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Algebraic Curves over Finite Fields

Fq, a finite field containing q elements, where q is a power of a prime.

Fqk is a field extension; Fq is an algebraic closure.

Nonsingular Projective Plane Curve (smooth model chosen)

C : f (x , y) = 0 plus a single point at infinity.

C (Fq) ⊂ C (Fqk1 ) ⊂ C (Fqk2 ) ⊂ · · · ⊂ C (Fq)

for any sequence of natural numbers 1|k1|k2| . . . .
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Fqk is a field extension; Fq is an algebraic closure.

Nonsingular Projective Plane Curve (smooth model chosen)

C : f (x , y) = 0 plus a single point at infinity.

C (Fq) ⊂ C (Fqk1 ) ⊂ C (Fqk2 ) ⊂ · · · ⊂ C (Fq)

for any sequence of natural numbers 1|k1|k2| . . . .

The Frobenius map π acts on curve C over finite field Fq via

π(a, b) = (aq, bq) and π(P∞) = P∞.
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The Frobenius map π acts on curve C over finite field Fq via

π(a, b) = (aq, bq) and π(P∞) = P∞.

Fact

For point P ∈ C (Fq),
π(P) ∈ C (Fq).

Fact

For point P ∈ C (Fqk ),

πk(P) = P .

Let Nk be the number of points on curve C , over finite field Fqk .

Alternatively, Nk counts the number of points in C (Fq) which are fixed by
the kth power of the Frobenius map, πk .
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Nk = |C (Fqk )| counts the number of points in C (Fq) which are fixed by

the kth power of the Frobenius map, πk .

Using this sequence, we define the zeta function of an algebraic variety,
which can be written several different ways, including as an exponential
generating function.

Z (C ,T ) = exp

( ∞
∑

k=1

Nk

T k

k

)

= 1 +
∑

k≥1

HkT k

=
∏

p

1

1 − T deg p
where p is a prime ideal

ζ(s) =
∏

p prime integer

1

1 − p−s
=

∑

n≥1

1

ns
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Theorem (Rationality - Weil 1948)

Z (C ,T ) =
(1 − α1T )(1 − α2T ) · · · (1 − α2g−1T )(1 − α2gT )

(1 − T )(1 − qT )

for complex numbers αi ’s, where g is the genus of the curve C.
Furthermore, the numerator of Z (C ,T ) has integer coefficients.
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Z (C ,T ) =
(1 − α1T )(1 − α2T ) · · · (1 − α2g−1T )(1 − α2gT )

(1 − T )(1 − qT )

for complex numbers αi ’s, where g is the genus of the curve C.
Furthermore, the numerator of Z (C ,T ) has integer coefficients.

Theorem (Functional Equation - Weil 1948)

Z (C ,T ) = qg−1T 2g−2Z (C , 1/qT )

Nk = pk [1 + q − α1 − · · · − α2g ]

= 1 + qk − αk
1 − · · · − αk

2g

The Zeta Function of curve C of genus g , hence the entire
sequence of {Nk}’s, only depends on {q,N1,N2, . . . ,Ng}.
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Elliptic Curves, and a Combinatorial Interpretation of Nk

Specializing to the case of an elliptic curve E , or a genus one curve, a lot
more is known and there is additional structure.

Facts

1 E can be represented as the zero locus in P
2 of the equation

y2 = x3 + Ax + B

for A,B ∈ Fq. (if p 6= 2, 3)
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Elliptic Curves, and a Combinatorial Interpretation of Nk

Specializing to the case of an elliptic curve E , or a genus one curve, a lot
more is known and there is additional structure.

Facts

1 E can be represented as the zero locus in P
2 of the equation

y2 = x3 + Ax + B

for A,B ∈ Fq. (if p 6= 2, 3)

2 E has a group structure where two points on E can be added to yield
another point on the curve.

3 The Frobenius map is compatible with the group structure:

π(P ⊕ Q) = π(P) ⊕ π(Q).

Recall that π(x , y) = (xq, yq) and

πk(P) = P if and only if P ∈ E (Fqk ).
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Elliptic Curve Group Law Geometrically

Draw Chord/Tangent Line and then reflect about horizontal axis

P

Q

R

P + Q = R
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Elliptic Curve Group Law Algebraically

If P1 = (x1, y1), P2 = (x2, y2), then

P1 ⊕ P2 = P3 = (x3, y3) where

1) If x1 6= x2 then

x3 = m2 − x1 − x2 and y3 = m(x1 − x3) − y1 with m =
y2 − y1

x2 − x1
.

2) If x1 = x2 but (y1 6= y2, or y1 = 0 = y2) then P3 = P∞.
3) If P1 = P2 and y1 6= 0, then

x3 = m2 − 2x1 and y3 = m(x1 − x3) − y1 with m =
3x2

1 + A

2y1
.

4) P∞ acts as the identity element in this addition.
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Rationality (Hasse 1933)

Z (E ,T ) =
(1 − α1T )(1 − α2T )

(1 − T )(1 − qT )
=

1 − (1 + q − N1)T + qT 2

(1 − T )(1 − qT )

for complex numbers α1 and α2. (In fact |α1| = |α2| =
√

q.)

