=
(1 − x1x2x3x4)

(1 − x1x2)(1 − x2x3)(1 − x1x4)(1 − x3x4)

∣∣∣∣∣x1→x1x4

x3→x2x3

x2→x6x7

x4→x5x8

=
(1 − x1x2x3x4x5x6x7x8)

(1 − x1x4x6x7)(1 − x6x7x2x3)(1 − x1x4x5x8)(1 − x2x3x5x8)
.

Using this in 3.10 gives

FS3(x1, . . . , x8) =
(1 − x1x4x5x8)(1 − x2x3x6x7)

(1 − x1x8)(1 − x2x7)(1 − x3x6)(1 − x4x5)

× (1 − x1x2x3x4x5x6x7x8)
(1 − x1x4x6x7)(1 − x6x7x2x3)(1 − x1x4x5x8)(1 − x2x3x5x8)

=
1

(1 − x1x8)(1 − x2x7)(1 − x3x6)(1 − x4x5)
× (1 − x1x2x3x4x5x6x7x8)

(1 − x1x4x6x7)(1 − x2x3x5x8)
.

Replacing all the xi by the single variable q, we thus obtain that

G1(q) =
1

1 − q2
, G2(q) =

1
(1 − q2)2

, G3(q) =
1 − q8

(1 − q2)4(1 − q4)2
=

1 + q4

(1 − q2)4(1 − q4)
. 3.11

Using the computer to carry out Step 4 with b′
4) replacing b4) gives

G4(q) =
1 + q2 + 21q4 + 36q6 + 74q8 + 86q10 + 74q6 + 36q14 + 21q16 + q18 + q20

(1 − q2)7(1 − q4)4(1 − q6)
.

We shall see later what else has to be done to obtain G5(q).

It is worth noting that our divided difference algorithm can also be adapted to compute the first 5
Sdd series as well. In fact, again due to the fact that divided difference operators commute with the constant
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term operators, we can also show that all the complete Sdd series can (in principle) be obtained by the
following algorithm.

Step 1
a1) Compute the complete generating function for the Sdd problem for k = 1. That is, compute the

constant term

W1(x1, x2) =
1 − a2

(1 − x1a)(1 − x2/a)

∣∣∣
a0

.

Step 2
a2) Compute

WW1(x1, x2, x3, x4) = δ1,3δ2,4W1(x1, x2).

b2) To obtain the complete generating function for the Sdd problem for k = 2 compute the constant
term

W2(x1, x2, x3, x4) = WW1(ax1, ax2, x3/a, x4/a)(1 − a2)
∣∣∣
a0

.

Step k
ak) Compute

WWk−1(x1, . . . , x2k) = δ1,1+2k−1 · · · δ2k−1,2kWk−1(x1, . . . , x2k−1).

bk) To obtain the complete generating function for the Sdd problem for k compute the constant
term

Wk(x1, x2, . . . , x2k) = WWk−1(ax1, ax2, . . . , ax2k−1 , x2k−1+1/a, . . . , x2k/a)(1 − a2)
∣∣∣
a0

.

This sequence of steps can be terminated by replacing step bk) by
b′

k) To obtain the generating function Wk(q) compute the constant term

Wk(q) = WWk−1(aq, aq, . . . , aq, q/a, . . . , q/a)(1 − a2)
∣∣∣
a0

.

Unlike the Hdd case only steps a1) and a2) can be carried out by hand, though steps 3 and 4
are routine they are too messy to do by hand. But step 5 again needs further tricks to be carried out by
computer. Step 6 appears beyond reach at the moment.

It will be instructive to see what some of these steps give.

Step 1 :
a1)

W1(x1, x2) =
1 − x2

2

1 − x1x2
.

Step 2 :
a2)

WW1(x1, . . . , x4) =
1 − x2

2 − x2x4 − x2
4 + x1x

2
2x4 + x2

2x3x4 − x1x2x3x4 + x1x2x
2
4 + x2x3x

2
4 − x1x

2
2x3x

2
4

(1 − x1x2)(1 − x3x2)(1 − x1x4)(1 − x3x4)
.
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b2)

W2(x1, x2, x3, x4) =
1 − x2x4 − x3x4 + x2

4

(1 − x1x4)(1 − x2x3)
.

This gives

W2(q) =
1

1 − q2
.

Step 3 :
a3)

WW2(x1, x2, . . . , x8) =
(large numerator)

(1 − x1x4)(1 − x1x8)(1 − x2x3)(1 − x2x7)(1 − x3x6)(1 − x4x5)(1 − x5x8)(1 − x6x7)
.

b3) Produces

W3(x1, x2, . . . , x8) =
(large numerator)

(1 − x1x8)(1 − x2x7)(1 − x3x6)(1 − x4x5)(1 − x1x4x6x7)(1 − x2x3x5x8)
.

(In the next section we will see that a3) and b3) can be considerably improved )
b′

3)
Notwithstanding the complexity of the previous results it turns out that to obtain W3(q) we need

only compute the constant term

W3(q) =
1

(1 − q2)
× 1 − a2

(1 − q2a2)(1 − q2/a2)

∣∣∣∣
a0

. 3.12

To this end we start by determining the coefficients A and B in the partial fraction decomposition

(1 − a2)a2

(1 − q2a2)(a2 − q2)
=

1
q2

+
A

1 − q2a2
+

B

a2 − q2

obtaining

A =
(1 − a2)a2

(a2 − q2)

∣∣∣∣
a2=1/q2

=
(1 − 1/q2)/q2

(1/q2 − q2)
= − 1

q2(1 + q2)
,

and

B =
(1 − a2)a2

(1 − q2a2)

∣∣∣∣
a2=q2

=
(1 − q2)q2

(1 − q4)
=

q2

(1 + q2)
,

(the exact value of B is not needed) and we can write

1 − a2

(1 − q2a2)(1 − q2/a2)
=

1
q2

− 1
q2(1 + q2)

× 1
(1 − a2q2)

+
1

(1 + q2)
× q2/a2

1 − q2/a2
.

Thus taking constant terms gives

1 − a2

(1 − q2a2)(1 − q2/a2)

∣∣∣∣
a0

=
1
q2

− 1
q2(1 + q2)

+ 0 =
1

1 + q2
.
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Using this in 3.12 we finally obtain

W3(q) =
1

1 − q4
. 3.13

a4)
WW4(x1, x2, . . . , x16) = (too large for typesetting)

b′
4) Notwithstanding the complexity of the previous result it turns out that to obtain W4(q) we need

only compute the constant term

W4(q) =
(1 + q4)(1 + q6)
(1 − q2)(1 − q4)2

× 1 − a2

(1 − a2q4)(1 − q4/a2)(1 − a4q4)(1 − q4/a4)

∣∣∣∣
a0

To illustrate the power and flexibility of the partial fraction algorithm we will carry this out by
hand. The reader is referred to [2] for a brief tutorial on the use of this algorithm. In the next few lines we
will strictly adhere to the notation and terminology given in [2].

To begin we note that we need only calculate the constant term

C(x) =
1 − a

(1 − ax)(1 − x/a)(1 − a2x)(1 − x/a2)

∣∣∣∣
a0

, 3.14

since we can write

W4(q) =
(1 + q4)(1 + q6)
(1 − q2)(1 − q4)2

× C(q4). 3.15

Now we have

1
(1 − a2x)(1 − x/a2)

=
a2

(1 − a2x)(a2 − x)
=

1
1 − x2

1
1 − a2x

+
1

1 − x2

x/a2

1 − x/a2
.