Functional Equation

Z (E , 1/qT ) = Z (E ,T ).

Nk = pk [1 + q − α1 − α2]

= 1 + qk − αk
1 − αk

2

and the Functional Equation implies

α1α2 = q.

Thus the entire sequence of Nk ’s, for elliptic curve E , only depends on q
and N1.
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Theorem (Garsia 2004)

For an elliptic curve, we can write Nk as a polynomial in terms of N1 and
q such that

Nk =
k

∑

i=1

(−1)i−1Pk,i (q)N i
1

where each Pk,i is a polynomial in q with positive integer coefficients.
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Theorem (Garsia 2004)

For an elliptic curve, we can write Nk as a polynomial in terms of N1 and
q such that

Nk =
k

∑

i=1

(−1)i−1Pk,i (q)N i
1

where each Pk,i is a polynomial in q with positive integer coefficients.

N2 = (2 + 2q)N1 − N2
1

N3 = (3 + 3q + 3q2)N1 − (3 + 3q)N2
1 + N3

1

N4 = (4 + 4q + 4q2 + 4q3)N1 − (6 + 8q + 6q2)N2
1 + (4 + 4q)N3

1 − N4
1

N5 = (5 + 5q + 5q2 + 5q3 + 5q4)N1 − (10 + 15q + 15q2 + 10q3)N2
1

+ (10 + 15q + 10q2)N3
1 − (5 + 5q)N4

1 + N5
1

Question

What is a combinatorial interpretation of these expressions, i.e. of the
Pk,i ’s?
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And now for something completely different ...
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And now for something completely different ...

Graph Theory Terminology:

Let G = (V ,E ) be a finite graph. (We allow multiple edges between
vertices, but not loops.)

A spanning tree (of an undirected graph) is a connected subgraph
without cycles that is incident to all vertices.
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Let G = (V ,E ) be a finite graph. (We allow multiple edges between
vertices, but not loops.)

A spanning tree (of an undirected graph) is a connected subgraph
without cycles that is incident to all vertices.

We now consider directed graphs, edges are oriented.

Single out one of the vertices, v0. We call this the root of G .
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And now for something completely different ...

Graph Theory Terminology:

Let G = (V ,E ) be a finite graph. (We allow multiple edges between
vertices, but not loops.)

A spanning tree (of an undirected graph) is a connected subgraph
without cycles that is incident to all vertices.

We now consider directed graphs, edges are oriented.

Single out one of the vertices, v0. We call this the root of G .

A rooted oriented spanning tree of G is a spanning tree of the
underlying undirected graph, and orientations of edges along the tree are
chosen so that all edges point towards the root.

Gregg Musiker (MIT/MSRI) Elliptic Curves and Chip-Firing December 3, 2009 12 / 46



More Graph Theory Terminology: The Laplacian Matrix

The Laplacian matrix of a graph has diagonal entries di (outdegree of vi)
and off-diagonal entries −dij (number of directed edges from vi to vj).

Example: let G = 4

0

2

1

3

with the root vertex v0 in red. Then

L(G ) =













1 0 0 0 −1
0 1 0 −1 0
0 −1 2 −1 0
0 0 0 2 −2
−1 0 0 0 1













. (Rows/Columns indexed as 0, 1, 2, 3, 4)
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A Family of Examples

We let Wk denote the wheel graph which consists of k vertices on a circle
and a central vertex which is adjacent to every other vertex.

Note that a spanning tree will consist of arcs on the rim and spokes.
We construct a family of digraphs (directed with multiple edges allowed)
whose vertex set equal the Wk ’s.
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We replace each rim edge with q clockwise edges and 1 counter-clockwise
edge.

We replace each spoke with t spokes pointing towards the root.

 t = 2
q = 3

The (q, t)-wheel graphs Wk(q, t) for k ≥ 1.
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Definition

Wk(q, t) =
The number of rooted oriented spanning trees in graph Wk(q, t).

Theorem (M- 2007)

Wk(q, t) can be written as a positive bivariate integer polynomial such
that the coefficient of t i in Wk(q, t) equals Pk,i (q) in

Nk =

k
∑

i=1

(−1)i−1Pk,i (q)N i
1.

In other words, Wk(q,−N1) = Nk .
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The Wk(q, t)’s are integer polynomials

Wk(q, t) =
The number of rooted oriented spanning trees in graph Wk(q, t).

The Laplacian Matrix for Wk(q, t) is

Lk =





















1 + q + t −q 0 . . . 0 −1 −t
−1 1 + q + t −q 0 . . . 0 −t
. . . . . . . . . . . . . . . . . . −t
0 . . . −1 1 + q + t −q 0 −t
0 . . . 0 −1 1 + q + t −q −t
−q 0 . . . 0 −1 1 + q + t −t
−t −t −t . . . −t −t kt





















.