Thus 3.14 may be rewritten in the form

C(x) =
(1 − a)

(1 − ax)(1 − x/a)

(
1

1 − x2

1
1 − a2x

+
1

1 − x2

x/a2

1 − x/a2

) ∣∣∣∣
a0

=
1

1 − x2

(
(1 − a)

(1 − ax)(1 − x/a)
1

1 − a2x

∣∣∣∣
a0

+
(1 − a)

(1 − ax)(1 − x/a)
x/a2

1 − x/a2

∣∣∣∣
a0

)
.

3.16

Note that in the first constant term we have only one dually contributing term and on the second we have
only one contributing term. This gives

(1 − a)
(1 − ax)(1 − x/a)

1
1 − a2x

∣∣∣∣
a0

=
(1 − a)
(1 − ax)

1
1 − a2x

∣∣∣∣
a=x

=
(1 − x)
(1 − x2)

1
1 − x3

3.17

and
(1 − a)

(1 − ax)(1 − x/a)
x/a2

1 − x/a2

∣∣∣∣
a0

=
(1 − a)

(1 − x/a)
x/a2

1 − x/a2

∣∣∣∣
a=1/x

=
−(1 − x)
(1 − x2)

x2

1 − x3
. 3.18

Using 3.17 and 3,18 in 3.16 we get

C(x) =
1

1 − x2

(
(1 − x)
(1 − x2)

1
1 − x3

− (1 − x)
(1 − x2)

x2

1 − x3

)
=

1 − x

(1 − x2)(1 − x3)

.
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Thus

C(q4) =
1 − q4

(1 − q8)(1 − q12)

and 3.15 gives

W4(q) =
(1 + q4)(1 + q6)
(1 − q2)(1 − q4)2

× 1 − q4

(1 − q8)(1 − q12)
=

1
(1 − q2)(1 − q4)2(1 − q6)

. 3.19

We will see in section 4 what needs to be done to carry out step b′
5 on the computer.

The identities

W2(q) =
1

(1 − q2)
, W3(q) =

1
(1 − q4)

, W4(q) =
1

(1 − q2)(1 − q4)2(1 − q6)
, 3.20

have also been derived in [2] by symmetric function methods from the relation

Wk(q) =
∏k

i=1

(
1 − a2

i

)∏
S⊆[1,k]

(
1 − q

∏
i∈S ai/

∏
j �∈Saj

)∣∣∣∣
a0
1a0

2···a0
k

=
∑
d≥0

q2d
〈
sd,d ∗ sd,d ∗ · · · ∗ sd,d , s2d

〉
. 3.21

In fact, all three results in 3.20 are immediate consequences of the following deeper symmetric function
identity. (for a proof see section 2 in [2].)

Theorem 3.3

sd,d ∗ sd,d =
∑
λ�2d

sλ χ(λ ∈ EO4) 3.22

where EO4 denotes the set of partitions of length 4 whose parts are ≥ 0 and all even or all odd.

Remark 3.1
Note that the Kronecker product identity〈

sd,d ∗ sd,d ∗ sd,d ∗ sd,d ∗ sd,d , s2d

〉
=

〈
sd,d ∗ sd,d ∗ sd,d , sd,d ∗ sd,d

〉
.

suggests obtaining W5(q) by means of a combinatorial interpretation of the coefficients of the Schur function
expansion of the Kronecker product sd,d ∗ sd,d ∗ sd,d. However, to this date no formula has been given for
these coefficients, combinatorial or otherwise.
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4. Solving the Hdd problem for k = 5.
Our initial efforts at solving the Hdd an Sdd problems were entirely carried out by computer ex-

perimentation. After obtaining quite easily the series G2(q), G3(q), G4(q) and W2(q), W3(q), W4(q), all the
computer packages available to us failed to directly deliver G5(q) and W5(q).

In this section we will give a brief view of the combinatorial and manipulatorial gyrations we had
to perform to extract G5(q) and W5(q) out of our computers first after several hours of computer time and
then reducing computation times down to a few minutes.

The computer data obtained for the Hdd problem for k = 2, 3, 4 were combinatorially so revealing
that we have been left with a strong impression that this problem should have a very beautiful combinatorial
general solution. Only time will tell if this will ever be the case. To stimulate further research we will begin
by reviewing our initial computer and manual combinatorial findings.

Recall that we denoted by Fd the collection of all d-subsets of a 2d element set Ω2d. We also showed
(Theorem 2.1) that the coefficient md(k) in the series

Gk(q) =
∑
d≤0

q2dmd(k) 4.1

counts the number of orbits under the action of the symmetric group S2d on the k-fold cartesian product
Fd × Fd × · · · × Fd. Denoting by (A1, A2, . . . , Ak) a generic element of this cartesian product, then each
orbit is uniquely determined by the 2k cardinalities

pε1,ε2,···,εk
=

∣∣Aε1
1 ∩ Aε2

2 ∩ · · · ∩ Aεk

k

∣∣
where for each 1 ≤ i ≤ k we set

Aεi
i =

{
Ai if εi = 0,
cAi if εi = 1.

(here cAi = Ω2d/Ai).

It is also convenient to set
Aε1,ε2,···,εk

= Aε1
1 ∩ Aε2

2 ∩ · · · ∩ Aεk

k . 4.2

This given we have seen that the condition that (A1, A2, . . . , Ak) ∈ Fd × Fd × · · · × Fd is equivalent to the
Diophantine system

Sk =

∥∥∥∥∥∥∥∥∥

∑1
ε1=0

∑1
ε2=0 · · ·

∑1
εk=0(1 − 2ε1)pε1,ε2,···,εk

= 0,∑1
ε1=0

∑1
ε2=0 · · ·

∑1
εk=0(1 − 2ε2)pε1,ε2,···,εk

= 0,
...

...
...

...
...

...∑1
ε1=0

∑1
ε2=0 · · ·

∑1
εk=0(1 − 2εk)pε1,ε2,···,εk

= 0,

4.3

together with the condition that Ω2d has cardinality 2d, that is

1∑
ε1=0

1∑
ε2=0

· · ·
1∑

εk=0

pε1,ε2,···,εk
= 2d. 4.4
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There are several algorithms available to solve such a system. See for instance [6, Chapter 4.6].The algorithm
we used for our computer experimentations is the MacMahon algorithm which has been recently implemented
in MATHEMATICA by Andrews, Paule and Riese and in MAPLE by G. Xin using the partial fraction
method of computing constant terms.
The former can be downloaded from the web site.

http://www.risc.uni-linz.ac.at/research/combinat/software/Omega/

and the latter from the web site
http://www.combinatorics.net.cn/homepage/xin/maple/ell2.rar”

For computer implementation we found more convenient to use the alternate notation adopted in section 1
(Remark 1.3). That is

Sk = ‖p1V1 + p2V2 + · · · + p2kV2k = 0 . 4.5

This gives

S2 =

∥∥∥∥∥ p1 + p2 − p3 − p4 = 0

p1 − p2 + p3 − p4 = 0

and

S3 =

∥∥∥∥∥∥∥
p1 + p2 + p3 + p4 − p5 − p6 − p7 − p8 = 0

p1 + p2 − p3 − p4 + p5 + p6 − p7 − p8 = 0

p1 − p2 + p3 − p4 + p5 − p6 + p7 − p8 = 0

. 4.6

These algorithms may yield quite a bit more than the number of solutions of such a system. For instance,
in our case letting Ck denote the collection of solutions of the system Sk, the “Omega package” of Andrews,
Paule and Riese should, in principle, yield the formal power series

Fk(x1, x2, . . . , x2k) =
∑

(p1,p2,...,p2k )∈Ck

xp1
1 xp2

2 · · ·xp2k

2k .

It follows from the general theory of Diophantine systems that Fk(x1, x2, . . . , x2k) is always the Taylor series
of a rational function.