The last row and column correspond to hub vertex, the root.
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Proof of Integrality by the Matrix-Tree Theorem

By the Matrix-Tree theorem, the number of directed rooted spanning trees
is det(Lk)0 where (Lk)0 is matrix Lk with the last row and last column
deleted.
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Proof of Integrality by the Matrix-Tree Theorem

By the Matrix-Tree theorem, the number of directed rooted spanning trees
is det(Lk)0 where (Lk)0 is matrix Lk with the last row and last column
deleted.

Let M1 = [t], M2 =

[

1 + q + t −1 − q
−1 − q 1 + q + t

]

, and for k ≥ 3, let Mk be the

k-by-k “three-line” circulant matrix
2

6

6

6

6

6

6

4

1 + q + t −q 0 . . . 0 −1

−1 1 + q + t −q 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . −1 1 + q + t −q 0

0 . . . 0 −1 1 + q + t −q

−q 0 . . . 0 −1 1 + q + t

3

7

7

7

7

7

7

5

.

Theorem (M- 2007)

Wk(q, t) = det Mk and Nk(q, t) = − det Mk |t=−N1
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The Wk ’s also are the cardinalities of a sequence of groups

Consider the quotient group

K (G , v0) ∼= Z
|V (G)|−1

/

Im (Lk)0

where (Lk)0 is the Laplacian matrix of graph G with the row and column
corresponding to v0 deleted.

|K (G , v0)| = #Spanning Trees in Graph G
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The Wk ’s also are the cardinalities of a sequence of groups

Consider the quotient group

K (G , v0) ∼= Z
|V (G)|−1

/

Im (Lk)0

where (Lk)0 is the Laplacian matrix of graph G with the row and column
corresponding to v0 deleted.

|K (G , v0)| = #Spanning Trees in Graph G

This group goes by many names, critical group of graph G (w.r.t. v0)
from Biggs. Also known as the Jacobian of a graph, studied by
Baker-Norine, Group of components by Lorenzini, and Sandpile group
by Dhar, Gabrielov, among others.

Alternative definition with explicit coset representatives shortly.
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Critical Group of The Complete Graph Kn

The complete graph Kn has n vertices and
(

n
2

)

edges, one between each
pair of vertices.
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Critical Group of The Complete Graph Kn

The complete graph Kn has n vertices and
(

n
2

)

edges, one between each
pair of vertices. The number of spanning trees of Kn is nn−2.
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Critical Group of The Complete Graph Kn

The complete graph Kn has n vertices and
(

n
2

)

edges, one between each
pair of vertices. The number of spanning trees of Kn is nn−2.

Theorem (Lorenzini 1991)

The critical group K (Kn) decomposes as (Z/nZ)n−2.
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Critical Group of The Complete Graph Kn

The complete graph Kn has n vertices and
(

n
2

)

edges, one between each
pair of vertices. The number of spanning trees of Kn is nn−2.

Theorem (Lorenzini 1991)

The critical group K (Kn) decomposes as (Z/nZ)n−2.

For a given family of graphs (e.g. Wk , Cn, Pn, products (such as
hypercube Qn) ), can be nontrivial to find K (G ).

Gregg Musiker (MIT/MSRI) Elliptic Curves and Chip-Firing December 3, 2009 20 / 46



Critical Group of The Complete Graph Kn

The complete graph Kn has n vertices and
(

n
2

)

edges, one between each
pair of vertices. The number of spanning trees of Kn is nn−2.

Theorem (Lorenzini 1991)

The critical group K (Kn) decomposes as (Z/nZ)n−2.

For a given family of graphs (e.g. Wk , Cn, Pn, products (such as
hypercube Qn) ), can be nontrivial to find K (G ).

For example, decomposition of K (Wk) involves Fibonacci numbers
(Biggs).
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Chip-Firing: (Björner, Lovász, Shor 1991)

1 Assign a nonnegative integer value Ci to each vertex vi

(number of chips).

2 Start with vertex v1.

3 If Ci , the number of chips on vi , is greater than or equal to the
outdegree of vi , then vertex vi fires. Otherwise move on to vi+1.

4 If vertex vi fires, then we take di chips off of vi and distribute them to
vi ’s neighbors.

5 Now Ci := Ci − di and Cj := Cj + dij if vj is a neighbor of vi .

6 We continue until we get to vn.
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Chip-Firing: (Björner, Lovász, Shor 1991)

1 Assign a nonnegative integer value Ci to each vertex vi

(number of chips).

2 Start with vertex v1.

3 If Ci , the number of chips on vi , is greater than or equal to the
outdegree of vi , then vertex vi fires. Otherwise move on to vi+1.