Now for S2 the Omega package gives

F2(x1, x2, x3, x4) =
1

(1 − x1x4)(1 − x2x3)
4.7

and for S3 the Omega package gives

F3(x1, x2, . . . , x8) =
1 − x2x3x5x8x1x4x6x7

(1 − x1x8)(1 − x2x7)(1 − x3x6)(1 − x4x5)(1 − x2x3x5x8)(1 − x1x4x6x7)
. 4.8

But this is as far as this package went in our computers. However we could go further by giving up full
information about the solutions and only ask for the series

Gk(q) = Fk(x1, x2, . . . , x2k)
∣∣
xi=q

.
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which, as we have seen, may be computed using the identity in I.12:

Gk(q) =
1∏

S⊆[1,k]

(
1 − q

∏
i∈S ai/

∏
j �∈Saj

)∣∣∣
a0
1a0

2···a0
k

. 4.9

For example, the program Latte by De Loera, Hemmecke, Tauzer, Yoshida, et. al., which is available at
http://www.math.ucdavis.edu /˜ latte/

computed the G4(q) series in approximately 30 seconds. However, this is as far as Latte went on our
machines. We should also mention that all three series in 3.11 as well as G4(q) and three series in 3.20 can
be obtained in only a few seconds, from the software of G. Xin by computing the corresponding constant
terms in I.12 and I.13.

To get our computers to deliver G5(q) and W5(q) in a matter of minutes a divide and conquer
strategy had to be adopted. More precisely, these rational functions were obtained by decomposing the
constant terms I.12 and I.13 as sums of constant terms. This decomposition had its origin from an effort to
find a human proof of the identities in 4.7 and 4.8. More importantly, the surprising simplicity of 4.7 and 4.8
required a combinatorial explanation. Our findings there provided the combinatorial tools that were used in
our first computations of G5(q) and W5(q). This given, before describing our work on these series, we will
show how to deal with 4.7 and 4.8 entirely by hand.

Beginning with

S2 =

∥∥∥∥∥ p1 + p2 − p3 − p4 = 0

p1 − p2 + p3 − p4 = 0
4.10

we immediately notice that
(1, 0, 0, 1) and (0, 1, 1, 0) 4.11

are solutions. Moreover, setting

a = min(p1, p4) and b = min(p2, p3), 4.12

we can easily see that the difference

(q1, q2, q3, q4) = (p1, p2, p3, p4) − (a, b, b, a) = (p1 − a, p2 − b, p3 − b, p4 − a)

must also be a solution. Now from 4.11 we derive that

min(q1, q4) = 0 and min(q2, q3) = 0,

which gives us four possibilities for (q1, q2, q3, q4):

(0, 0, x, y) , (0, x, 0, y) , (x, 0, y, 0) , (x, y, 0, 0), 4.13

for some non negative integers x, y. Testing the first equation of S2 immediately forces the first and last in
4.13 to identically vanish. Similarly, the second equation of S2 yields that the second and third in 4.13 must



1

2

3 5

4

8

7

6A1 A2

A3

p

p

p
p

pp

p

p

Invariants A. Garsia, G. Musiker, N. Wallach, G. Xin June 25, 2008 27

also identically vanish. This proves that the general solution of S2 is of the form (a, b, b, a). We thus obtain
the full generating function of solutions of S2:

F2(x1, x2, x3, x4) =
∑
a≥0

∑
b≥0

xa
1xb

2x
b
3x

a
4 =

1
(1 − x1x4)(1 − x2x3)

.

This proves 4.7.
It turns out that we can deal with S3 in a similar manner. Again we begin by noticing the four

“symmetric ” solutions

(1, 0, 0, 0, 0, 0, 0, 1) , (0, 1, 0, 0, 0, 0, 1, 0) , (0, 0, 1, 0, 0, 1, 0, 0) , (0, 0, 0, 1, 1, 0, 0, 0).

Next we set
a = min(p1, p8), b = min(p2, p7), c = min(p3, p6), d = min(p4, p5),

and by subtraction we get a solution

(q1, q2, q3, q4, q5, q6, q7, q8) = (p1, p2, p3, p4, p5, p6, p7, p8) − (a, b, c, d, d, c, b, a) 4.14

with the property that
min(qi, q9−i) = 0 for 1 ≤ i ≤ 4. 4.15

It will be good here and after to call the set

{i ∈ [1, n] : pi ≥ 1}

the “support ” of the composition (p1, p2, . . . , pn). This given, we derive that the resulting composition in
4.14 will necessarily have its support contained in at least one of the following 16 patterns.

(0, 0, 0, 0, ∗, ∗, ∗, ∗) , (0, 0, 0, ∗, 0, ∗, ∗, ∗) , (0, 0, ∗, 0, ∗, 0, ∗, ∗) , (0, 0, ∗, ∗, 0, 0, ∗, ∗) ,

(0, ∗, 0, 0, ∗, ∗, 0, ∗) , (0, ∗, 0, ∗, 0, ∗, 0, ∗) , (0, ∗, ∗, 0, ∗, 0, 0, ∗) , (0, ∗, ∗, ∗, 0, 0, 0, ∗) ,

(∗, 0, 0, 0, ∗, ∗, ∗, 0) , (∗, 0, 0, ∗, 0, ∗, ∗, 0) , (∗, 0, ∗, 0, ∗, 0, ∗, 0) , (∗, 0, ∗, ∗, 0, 0, ∗, 0) ,

(∗, ∗, 0, 0, ∗, ∗, 0, 0) , (∗, ∗, 0, ∗, 0, ∗, 0, 0) , (∗, ∗, ∗, 0, ∗, 0, 0, 0) , (∗, ∗, ∗, ∗, 0, 0, 0, 0) ,

4.16

Unlike the case k = 2 not all of these patterns force a trivial solution. To find out which it is helpful to
resort to a Venn diagram imagery. To this end recall that a solution of S3 gives the cardinalities of the 8
regions of the Venn diagram of three d-subsets A1, A2, A3 of a set of cardinality 2d (see figure).
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In the following figure, each pattern, is represented by a Venn diagram where in each region Aε1
1 ∩Aε2

2 ∩Aε3
3

that corresponds to a ∗ in the pattern we placed a black dot. That means that only the regions with a dot may
have ≥ 0 cardinality. The miracle is that all but the two patterns (0, ∗, ∗, 0, ∗, 0, 0, ∗) and (∗, 0, 0, ∗, 0, ∗, ∗, 0)
can be quickly excluded by a reasoning that only uses the positions of the dots in the Venn diagram. In
fact, in each of the excluded cases, we show that it is impossible to replace the dots by ≥ 0 integers in such
a manner that the three sets A1, A2, A3 and their complements cA1,

cA2,
cA3 end up having the same

cardinality.

The reasoning is so cute that we are compelled to present it here in full. In what follows the jth diagram in
the ith row will be referred to as “Dij”:

(1) D11, D14, D22 D33, D41 and D44 can be immediately excluded because one of A1, A2, A3, Ac
1, Ac

2

or Ac
3 would be empty.

(2) In D21 the dot next to 8 should give the cardinality of Ac
2 (say d) and then the dot next to the 2

should also give d. But that forces the dots next to 5 and 6 to be 0, leaving A3 empty. The same
reasoning applies to D12, D13, D24 ,D31 ,D34 D42 , D43.

That leaves only the two diagrams D23 and D32 which clearly correspond to the two above mentioned
patterns. Now we see that for D32 we must have the equalities

p1 + p4 = p1 + p6 = p1 + p7 = p6 + p7.

This forces p1 = p4 = p6 = p7. In summary this pattern can only support the composition (u, 0, 0, u, 0, u, u, 0).
The same reasoning yields that the diagram D23 can only support the composition (0, v, v, 0, v, 0, 0, v). It
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follows that the general solution of S3 must be of the form

(a, b, c, d, d, c, b, a) + (u, v, v, u, v, u, u, v).