4 If vertex vi fires, then we take di chips off of vi and distribute them to
vi ’s neighbors.

5 Now Ci := Ci − di and Cj := Cj + dij if vj is a neighbor of vi .

6 We continue until we get to vn.

7 We then start over with v1 and repeat.

8 We continue forever or terminate when all Ci < di .
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We consider a variant due to Norman Biggs known as the Dollar Game:
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We consider a variant due to Norman Biggs known as the Dollar Game:

1 We designate one vertex v0 to be the bank, and allow C0 to be
negative. All the other Ci ’s still must be nonnegative.
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We consider a variant due to Norman Biggs known as the Dollar Game:

1 We designate one vertex v0 to be the bank, and allow C0 to be
negative. All the other Ci ’s still must be nonnegative.

2 To limit extraneous configurations, we presume that the sum
∑#V−1

i=0 Ci = 0. (Thus in particular, C0 will be non-positive.)
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We consider a variant due to Norman Biggs known as the Dollar Game:

1 We designate one vertex v0 to be the bank, and allow C0 to be
negative. All the other Ci ’s still must be nonnegative.

2 To limit extraneous configurations, we presume that the sum
∑#V−1

i=0 Ci = 0. (Thus in particular, C0 will be non-positive.)

3 The bank, i.e. vertex v0, is only allowed to fire if no other vertex can
fire. Note that since we now allow C0 to be negative, v0 is allowed to
fire even when it is smaller than its outdegree.
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A configuration is stable if v0 is the only vertex that can fire

A configuration C is recurrent if there is firing sequence which will lead
back to C .
(Note that this will necessarily require the use of v0 firing.)

We call a configuration critical if it is both stable and recurrent.
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A configuration is stable if v0 is the only vertex that can fire

A configuration C is recurrent if there is firing sequence which will lead
back to C .
(Note that this will necessarily require the use of v0 firing.)

We call a configuration critical if it is both stable and recurrent.

Theorem (Gabrielov 1993)

For any initial configuration C with
∑k

i=0 Ci = 0 and Ci ≥ 0 for all
1 ≤ i ≤ k, there exists a unique critical configuration that can be reached
by an allowable firing sequence.
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Coset Representatives for Critical Group

We can define K (G , v0) to be the set of critical configurations, with
addition given by C1 ⊕ C2 = C1 + C2.

Here + signifies the usual pointwise vector addition and C represents the
unique critical configuration in the same coset as C , modulo the Laplacian.

When v0 is understood, we will abbreviate this group as the critical group
of graph G , and denote it as K (G ).
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Coset Representatives for Critical Group

We can define K (G , v0) to be the set of critical configurations, with
addition given by C1 ⊕ C2 = C1 + C2.

Here + signifies the usual pointwise vector addition and C represents the
unique critical configuration in the same coset as C , modulo the Laplacian.

When v0 is understood, we will abbreviate this group as the critical group
of graph G , and denote it as K (G ).

Corollary (Gabrielov 1993)

K (G ) is an abelian (associative) group.
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For example, consider the following two wheels with chip distributions as
given. These are both critical configurations.

We do not label the number of chips on the hub vertex since forced.

1

4

3

0

5

3

2

4

3

0

1

1

If we add these together pointwise we obtain
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2

6

7

5

4

3

This is not a critical configuration, but by the theorem, reduces to a
unique critical configuration.
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2

6

7

5

4

3
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6

7

5

4

3

1

4
9

2 5

4
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2

6

7

5

4

3

1

4
9

2 5

4

2

5

3
4

5

4

This last one is critical.
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Critical Groups of (q, t)-Wheel Graphs

We want to analogize theory of elliptic curves: For example, there is a
tower of groups

E (Fq) ⊂ E (Fqk1 ) ⊂ E (Fqk2 ) ⊂ · · · ⊂ E (Fq)
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Critical Groups of (q, t)-Wheel Graphs

We want to analogize theory of elliptic curves: For example, there is a
tower of groups

E (Fq) ⊂ E (Fqk1 ) ⊂ E (Fqk2 ) ⊂ · · · ⊂ E (Fq)

Understanding the sequence of Critical Groups:

K (W1(q, t)), K (W2(q, t)), K (W3(q, t)), . . .

The set

{

Elements of the critical group K (Wk(q, t))

}

is a subset of the

set of length k words in alphabet {0, 1, 2, . . . , q + t}.
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Example: [2, 4, 2] ⊕ [0, 4, 1] ≡ [1, 0, 4] in W3(q = 3, t = 2) versus

2
2

4

⊕ 0

4

1

=
1

0

4

[2, 4, 2, 2, 4, 2] ⊕ [0, 4, 1, 0, 4, 1] ≡ [1, 0, 4, 1, 0, 4] in W6(q = 3, t = 2)

4

4

2
2

22

⊕
1

4

0

1

4

0

=

4

0

1

4

0

1

Chip-firing is a local process.
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Proposition

The map ψ : w → www . . .w is an injective group homomorphism
between K (Wk1

(q, t)) and K (Wk2
(q, t)) whenever k1|k2. Here map ψ

replaces w with k2/k1 copies of w.
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Proposition

The map ψ : w → www . . .w is an injective group homomorphism
between K (Wk1

(q, t)) and K (Wk2
(q, t)) whenever k1|k2. Here map ψ

replaces w with k2/k1 copies of w.

Define ρ to be the counter-clockwise rotation map on K (Wk(q, t)).

ρ([C1,C2, . . . ,Ck ]) = [C2,C3, . . . ,Ck ,C1].
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Proposition

The map ψ : w → www . . .w is an injective group homomorphism
between K (Wk1

(q, t)) and K (Wk2
(q, t)) whenever k1|k2. Here map ψ

replaces w with k2/k1 copies of w.

Define ρ to be the counter-clockwise rotation map on K (Wk(q, t)).

ρ([C1,C2, . . . ,Ck ]) = [C2,C3, . . . ,Ck ,C1].

Proposition

The kernel of (1 − ρk1) acting on K (Wk2
(q, t)) is isomorphic to the

subgroup K (Wk1
(q, t)) whenever k1|k2.
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Proposition

The kernel of (1 − ρk1) acting on K (Wk2
(q, t)) is isomorphic to the

subgroup K (Wk1
(q, t)) whenever k1|k2.

We therefore can define a direct limit

K (W (q, t)) ∼=
∞
⋃

k=1

K (Wk(q, t))

where ρ provides the transition maps.
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Proposition

The kernel of (1 − ρk1) acting on K (Wk2
(q, t)) is isomorphic to the

subgroup K (Wk1
(q, t)) whenever k1|k2.

We therefore can define a direct limit

K (W (q, t)) ∼=
∞
⋃

k=1

K (Wk(q, t))

where ρ provides the transition maps.

In particular we obtain

K (Wk(q, t)) ∼= Ker(1 − ρk) : K (W (q, t)) → K (W (q, t)).
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Shift map ρ is the wheel graph-analogue of the Frobenius map π on
elliptic curves.
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K (Wk(q, t)) ∼= Ker(1 − ρk) : K (W (q, t)) → K (W (q, t)) just as

E (Fqk ) = Ker(1 − πk) : E (Fq) → E (Fq).

2 There is a characteristic equation π2 − (1 + q − N1)π + q = 0 on
E (Fq), an elliptic curve over the algebraic closure.
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2 There is a characteristic equation π2 − (1 + q − N1)π + q = 0 on
E (Fq), an elliptic curve over the algebraic closure.

We get an analogous equation ρ2 − (1 + q + t)ρ+ q = 0 on
K (W (q, t)).
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Shift map ρ is the wheel graph-analogue of the Frobenius map π on
elliptic curves.

1

K (Wk(q, t)) ∼= Ker(1 − ρk) : K (W (q, t)) → K (W (q, t)) just as

E (Fqk ) = Ker(1 − πk) : E (Fq) → E (Fq).

2 There is a characteristic equation π2 − (1 + q − N1)π + q = 0 on
E (Fq), an elliptic curve over the algebraic closure.

We get an analogous equation ρ2 − (1 + q + t)ρ+ q = 0 on
K (W (q, t)). (Linear Algebraic Techniques suffice)

3 Both the collection of E (Fqk )’s and K (Wk(q, t))’s are abelian groups
which decompose into at most two cyclic subgroups.
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Shift map ρ is the wheel graph-analogue of the Frobenius map π on
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1

K (Wk(q, t)) ∼= Ker(1 − ρk) : K (W (q, t)) → K (W (q, t)) just as

E (Fqk ) = Ker(1 − πk) : E (Fq) → E (Fq).

2 There is a characteristic equation π2 − (1 + q − N1)π + q = 0 on
E (Fq), an elliptic curve over the algebraic closure.

We get an analogous equation ρ2 − (1 + q + t)ρ+ q = 0 on
K (W (q, t)). (Linear Algebraic Techniques suffice)

3 Both the collection of E (Fqk )’s and K (Wk(q, t))’s are abelian groups
which decompose into at most two cyclic subgroups. (Proof via the
Smith normal form of Laplacian matrix.)
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Shift map ρ is the wheel graph-analogue of the Frobenius map π on
elliptic curves.

1

K (Wk(q, t)) ∼= Ker(1 − ρk) : K (W (q, t)) → K (W (q, t)) just as

E (Fqk ) = Ker(1 − πk) : E (Fq) → E (Fq).

2 There is a characteristic equation π2 − (1 + q − N1)π + q = 0 on
E (Fq), an elliptic curve over the algebraic closure.

We get an analogous equation ρ2 − (1 + q + t)ρ+ q = 0 on
K (W (q, t)). (Linear Algebraic Techniques suffice)

3 Both the collection of E (Fqk )’s and K (Wk(q, t))’s are abelian groups
which decompose into at most two cyclic subgroups. (Proof via the
Smith normal form of Laplacian matrix.)

4 One last surprising connection ...
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Behavior of Torsion Subgroups of K (W (q, t))

4 The Group K (W (q, t)) (the direct limit of the K (Wk(q, t))’s)
contains the subgroup Z/nZ for all n ≥ 1, and

K (W (q, t)) contains the subgroup Z/nZ × Z/nZ if and only if n and
q are coprime.
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4 The Group K (W (q, t)) (the direct limit of the K (Wk(q, t))’s)
contains the subgroup Z/nZ for all n ≥ 1, and

K (W (q, t)) contains the subgroup Z/nZ × Z/nZ if and only if n and
q are coprime.

(Analogous to E (Fq) when E is an ordinary elliptic curve.)

What does the proof use? ....