Now recall that after the subtraction of a symmetric solution we are left with an “asymmetric ” solution
satisfying the inequalities in 4.15. Thus to avoid over counting we must impose the condition u v = 0. This
leaves only three possibilities u = v = 0, u > 0, v = 0 or u = 0, v > 0. Thus

F3(x1, x2, . . . , x8) =
∑
a≥0

∑
b≥0

∑
c≥0

∑
d≥0

(x1x8)a(x2x7)b(x3x6)c(x4x5)d
(
1 +

∑
u≥1

(x1x4x6x7)u +
∑
v≥1

(x2x3x5x8)v
)

=
1

(1 − x1x8)(1 − x2x7)(1 − x3x6)(1 − x4x5)

(
1 +

x1x4x6x7

1 − x1x4x6x7
+

x2x3x5x8

1 − x2x3x5x8

)
.

which is only another way of writing 4.8.

It is easy to see that the decomposition of a solution into a sum of a symmetric plus an asymmetric
solution can be carried out in full generality. In fact, note that if 0 ≤ i ≤ 2k − 1 has binary digits ε1ε2 · · · εk

then the binary digits of 2k −1− i are ε1ε2 · · · εk (with ε = 1− ε). Thus we see from 4.5 that in each equation
pi and p2k+1−i appear with opposite signs. This shows that for each k ≥ 2 the system Sk has 2k−1 symmetric
solutions, which may be symbolically represented by the monomials

x1x2k , x2x2k−1 , x3x2k−2 , . . . , x2k−1x2k−1+1.

Proceeding as we did for S2 and S3 we arrive at a unique decomposition of each solution of Sk into a sum

(p1, p2, . . . , p2k) = (u1, u2, . . . , u2, u1) + (q1, q2, . . . , q2k)

with the first summand symmetric and the second asymmetric, that is

ui = u2k+1−i and qi q2k+1−i = 0 (for 1 ≤ i ≤ 2k−1)

and thereby obtain a factorization of Fk(x) in the form

Fk(x) =
( 2k−1∏

i=1

1
1 − xix2k+1−i

)
FA

k (x) 4.17

with FA
k (x) denoting the complete generating function of the asymmetric solutions.

This given it is tempting to try to apply, in the general case, the same process we used for k = 3 and
obtain the rational function FA

k (x) by selecting the patterns that do contain the support of an asymmetric
solution. Note that the total number of asymmetric patterns to be examined is 22k−1

which is already 256
for k = 4. For k = 5 the number grows to 65, 536 and doing this by hand is out of the question. Moreover,
it is easy to see, by going through a few cases, that even for k = 4 the geometry of the Venn Diagrams is so
intricate that the only way that we can find out if a given pattern contains the support of a solution is to
solve the corresponding reduced system.
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Nevertheless, using some inherent symmetries of the problem, the complexity of the task can be
substantially reduced to permit the construction of G5(q) by computer. To describe how this was done we
need some notation.

We will start with the complete generating function of the system Sk as given in Remark 1.3, that is

Fk(x1, x2, . . . , x2k) =
2k∏
i=1

1
1 − xiAi

∣∣∣∣
a0
1a0

2···a0
k

. 4.18

We have also seen that the Ai may be written in the form

Ai =
k∏

i=1

a1−2εi
i 4.19

where ε1ε2 · · · ε2 are the binary digits of i − 1. This given, note that since, (as we previously observed) the
binary digits of 2k − 1 − i are ε1ε2 · · · εk, from 4.19 we derive that

A2k+1−i = 1/Ai. 4.20

From this it follows that

1 − xix2k+1−i

(1 − xiAi)(1 − x2k+1−iA2k+1−i)
=

(
1

1 − xiAi
+

x2k+1−i/Ai

1 − x2k+1−i/Ai

)
.

Thus setting, for convenience, i′ = 2k + 1 − i and combining the factors containing Ai and Ai′ we may
rewrite 4.17 in the form

Fk(x1, x2, . . . , x2k) =
2k−1∏
i=1

1
1 − xixi′

2k−1∏
i=1

(
1

(1 − xiAi)
+

xi′/Ai

(1 − xi′/Ai)

) ∣∣∣∣
a0
1a0

2···a0
k

. 4.21

Comparing with 4.17 we derive that the complete generating function of the asymmetric solutions decomposes
into the sum

FA
k (x) =

∑
S⊆[1,2,...,2k−1]

FS(x). 4.22

with

FS(x) =
( ∏

i/∈S

1
(1 − xiAi)

)
×

( ∏
i∈S

xi′/Ai

(1 − xi′/Ai)

) ∣∣∣∣
a0
1a0

2···a0
k

. 4.23

Using the notation introduced in Remark 1.3, we can see that FS(x) is none other than the complete
generating function of the reduced system∑

i/∈S

piVi +
∑
i∈S

pi′Vi′ = 0

with the added condition that
pi′ ≥ 1 ∀ i ∈ S.
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Note that for k = 3 the summands in 4.22 correspond precisely to the 16 patterns in 4.16 with the added
condition that the “∗” in position i ≥ 5 should represent pi ≥ 1 in the corresponding solution vector. This
extra condition is precisely what is needed to eliminate overcounting.

Perhaps all this is best understood with an example. For instance for k = 3 the patterns

(∗, 0, 0, ∗, 0, ∗, ∗, 0) and (0, ∗, ∗, 0, ∗, 0, 0, ∗)

were the only ones that supported an asymmetric solution represent the two reduced systems

S{14} =
∥∥∥∥ p1 + p4 − p6 − p7 = 0

p1 − p4 + p6 − p7 = 0
p1 − p4 − p6 + p7 = 0

S{23} =
∥∥∥∥ p2 + p3 − p5 − p8 = 0

p2 − p3 + p5 − p8 = 0
−p2 + p3 + p5 − p8 = 0

and correspond to the following two summands of 4.22 for k = 3

F{1,4}(x) =
1

1 − x1a1a2a3

1
1 − x4a1/a2a3

x6a2/a1a3

1 − x6a2/a1a3

x7a3/a1a2

1 − x7a3/a1a2

∣∣∣∣
a0
1a0

2a0
3

=
x1x4x6x7

1 − x1x4x6x7
4.24

and

F{2,3}(x) =
1

1 − x2a1a2/a3

1
1 − x3a1a3/a2

x5a2a3/a1

1 − x5a2a3/a1

x8/a1a2a3

1 − x8/a1a2a3

∣∣∣∣
a0
1a0

2a0
3

=
x2x3x5x8

1 − x2x3x5x8
. 4.25

A close look at these two expressions should reveal the key ingredient that needs to be added to our
algorithms that will permit reaching k = 5 in the Hdd and Sdd problems. Indeed we see that F{1,4}(x) goes
onto F{2,3}(x) if we act on the vector (x1, x2, · · · , x8) by the permutation

σ =
(

1 2 3 4 5 6 7 8
3 4 1 2 7 8 5 6

)
4.26

and on the triple (a1, a2, a3) by the operation a2→a−1
2 . In fact, σ is none other than an image of the map

(ε1, ε2, ε3)→(ε1, ε2, ε3) on the binary digits of 0, 1, . . . , 7, as we can easily see when we replace each i in 4.26
by the binary digits of i − 1

σ =
(

000 001 010 011 100 101 110 111
010 011 000 001 110 111 100 101

)
.

What goes on is quite simple. Recall that solutions p of our system Sk can also be viewed as
assignments of weights to the vertices of the k-hypercube giving all hyperfaces equal weight. Then clearly
any rotation or reflection of the hypercube will carry this assignment onto an assignment with the same
property. Thus the Hyperoctahedral group Bk will act on all the constructs we used to solve Sk.

To make precise the action of Bk we need some conventions.

(1) We will view the elements of Bk as pairs (α, η) with α = (α1, α2, . . . αk) ∈ Sk and η = (η1, η2, . . . , ηk)
a binary vector.

(2) Next, for any binary vector ε = (ε1, ε2, . . . , εk) let us set

(α, η)ε = (εα1 + η1, εα2 + η2, · · · , εαk
+ ηk) 4.27
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with “mod 2 ” addition.
(3) This given, to each element g = (α, η) ∈ Bk there corresponds a permutation σ(g) by setting

σ(g) =
(

1 2 · · · 2k

σ1 σ2 · · · σ2k

)
. 4.28

where σi = j if and only if the k-vector ε = (ε1, ε2, . . . , εk) giving the binary digits of i− 1 is sent by
4.27 onto the k-vector giving the binary digits of j − 1. In particular we will set

g(x1, x2, . . . , x2k) = (xσ1 , xσ2 , . . . , xσ2k
). 4.29

(4) In the same vein we will make Bk act on the k-tuple (a1, a2, . . . , ak) by setting, again for g = (α, η)

g(a1, a2, . . . , ak) = (a1−2η1
α1

, a1−2η1
α2

, . . . , a1−2η1
αk

). 4.30

With these conventions we can easily derive from 4.19 that 4.29 and 4.30 give

gxiAi = xσiAσi .

thus

g

2k∏
i=1

1
1 − xiAi

∣∣∣∣
a0
1a0

2···a0
k

=
2k∏
i=1

1
1 − xσi

Aσi

∣∣∣∣
a0
1a0

2···a0
k

=
2k∏
i=1

1
1 − xiAi

∣∣∣∣
a0
1a0

2···a0
k

,

from which we again derive the Bk invariance of the complete generating function

Fk(x1, x2, . . . , x2k).

If we let Bk−1 not only act on the indices 1, 2, . . . , 2k−1, but also on 1′, 2′, . . . , 2k−1′ by σi′ = σ′
i.

Then Bk−1 permutes the summands in 4.22 as well as the factors in the product

2k−1∏
i=1

1
1 − xixi′

.

Note further that if we only want the q-series Gk(q) we can reduce 4.22 to

GA
k (q) =

∑
S⊆[1,2,...,2k−1]

GS(q). 4.31

with

GS(q) = FS(x)
∣∣∣∣
xi=q

=
( ∏

i/∈S

1
(1 − qAi)

)
×

( ∏
i∈S

q/Ai

(1 − q/Ai)

) ∣∣∣∣
a0
1a0

2···a0
k

.

But if for some g ∈ Bk−1 we have

FS1(xσ1 , xσ2 , . . . , xσ2k
) = FS2(x1, x2, . . . , x2k).
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Then replacing each xi by q converts this to the equality

GS1(q) = GS2(q).

That means that we need only compute the constant terms in 4.31 for orbit representatives, then replace
4.31 by a sum over orbit representatives multiplied by orbit sizes. More precisely we get

GA
k (q) =

Nk∑
i=1

miGSi(q). 4.32

where mi denotes the cardinality of the orbit of FSi
(x). In the computer implementation we obtain orbit

representatives as well as orbit sizes, by acting with Bk−1 on the monomials

MS =
∏
i∈S

xi.

Thus for k = 3 we found that the 16 summands in 4.22 break up into 6 orbits but only 2 of them do
contribute to FA

3 . They corresponds to the monomials 1 and x1x4 with respective orbit sizes 1 and 2. The
orbit representative that corresponds to 1 is simply the case S = φ in 4.23 and that corresponding to x1x4

is given in 4.24.
Thus from 4.24. 4.32 and 4.21 we derive that

G3(q) =
1

(1 − q2)4
(
1 + 2

q4

1 − q4

)
=

1
(1 − q2)4

1 + q4

1 − q4
.

For k = 4 we have 28 = 256 summands in 4.22 with 22 orbits but only 11 of these orbits do contribute to
FA

4 . The number of denominator factors for each term is 8 which is still a reasonable number for the partial
fraction algorithm. The formula for F4(x) obtained this way can be typed within a page, but we would like
to introduce a nicer F4(x) using the full group Bk instead of Bk−1, as we will do in the next paragraph. For
k = 5 we have 216 summands in 4.22 with 402 orbits but only 341 orbits do contribute to FA

5 . The number
of denominator factors for each term is 16 which is out of reach for the partial fraction algorithm to obtain
FA

5 (x). Nevertheless, in this manner we can still produce G5(q) in about 15 minutes.

The decomposition in 4.31 is only Bk−1 invariant, and it is natural from the geometry of the hyper-
cube labelings, to ask of a Bk invariant decomposition. To obtain such a decomposition of Fk(x) we will pair
off the factors containing Ai and Ai′ by means of the more symmetric identity

1 − xix2k+1−i

(1 − xiAi)(1 − x2k+1−iA2k+1−i)
=

(
1 +

xiAi

1 − xiAi
+

xi′Ai′

1 − xi′Ai′

)
and derive that

Fk(x) =
∑

S+T⊆[1,2,...,2k−1]

FS,T (x) 4.33

with

FS,T (x) =
( k∏

i∈S

xiAi

1 − xiAi

)( ∏
i∈T

x′
i/Ai

1 − x′
i/Ai

)
.
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Note that every pair (S, T ) should be identified with the set S ∪ {i′ : i ∈ T} ⊆ [1, 2, . . . , 2k] when applying
the action of Bk.

For k = 3 we have 34 = 81 summands with 9 orbits but only 2 orbits do contribute to FA
3 . The

two orbits corresponds to the monomials 1 and x1x4x6x7 with respective orbit sizes 1 and 2. The orbit
representative that corresponding to 1 is simply the case Fφ,φ = 1|a0

1a0
2a0

3a0
4

= 1 and that corresponding to
x1x4x6x7 is

F{1,4},{2,3}(x) =
x1A1

1 − x1A1

x4A4

1 − x4A4

x6A6

1 − x6A6

x7A7

1 − x7A7

∣∣∣
a0
1a0

2a0
3a0

4

=
x1x4x6x7

1 − x1x4x6x7
.

For k = 4 we have 38 = 6561 summands with 62 orbits but only 10 orbits do contribute to FA
4 . We

obtain the following complete generating functions for the 10 orbit representatives:

(1) 1

(24)
x1x15x4x14

1 − x1x15x4x14

(16)
x16x7 (x9)

2
x6x4

1 − x16x7x9
2x6x4

(96)
x15x3x7 (x12)

2 (x9)
2 (x6)

3

(1 − x12x7x9x6) (1 − x15x3x12x9x6
2)

(96)
x16x14x5x7 (x11)

2 (x2)
2

(1 − x2x7x11x14) (1 − x16x5x2x11)

(192)
x9x10x1 (x4)

4 (x15)
3 (x5)

2 (x14)
2

(1 − x1x15x4x14) (1 − x15x5x10x4) (1 − x15x5x9x4
2x14)

4.34

(64)
x6x16x4 (x3)

2 (x5)
2 (x15)

2 (x10)
3

(1 − x15x5x10x4) (1 − x16x5x3x10) (1 − x15x3x10x6)

(64)
x3x7x4 (x6)

5
x1 (x9)

3 (x12)
3 (x15)

3

(1 − x1x15x12x6) (1 − x12x7x9x6) (1 − x15x9x6x4) (1 − x15x3x12x9x6
2)

(32)
(x13)

3 (x12)
3
x1x3x2x6x7x8

(
1 − x1x2x3x8x12

3x7x13
3x6

)
(1 − x1x8x12x13) (1 − x2x12x7x13) (1 − x3x12x13x6) (1 − x1x12

2x7x13x6) (1 − x2x3x8x12x13
2)

(8)
x4x5x3x6x9x10x15x16

(
1 − 2 x15x16x5x3x10x9x6x4 + x15

2x16
2x5

2x3
2x10

2x9
2x6

2x4
2
)

(1 − x16x3x9x6) (1 − x16x5x9x4) (1 − x15x9x6x4) (1 − x15x5x10x4) (1 − x16x5x3x10) (1 − x15x3x10x6)

Here the numbers in parentheses give the respective multiplicities.