Question

Given an integer n ≥ 1, does there exist a k ≥ 1 such that n divides the
kth Fibonacci number?
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Behavior of Torsion Subgroups of K (W (q, t))

4 The Group K (W (q, t)) (the direct limit of the K (Wk(q, t))’s)
contains the subgroup Z/nZ for all n ≥ 1, and

K (W (q, t)) contains the subgroup Z/nZ × Z/nZ if and only if n and
q are coprime.

(Analogous to E (Fq) when E is an ordinary elliptic curve.)

What does the proof use? ....

Question

Given an integer n ≥ 1, does there exist a k ≥ 1 such that n divides the
kth Fibonacci number?

Answer provided by a result of D.D Wall from 1960.

Gregg Musiker (MIT/MSRI) Elliptic Curves and Chip-Firing December 3, 2009 33 / 46



Lemma (Wall 1960)

The sequence {Fk mod n : k ∈ Z} is periodic, and Fk ≡ 0 mod n for
some k ≥ 1.

Proof. Finite number (n2) of possibilities for a window of length two, and
an infinite number of k. Thus there will be two identical windows.
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Proof. Finite number (n2) of possibilities for a window of length two, and
an infinite number of k. Thus there will be two identical windows.

Using linear recurrence in both directions, we obtain periodicity.
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Lemma (Wall 1960)

The sequence {Fk mod n : k ∈ Z} is periodic, and Fk ≡ 0 mod n for
some k ≥ 1.

Proof. Finite number (n2) of possibilities for a window of length two, and
an infinite number of k. Thus there will be two identical windows.

Using linear recurrence in both directions, we obtain periodicity.

Letting F1 = F2 = 1 and running recurrence backwards, F0 = 0. Thus
Fk0

≡ 0 mod n for some k0 ≥ 1 too.
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Application to Torison Groups

Theorem (M- 2009)

For k ≥ 3, the Smith normal form of (Lk)0 is equivalent to a direct sum of
the identity matrix and

[

qF̂2k−4 + 1 qF̂2k−2

F̂2k−2 F̂2k − 1

]

≡
[

d1 0
0 d2

]

, d1|d2

where F̂k denotes a bivariate analogue of the Fibonacci numbers:

We let S range over all subsets {1, 2, . . . , 2k} with no two consecutive
elements, and define

F̂2k(q, t) =
∑

S

q# even elements in S tk−#S .
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Application to Torison Groups

Theorem (M- 2009)

For k ≥ 3, the Smith normal form of (Lk)0 is equivalent to a direct sum of
the identity matrix and

[

qF̂2k−4 + 1 qF̂2k−2

F̂2k−2 F̂2k − 1

]

≡
[

d1 0
0 d2

]

, d1|d2

where F̂k denotes a bivariate analogue of the Fibonacci numbers:

We let S range over all subsets {1, 2, . . . , 2k} with no two consecutive
elements, and define

F̂2k(q, t) =
∑

S

q# even elements in S tk−#S .

The F̂k ’s satisfy the reccurence F̂2k+2 = (1 + q + t)F̂2k − qF̂2k−2.
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Factorizations of Nk and Elliptic Cyclotomic Polynomials

Wk(q, t) = −Nk

∣

∣

N1=−t
=

∑k
i=1 Pk,i (q) t i for all k ≥ 1.

Mk be the k-by-k “three-line” circulant matrix
2

6

6

6

6

6

6

4

1 + q + t −q 0 . . . 0 −1

−1 1 + q + t −q 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . −1 1 + q + t −q 0

0 . . . 0 −1 1 + q + t −q

−q 0 . . . 0 −1 1 + q + t

3

7

7

7

7

7

7

5

.

Let Mk = Mk |t=−N1
.

Corollary (M- 2007)

The sequence of integers Nk = #E (Fqk ) satisfies the relation

Nk = − det Mk for all k ≥ 1.
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Elliptic Cyclotomic Polynomials

We have a determinantal formula for Nk , and

Combinatorial interpretations for the summands when we write Nk as an
alternating sum in powers of N1
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Elliptic Cyclotomic Polynomials

We have a determinantal formula for Nk , and

Combinatorial interpretations for the summands when we write Nk as an
alternating sum in powers of N1

We now look at factorizations of Nk into Z[q,N1] polynomials.

e.g. N2 = N1

(

2 + 2q − N1

)

Motivates a combinatorial interpretation of E (Fqk ) as Cartesian Product
of smaller subsets.
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N2 = N1

(

2 + 2q − N1

)

N3 = N1

(

(3 + 3q + 3q2) − (3 + 3q)N1 + N2
1

)

N4 = N1

(

2 + 2q − N1

)(

(2q2 + 2) − (2q + 2)N1 + N2
1

)

N5 = N1

(

(5 + 5q + 5q2 + 5q3 + 5q4) − (10 + 15q + 15q2 + 10q3)N1

+ (10 + 15q + 10q2)N2
1 − (5 + 5q)N3

1 + N4
1

)

N6 = N1

(

2 + 2q − N1

)(

(3 + 3q + 3q2) − (3 + 3q)N1 + N2
1

)

×
(

(q2 − q + 1) − (q + 1)N1 + N2
1

)
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Factoring Nk in general:

Theorem (M- 2007)

There exists integral polynomials, which we will denote as ECycd , in N1

and q, only depending on d such that

Nk(N1, q) =
∏

d|k

ECycd .