Replacing all the xi by q and summing as in 4.31, we obtain

F4(q) =
1 + q2 + 21q4 + 36q6 + 74q8 + 86q10 + 74q12 + 36q14 + 21q16 + q18 + q20

(1 − q2)7(1 − q4)4(1 − q6)
.
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We should mention that the partial fraction algorithm delivers this rational function in less than a second
by directly computing the constant term in I.12 for k = 4. We computed the complete generating functions
given in 4.32 because we will need them later and also to illustrate an alternate path to G4(q) and G5(q).

Computing the orbit representatives for k = 5 requires the construction of the 25 × 5! = 3840
elements of B5 and examining their action on the 316 = 43046721 symmetric supports. This took a few
hours on our computers. We found in this manner that the 43046721 summands in 4.31 break up into 15418
orbits and of these 6341 contribute to the sum. Most of the orbits have denominators of less than 16 factors.
It also took about 15 minutes to persuade MAPLE to deliver G5(q) in the form displayed in the introduction.
Remark 4.1

It is interesting to point out that computing complete generating functions for orbit representatives
of summands in 4.22 yielded as a byproduct orbit representatives of the extreme rays of our Diophantine
cone for k = 4 and k = 5. Note that for k = 3 the representatives can be directly derived from our hand
computation, there are only two and the corresponding Venn Diagrams are

and

here the regions without numbers are empty. The number 1 indicates that the region has only one element.
For k = 4 we found that there are only three orbits, containing 24, 8 and 16 elements respectively, the
corresponding diagrams are depicted below.

Note, for k = 4 each Venn diagram is depicted as a pair of Venn diagrams of k = 3. The first member of
the pair renders the Venn diagram of A1 ∩ A2, A1 ∩ A3, A1 ∩ A4 and the second member renders the Venn
diagram of cA1 ∩ A2,

cA1 ∩ A3,
cA1 ∩ A4.

For k = 5 we found that there are 2712 extreme rays which break up into 9 orbits. We give below a
set of representatives depicted as assignments of weights to the vertices of the 5 dimensional hypercube. We
imagine that the vertices of this hypercube are indexed by the binary digits of 0, 1, 2, . . . , 31 with 00000 the
vertex at the origin and 11111 giving the coordinates of the opposite vertex. In the following figures each
hypercube is represented by two rows of two cubes. The cubes in the first row, from left to right, have the
vertices labeled with the binary digits of 1 to 16 (minus 1) and the cubes in the second row rave the vertices
labeled with the binary digits of 17 to 32 (minus 1). The possible weights of the vertices here are 0, 1, 2, 3.
Vertices of weight 0, 1, 2, 3 are respectively surrounded by 0, 1, 2, 3 concentric circles. The integer on the top



16 80 120

384 480 320

960 32 320

320 160
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of each diagram gives the size of the corresponding orbit.

Each of the corresponding solutions of our system S5 is “minimal” that is it cannot be decomposed
into a non-trivial sum of solutions. But we found that there are also 480 minimal solutions that do not come
from extreme rays. The latter break up into two orbits. We give below their representatives.

It turns out that the same orbit reduction idea can also be used to compute W5(q). In fact, we can
carry out almost verbatim the same steps that yielded the orbit decomposition of the complete generating
function Fk(x1, x2, . . . , x2k) to obtain the complete generating function Wk(x1, x2, . . . , x2k). Recall that the
latter was originally defined in 1.18 as the constant term

Wk(x1, x2, . . . , x2k) =
k∏

j=1

(1 − a2
j )

2k∏
i=1

1
1 − xiAi

∣∣∣∣
a0
1a0

2···a0
k

. 4.35
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To carry out its decomposition we need only observe that if we let

W̃k(x1, x2, . . . , x2k) =
1
2k

k∏
j=1

(1 − a2
j )(1 − a−2

j )
2k∏
i=1

1
1 − xiAi

∣∣∣∣
a0
1a0

2···a0
k

, 4.36

then
Wk(q) = W̃k(q).

The reason for this is that using 4.19 we can easily show that, when all the xi are replaced by q, the constant
term in 4.35 is not affected if we replace any ai by a−1

i . Thus if we average out the right hand side of 4.35
over all these interchanges the result will be simply the right hand side of 4.36 due to the simple relation

1 − a2
i + a−2

i

2
=

1
2
(1 − a2

i )(1 − a−2
i ).

Now 4.36 brings to evidence that W̃k(x) is Bk invariant while Wk(x) is not. Symmetrizing Wk(x)
gives W̃k(x). We can obtain either a Bk−1 invariant decomposition or a Bk invariant decomposition of W̃k(x)
just as for Fk(x).

The orbit reduction can also be used to considerably speed up steps ak) and b′k) in the divided
difference algorithm. The idea is that if we are to carry out step b′k) we do not need the complete generating
function Wk−1(x). More precisely, if in step k − 1 we obtain that the orbit representatives in the sum

W̃k−1(x) =
∑

S+T⊆[1,2,...,2k−2]

W̃S,T (x)

are the summands
W̃S1,T1(x) , W̃S2,T2(x) , . . . , WSN ,TN

(x)

with respective multiplicities
m1, m2, . . . , mN ,

then in step ak) we can replace W̃k−1(x) by the sum

W̃ ′
k−1(x) =

N∑
i=1

miW̃Si,Ti
(x)

and obtain

W̃W
′
k−1(x) =

N∑
i=1

mi δ1,1+2k−1 · · · δ2k−1,2kW̃Si,Ti
(x).

Since the Bk−1 invariance of W̃k−1(x) yields that

W̃W k−1(ax1, . . . , ax2k−1 , x2k−1+1/a, . . . , x2k/a)

∣∣∣∣∣
xi=q

= W̃W
′
k−1(ax1, . . . , ax2k−1 , x2k−1+1/a, . . . , x2k/a)

∣∣∣∣∣
xi=q

we see that replacing W̃k−1(x) by W̃ ′
k−1(x) does not affect the result of step b′k).
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We can use the same argument to obtain Fk(x). So starting with the orbit representatives in 4.34,
applying divided differences to each orbit representatives and computing the constant terms separately, we
can obtain G5(q) in about 12 minutes, which turns out to be the fastest way up to now.

When working with W5(q), we need an analogue of the collection in 4.34. This idea is best illustrated
by the k = 3 case. We can clearly see the advantage of orbit reduction in producing a compressed version of
W̃k(x). For k = 3, the B3 decomposition will give 9 orbits with only 7 of them contributing to W̃3(x). We
thus get

W̃A
3 (x) =

1
|B3|

∑
g∈B3

g

(
9 monomials +

27monomials

1 − x1x4x6x7

)
.

The actual formula is a little complicated and its combinatorial meaning is not significant, but it is good
enough for us to use the divided difference algorithm to compute W4(q). ¿From this, by symmetrizing and
re-choosing representatives, we obtain a simpler representative. Namely we end up obtaining that

W̃A
3 (x) =

1
|B3|

∑
g∈B3

g

(
−1 + 3x2x6 − x1x2x6x4 +

2 − 6 x1x7 − x1
2 + 6x1x4

2x7 − x1
2x4

2x7
2

(1 − x1x6x4x7)

)
.