Compare with 1 − xk =
∏

d|k Cycd(x).
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Factoring Nk in general:

Theorem (M- 2007)

There exists integral polynomials, which we will denote as ECycd , in N1

and q, only depending on d such that

Nk(N1, q) =
∏

d|k

ECycd .

Compare with 1 − xk =
∏

d|k Cycd(x).

We call these Elliptic Cyclotomic Polynomials.

Definition

ECycd(q,N1) = Cycd (α1)Cycd(α2) where α1 and α2 are the two complex
roots of quadratic T 2 − (1 + q − N1)T + q, and

Cycd(x) =
∏

e|d

(1 − xe)µ(d/e).
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ECyc1 = N1

ECyc2 = 2 + 2q − N1

ECyc3 = (3 + 3q + 3q2) − (3 + 3q)N1 + N2
1

ECyc4 = (2q2 + 2) − (2q + 2)N1 + N2
1

ECyc5 = (5 + 5q + 5q2 + 5q3 + 5q4) − (10 + 15q + 15q2 + 10q3)N1

+ (10 + 15q + 10q2)N2
1 − (5 + 5q)N3

1 + N4
1

ECyc6 = (q2 − q + 1) − (q + 1)N1 + N2
1

Proposition (M- 2007)

ECycd

∣

∣

∣

∣

N1=0

= Cycd(1) · Cycd(q)

where Cyc1(1) = 0, Cycd(1) = p if d = pk and Cycd (1) equals 1
otherwise.
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Conjecture

For d ≥ 2, ECycd (q,N1) = Cycd(1) · Cycd(q) +

φ(d)
∑

i=1

(−1)iQi ,d(q)N i
1

where Qi ,d is a univariate polynomial with positive integer coefficients.
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For d ≥ 2, ECycd (q,N1) = Cycd(1) · Cycd(q) +

φ(d)
∑

i=1

(−1)iQi ,d(q)N i
1

where Qi ,d is a univariate polynomial with positive integer coefficients.

True for 2 ≤ d ≤ 104.
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Conjecture

For d ≥ 2, ECycd (q,N1) = Cycd(1) · Cycd(q) +

φ(d)
∑

i=1

(−1)iQi ,d(q)N i
1

where Qi ,d is a univariate polynomial with positive integer coefficients.

True for 2 ≤ d ≤ 104.

However, Conjecture fails for d = 105.
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Nonetheless, we can give a geometric interpretation of the values
ECycd(q,N1) for a given q and N1 = |E (Fq)|.
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Nonetheless, we can give a geometric interpretation of the values
ECycd(q,N1) for a given q and N1 = |E (Fq)|.

Theorem (M- 2007)

ECycd(q,N1) =

∣

∣

∣

∣

Ker Cycd(π) : E (Fq) 	

∣

∣

∣

∣

where Cycd(π) denotes the isogeny obtained from the dth Cyclotomic
polynomial of the Frobenius map.

Ker M = {P ∈ E (Fq) : M(P) = P∞}
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From Chip-Firing to Tropical Geometry

Variant of earlier discussion: Let G = (V ,E ) be any undirected graph.

A chip configuration C is an assignment of integers to each vertex.
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From Chip-Firing to Tropical Geometry

Variant of earlier discussion: Let G = (V ,E ) be any undirected graph.

A chip configuration C is an assignment of integers to each vertex.

A chip-firing move is a choice of a vertex vi . vi gives dij chips to each of
its neighbors vj . Such chip configurations are also called divisors.
(Like algebraic geometric definition where a divisor is a formal Z-linear
combination of points on a curve.)
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Variant of earlier discussion: Let G = (V ,E ) be any undirected graph.

A chip configuration C is an assignment of integers to each vertex.

A chip-firing move is a choice of a vertex vi . vi gives dij chips to each of
its neighbors vj . Such chip configurations are also called divisors.
(Like algebraic geometric definition where a divisor is a formal Z-linear
combination of points on a curve.)

Definition

The degree of a divisor D =
∑n

i=1 Civi is
∑n

i=1 Ci .

D is effective if Ci ≥ 0 for all i .
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From Chip-Firing to Tropical Geometry

Variant of earlier discussion: Let G = (V ,E ) be any undirected graph.

A chip configuration C is an assignment of integers to each vertex.

A chip-firing move is a choice of a vertex vi . vi gives dij chips to each of
its neighbors vj . Such chip configurations are also called divisors.
(Like algebraic geometric definition where a divisor is a formal Z-linear
combination of points on a curve.)

Definition

The degree of a divisor D =
∑n

i=1 Civi is
∑n

i=1 Ci .

D is effective if Ci ≥ 0 for all i .