Originally we hoped that this formula would enable us to compute W4(q) entirely by hand, but we were
unable to do so.

For k = 4, directly using the B4 decomposition gives us 62 orbits with 27 of them contributing to
W̃4(x). The representatives obtained this way are too complex for further computation since several of them
have thousands of monomials in their numerators. The similar idea of symmetrizing and re-choosing applies
to give us 10 reasonably simple representatives for W̃4(x), but typesetting them will take several pages.
Nevertheless we are able to use them in the divided difference algorithm.

Having noticed that for k = 2, 3, 4 the divided difference algorithm reduced the computation of
Wk(q) to a rather simple constant term evaluation, we tried to see what it gave for k = 5. Adding the
contributions of these 10 representatives, before taking the constant term, yielded a rational function of the
form

1

(1 − q2) (1 − q4)4 (1 − q6)
(
1 − q2

a2

)
(1 − a2q2)

(
1 − q4

a2

)3

(1 − a2q4)3
×

× 357 monomials(
1 − q4

a4

)2

(1 − a4q4)2
(
1 − q6

a2

)
(1 − a2q6)

(
1 − q6

a4

)
(1 − a4q6)

(
1 − q6

a6

)
(1 − a6q6)

.

It turns out that this is actually a rational function in q2 and a2. Replacing q by q1/2 and a by a1/2 and
then taking constant term in a, we can obtain W5(q1/2). Using this approach Maple can deliver W5(q) in
only about 5 minutes in total which is the shortest time we have been able to compute this series.

Before closing it will be worthwhile to include a description of the first algorithm that was used
to obtain G5(q) and W5(q) since it contains another trick that clearly shows the flexibility afforded by the
partial fraction algorithm in the computation of constant terms.
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In this approach we begin by replacing our system Sk by a system S ′
k which has the same cone of

solutions. To describe the new system we will use the k-tuple of sets model. The idea is that originally we
got Sk by equating the cardinality of each set to the cardinality of its complement obtaining

Sk =

∥∥∥∥∥∥∥
|A1| = | cA1|
|A2| = | cA2|

· · ·
|Ak| = | cAk|

.

Now it is quite clear that this is equivalent to set

S ′
k =

∥∥∥∥∥∥∥∥∥
|A1| = d
|A2| = d

· · ·
|Ak| = d
| cA1| = d

. 4.37

For instance, using the binary digit indexing of the variables, for k = 3 this results in the following system
of 4 equations in 9 unknowns

p000 + p001 + p010 + p011 − d = 0
p000 + p001 + + p100 + p101 − d = 0
p000 + p010 + p100 + p110 − d = 0

p100 + p101 + p110 + p111 − d = 0

. 4.38

This given, our rational function G3(q) = G3(q, 1) may be also obtained by taking the following constant
term

G3(q, t) =
1

1 − qa1a2a3

1
1 − qa1a2

1
1 − qa1a3

1
1 − qa1

1
1 − qa2a3a4

1
1 − qa2a4

1
1 − qa3a4

1
1 − qa4

1
1 − t/a1a2a3a4

∣∣∣∣
a0
1a0

2a0
3a0

4

. 4.39

Here we choose the order q < t < a1 < a2 < · · · and we can not set t = 1 as this moment yet.
Now it turns out to be expedient to start by eliminating a4. This can simply be done by omitting

the factor 1/(1 − t/a1a2a3a4) and making the substitution a4 → t/a1a2a3, obtaining

G3(q, t) =
1

1 − qa1a2a3

1
1 − qa1a2

1
1 − qa1a3

1
1 − qa1

1
1 − qt/a1

1
1 − qt/a1a3

1
1 − qt/a1a2

1
1 − qt/a1a2a3

∣∣∣∣
a0
1a0

2a0
3

.
4.40

Setting t = 1 is valid here. Grouping terms containing the same subset of the variables a1, a2, a3 gives

G3(q) =
1

1 − qa1

1
1 − q/a1

1
1 − qa1a2

1
1 − q/a1a2

1
1 − qa1a3

1
1 − q/a1a3

1
1 − qa1a2a3

1
1 − q/a1a2a3

∣∣∣∣
a0
1a0

2a0
3

.

4.41
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Likewise, we can easily see that the general form of 4.39 is

Gk(q, t) =
( ∏

S⊆[2,...,k]

1
1 − qa1A(S)

)( ∏
S⊆[2,...,k]

1
1 − qA(S)ak+1

)
1

1 − t/a1a2 · · · akak+1

∣∣∣∣
a0
1a0

2···a0
k
a0

k+1

with
A(S) =

∏
i∈S

ai.

Removing the last factor and setting ak+1 = t/a1a2 · · · ak gives

Gk(q, t) =
( ∏

S⊆[2,...,k]

1
1 − qa1A(S)

)( ∏
S⊆[2,...,k]

1
1 − qtA(S)/a1a2 · · · ak

)∣∣∣∣
a0
1a0

2···a0
k

and by setting t = 1 this can be rewritten as

Gk(q) =
( ∏

S⊆[2,...,k]

1
1 − qa1A(S)

1
1 − q/a1A(S)

)∣∣∣∣
a0
1a0

2···a0
k

.

Now comes the next trick: grouping terms according as A(S) contains a2 or not. This gives

Gk(q) =
( ∏

S⊆[3,...,k]

1
1 − qa1A(S)

1
1 − q/a1A(S)

)( ∏
S⊆[3,...,k]

1
1 − qa1a2A(S)

1
1 − q/a1a2A(S)

)∣∣∣∣
a0
1a0

2···a0
k

. 4.42

To appreciate the significance of this step let us see what this gives for k = 3. Grouping terms in 4.41 as
was done in 4.42 gives

G3(q) =
1

1 − qa1

1
1 − q/a1

1
1 − qa1a3

1
1 − q/a1a3

1
1 − qa1a2

1
1 − q/a1a2

1
1 − qa1a2a3

1
1 − q/a1a2a3

∣∣∣∣
a0
1a0

2a0
3

. 4.43

Let us now see what the partial fraction algorithm gives if we first eliminate a2. This entails computing the
constant term

Q =
1

1 − qa1a2

1
1 − q/a1a2

1
1 − qa1a2a3

1
1 − q/a1a2a3

∣∣∣∣
a0
2

.

Using the terminology of [2] we note that the first and third factors are contributing and the other two are
dually contributing. Thus,

Q =
A1

1 − qa1a2
+

A3

1 − qa1a2a3

∣∣∣∣
a0
2

= A1 + A3 4.44

with

A1 =
a2
1a

2
2a3

(a1a2 − q)(1 − qa1a2a3)(a1a2a3 − q)

∣∣∣∣
a2=1/qa1

=
a3/q2

(1/q − q)(1 − a3)(a3/q − q)

∣∣∣∣
a2=1/qa1

=
1

(1 − q2)(1 − a3)(1 − q2/a3)

4.45
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and

A3 =
a2
1a

2
2a3

(1 − qa1a2)(a1a2 − q)(a1a2a3 − q)

∣∣∣∣
a2=1/qa1a3

=
1/q2a3

(1 − 1/a3))(1/qa3 − q)(1/q − q)
=

a3

(a3 − 1)(1 − q2a3)(1 − q2)

. 4.46

Using 4.44 in 4.43 gives

G3(q) =
1

1 − qa1

1
1 − q/a1

1
1 − qa1a3

1
1 − q/a1a3

(
A1 + A3

)∣∣∣∣
a0
1a0

3

=
1

1 − qa1

1
1 − q/a1

1
1 − qa1a3

1
1 − q/a1a3

∣∣∣∣
a0
1

(
A1 + A3

)∣∣∣∣
a0
3

. 4.47

The last equality is due to the fact that A1 and A3 do not contain a1. Next we will compute the constant
term

Q′ =
1

1 − qa1

1
1 − q/a1

1
1 − qa1a3

1
1 − q/a1a3

∣∣∣∣
a0
1

.