Two divisors D1 and D2 are said to be linearly equivalent (D1 ∼ D2) if
D2 can be reached from D1 by a sequence of chip-firing moves.
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From Chip-Firing to Tropical Geometry

Variant of earlier discussion: Let G = (V ,E ) be any undirected graph.

A chip configuration C is an assignment of integers to each vertex.

A chip-firing move is a choice of a vertex vi . vi gives dij chips to each of
its neighbors vj . Such chip configurations are also called divisors.
(Like algebraic geometric definition where a divisor is a formal Z-linear
combination of points on a curve.)

Definition

The degree of a divisor D =
∑n

i=1 Civi is
∑n

i=1 Ci .

D is effective if Ci ≥ 0 for all i .

Two divisors D1 and D2 are said to be linearly equivalent (D1 ∼ D2) if
D2 can be reached from D1 by a sequence of chip-firing moves.

Equivalently, D1 −D2 is a Z-sum of columns of the Laplacian matrix L(G ).
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From Chip-Firing to Tropical Geometry

Definition

The Linear System of D, denoted as |D|, is the set
{D ′ : D ′ ∼ D and D ′ is effective.}.

The following definitions are from Baker-Norine.

1 Let K (G ) = [(deg v1) − 2, (deg v2) − 2, . . . , (deg vn) − 2], the
canonical divisor of G .
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The Linear System of D, denoted as |D|, is the set
{D ′ : D ′ ∼ D and D ′ is effective.}.

The following definitions are from Baker-Norine.

1 Let K (G ) = [(deg v1) − 2, (deg v2) − 2, . . . , (deg vn) − 2], the
canonical divisor of G .

2 g(G ) = |E | − |V | + 1, the genus of G . Also the 1st Betti number of
the graph as a 1-complex.
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From Chip-Firing to Tropical Geometry

Definition

The Linear System of D, denoted as |D|, is the set
{D ′ : D ′ ∼ D and D ′ is effective.}.

The following definitions are from Baker-Norine.

1 Let K (G ) = [(deg v1) − 2, (deg v2) − 2, . . . , (deg vn) − 2], the
canonical divisor of G .

2 g(G ) = |E | − |V | + 1, the genus of G . Also the 1st Betti number of
the graph as a 1-complex.

3 The rank of D, r(D), is the biggest k ≥ 0 such that for all effective
E of degree k, |D − E | 6= ∅ if such a k exists.
(By convention r(D) = −1 if |D| = ∅.)
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From Chip-Firing to Tropical Geometry

Definition

The Linear System of D, denoted as |D|, is the set
{D ′ : D ′ ∼ D and D ′ is effective.}.

The following definitions are from Baker-Norine.

1 Let K (G ) = [(deg v1) − 2, (deg v2) − 2, . . . , (deg vn) − 2], the
canonical divisor of G .

2 g(G ) = |E | − |V | + 1, the genus of G . Also the 1st Betti number of
the graph as a 1-complex.

3 The rank of D, r(D), is the biggest k ≥ 0 such that for all effective
E of degree k, |D − E | 6= ∅ if such a k exists.
(By convention r(D) = −1 if |D| = ∅.)

Theorem (Baker-Norine 2006 - Riemann-Roch Theorem for Graphs)

r(D) − r(K − D) = deg D − g + 1.

Gregg Musiker (MIT/MSRI) Elliptic Curves and Chip-Firing December 3, 2009 44 / 46



From Chip-Firing to Tropical Geometry

This has motivated search for further analogies between algebraic curve
theory and graph theory.
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From Chip-Firing to Tropical Geometry

This has motivated search for further analogies between algebraic curve
theory and graph theory.

Gathmann-Kerber and Mikhalkin-Zharkov showed

Corollary

Riemmann-Roch Theorem for Tropical Curves (Metric graphs satisfying
certain balancing conditons)

Gregg Musiker (MIT/MSRI) Elliptic Curves and Chip-Firing December 3, 2009 45 / 46



From Chip-Firing to Tropical Geometry

This has motivated search for further analogies between algebraic curve
theory and graph theory.

Gathmann-Kerber and Mikhalkin-Zharkov showed

Corollary

Riemmann-Roch Theorem for Tropical Curves (Metric graphs satisfying
certain balancing conditons)

With Christian Haase and Josephine Yu:

1 We explictly describe cell structures of |D| as a polyhedral cell
complex

2 Show how to embed |D| into tropical projective space.
3 Also get generalization of chip-firing to metric graphs, called weighted

chip-firing games.

http://arxiv.org/pdf/0909.3685.pdf
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Thanks For Coming

http://math.mit.edu/∼ musiker/CGs.pdf

G. Musiker, Combinatorial aspects of elliptic curves, Seminaire
Lotharingien de Combinatoire 56 (2007), Article B56f, 1-31

G. Musiker, The critical groups of a family of graphs and elliptic curves
over finite fields, Journal of Algebraic Combinatorics: Vol. 30, Issue 2
(2009), 255–276

C. Haase, G. Musiker, and J. Yu, Linear systems on tropical curves,
http://arxiv.org/pdf/0909.3685.pdf
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