The surprise, which is the whole point of the factorization in 4.42, is that this leads to the same partial
fraction decomposition! More precisely we see that

Q′ =
B1

1 − qa1
+

B3

1 − qa1a3

∣∣∣∣
a0
1

= B1 + B3

with

B1 =
a2
1a3

(a1 − q)(1 − qa1a3)(a1a3 − q)

∣∣∣∣
a1=1/q

=
a3/q2

(1/q − q)(1 − a3)(a3/q − q)

∣∣∣∣
a2=1/qa1

=
1

(1 − q2)(1 − a3)(1 − q2/a3)
= A1

and

B3 =
a2
1a3

(1 − qa1)(a1 − q)(a1a2a3 − q)

∣∣∣∣
a2=1/qa1a3

=
1/q2a3

(1 − 1/a3))(1/qa3 − q)(1/q − q)
=

a3

(a3 − 1)(1 − q2a3)(1 − q2)
= A3

.

Thus 4.47 becomes

G3(q) = (A1 + A3)2
∣∣∣∣
a0
3

= A2
1

∣∣∣∣
a0
3

+ A2
3

∣∣∣∣
a0
3

+ 2A1A3

∣∣∣∣
a0
3

.

It is easy to see that the same collapse of terms occurs in the general case. Indeed we can rewrite 4.42 in
the form

Gk(q) =
( ∏

S⊆[3,...,k]

1
1 − qa1a2A(S)

1
1 − q/a1a2A(S)

∣∣∣∣
a0
2

)
×

×
( ∏

S⊆[3,...,k]

1
1 − qa1A(S)

1
1 − q/a1A(S)

∣∣∣∣
a0
1

)∣∣∣∣
a0
3···a0

k

. 4.48
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We can see that, in both constant terms with respect to a1 and a2, the first member of each pair of factors
contributes and the second dually contributes, and the partial fraction algorithm yields

∏
S⊆[3,...,k]

1
1 − qa1a2A(S)

1
1 − q/a1a2A(S)

∣∣∣∣
a0
2

=
∑

T⊆[3,...,k]

CT

1 − qa1a2A(T )

∣∣∣∣
a0
2

=
∑

T⊆[3,...,k]

CT

with

CT =
(
1 − qa1a2A(T )

) ∏
S⊆[3,...,k]

1
1 − qa1a2A(S)

1
1 − q/a1a2A(S)

∣∣∣∣∣
a2=1/qa1A(T )

=
1

(1 − q/a1a2A(T ))

∏
S⊆[3,...,k]

S �=T

1
1 − qa1a2A(S)

1
1 − q/a1a2A(S)

∣∣∣∣∣
a2=1/qa1A(T )

=
1

(1 − q2)

∏
S⊆[3,...,k]

S �=T

1
1 − A(S)/A(T )

1
1 − q2A(T )/A(S)

and we see that, as in the case k = 3, all of these coefficients are independent of a1. Moreover we can also
easily see that

(
1 − qa1A(T )

) ∏
S⊆[3,...,k]

1
1 − qa1A(S)

1
1 − q/a1A(S)

∣∣∣∣∣
a1=1/qA(T )

= CT .

This reduces the computation of Gk(q) to the sum of 2k−2 +
(
2k−2

2

)
constant terms of the form

Gk(q) =
2k−2∑
i=1

A2
i

∣∣∣∣
a0
3···a0

k

+ 2
∑

1≤i<j≤2k−2

AiAj

∣∣∣∣
a0
3···a0

k

Note that for k = 5 we are reduced to the calculation of 23 +
(
23

2

)
= 36 constant terms. Most importantly

in each of these constant terms the denominators have at most 14 factors. The latest version of the partial
fraction algorithm (motivated by the computation of G5(q)) posted in the web site

http://www.combinatorics.net.cn/homepage/xin/maple/ell2.rar”

computed these 36 constant terms on a Pentium 4 Windows system computer with a 3G Hz processor in
about 22 minutes which is a considerable time reduction from the 2 hours and 15 minutes that took previous
versions of the algorithm to compute these constant terms.

The same approach can be used to calculate W5(q), but in a much simpler way. The constant terms
have to be appropriately modified. Again we will start with the case k = 3.

The k-tuple of sets interpretation of the constant term in 2.3 given in section 2, yields that to obtain
Wk(q) we must compute the constant terms corresponding to the 2k systems obtained by requiring each
Ai to have 2 or 0 more elements than its complement in all possible ways and then carry out an inclusion
exclusion type alternating sum of the results.
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A moments reflection should reveal that to get W3(q) = W3(q, 1) we need only modify 4.39 to

W3(q, t) =
((

1 − a4/a1

)(
1 − 1/a2

)(
1 − 1/a3

))
×

× 1
1 − qa1a2a3

1
1 − qa1a2

1
1 − qa1a3

1
1 − qa1

× 1
1 − qa2a3a4

1
1 − qa2a4

1
1 − qa3a4

1
1 − qa4

1
1 − t/a1a2a3a4

∣∣∣∣
a0
1a0

2a0
3a0

4

4.49

In fact expanding the first factor gives the 8 terms

1 − 1/a2 − 1/a3 − a4/a1 + a4/a1a2 + a4/a1a3 + 1/a2a3 − a4/a1a2a3.

And we see that the 8 constant terms obtained by expanding this factor in 4.49 correspond in order to the
following 8 modified versions of S ′

3∥∥∥∥∥∥∥
|A1| = d
|A2| = d
|A3| = d
| cA1| = d

,

∥∥∥∥∥∥∥
|A1| = d + 1
|A2| = d
|A3| = d
| cA1| = d − 1

,

∥∥∥∥∥∥∥
|A1| = d
|A2| = d + 1
|A3| = d
| cA1| = d

,

∥∥∥∥∥∥∥
|A1| = d
|A2| = d
|A3| = d + 1
| cA1| = d∥∥∥∥∥∥∥

|A1| = d + 1
|A2| = d + 1
|A3| = d
| cA1| = d − 1

,

∥∥∥∥∥∥∥
|A1| = d + 1
|A2| = d
|A3| = d + 1
| cA1| = d − 1

,

∥∥∥∥∥∥∥
|A1| = d
|A2| = d + 1
|A3| = d + 1
| cA1| = d

,

∥∥∥∥∥∥∥
|A1| = d + 1
|A2| = d + 1
|A3| = d + 1
| cA1| = d − 1

Now the elimination of a4 in 4.49 and then setting t = 1 (as for G3(q)) gives

W3(q) =
((

1 − 1/a2
1a2a3

)(
1 − 1/a2

)(
1 − 1/a3

))
×

× 1
1 − qa1a2a3

1
1 − qa1a2

1
1 − qa1a3

1
1 − qa1

× 1
1 − q/a1

1
1 − q/a1a3

1
1 − q/a1a2

1
1 − q/a1a2a3

∣∣∣∣
a0
1a0

2a0
3

.

For general k, we are left to compute the constant term

Wk(q) =
(
1 − 1/a2

1a2 · · · ak

) k∏
i=2

(
1 − 1/ai

)( ∏
S⊆[2,...,k]

1
1 − qa1A(S)

1
1 − q/a1A(S)

)∣∣∣∣
a0
1a0

2···a0
k

.

Using this formula, the updated package will directly deliver W5(q) in about 17 minutes. This is because
the factors in the numerator nicely cancel some of the denominators of the intermediate rational functions.
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