Elliptic Curves and Chip-Firing Games on Graphs

Gregg Musiker (MIT/MSRI)
University of Minnesota Colloquium

December 3, 2009

Outline

(1) Introduction to Algebraic Curves over Finite Fields

Outline

(1) Introduction to Algebraic Curves over Finite Fields
(2) Elliptic Curves and a Combinatorial Interpretation of N_{k} 's

Outline

(1) Introduction to Algebraic Curves over Finite Fields
(2) Elliptic Curves and a Combinatorial Interpretation of N_{k} 's
(3) Journey into Graph Theory: Spanning Trees

Outline

(1) Introduction to Algebraic Curves over Finite Fields
(2) Elliptic Curves and a Combinatorial Interpretation of N_{k} 's
(3) Journey into Graph Theory: Spanning Trees
(1) Chip-Firing Games and Critical Groups

Outline

(1) Introduction to Algebraic Curves over Finite Fields
(2) Elliptic Curves and a Combinatorial Interpretation of N_{k} 's
(3) Journey into Graph Theory: Spanning Trees
(1) Chip-Firing Games and Critical Groups
(0) Connections between Elliptic Curves and Chip-Firing Games

Outline

(1) Introduction to Algebraic Curves over Finite Fields
(2) Elliptic Curves and a Combinatorial Interpretation of N_{k} 's
(3) Journey into Graph Theory: Spanning Trees
(1) Chip-Firing Games and Critical Groups
(3) Connections between Elliptic Curves and Chip-Firing Games
(0) Elliptic Cyclotomic Polynomials and Other Amusements

Outline

(1) Introduction to Algebraic Curves over Finite Fields
(2) Elliptic Curves and a Combinatorial Interpretation of N_{k} 's
(3) Journey into Graph Theory: Spanning Trees
(1) Chip-Firing Games and Critical Groups
(0) Connections between Elliptic Curves and Chip-Firing Games
(0) Elliptic Cyclotomic Polynomials and Other Amusements
(- Further Horizons: Connections to Tropical Geometry

Algebraic Curves over Finite Fields

\mathbb{F}_{q}, a finite field containing q elements, where q is a power of a prime. $\mathbb{F}_{q^{k}}$ is a field extension; $\overline{\mathbb{F}_{q}}$ is an algebraic closure.

Nonsingular Projective Plane Curve (smooth model chosen)

$$
C: f(x, y)=0 \text { plus a single point at infinity. }
$$

$$
C\left(\mathbb{F}_{q}\right) \subset C\left(\mathbb{F}_{q^{k_{1}}}\right) \subset C\left(\mathbb{F}_{q^{k_{2}}}\right) \subset \cdots \subset C\left(\overline{\mathbb{F}_{q}}\right)
$$

for any sequence of natural numbers $1\left|k_{1}\right| k_{2} \mid \ldots$.

Algebraic Curves over Finite Fields

\mathbb{F}_{q}, a finite field containing q elements, where q is a power of a prime. $\mathbb{F}_{q^{k}}$ is a field extension; $\overline{\mathbb{F}_{q}}$ is an algebraic closure.

Nonsingular Projective Plane Curve (smooth model chosen)

$$
\begin{aligned}
& C: f(x, y)=0 \quad \text { plus a single point at infinity. } \\
& \qquad C\left(\mathbb{F}_{q}\right) \subset C\left(\mathbb{F}_{q^{k_{1}}}\right) \subset C\left(\mathbb{F}_{q^{k_{2}}}\right) \subset \cdots \subset C\left(\overline{\mathbb{F}_{q}}\right)
\end{aligned}
$$

for any sequence of natural numbers $1\left|k_{1}\right| k_{2} \mid \ldots$.
The Frobenius map π acts on curve C over finite field \mathbb{F}_{q} via

$$
\pi(a, b)=\left(a^{q}, b^{q}\right) \quad \text { and } \quad \pi\left(P_{\infty}\right)=P_{\infty}
$$

The Frobenius map π acts on curve C over finite field \mathbb{F}_{q} via

$$
\pi(a, b)=\left(a^{q}, b^{q}\right) \quad \text { and } \quad \pi\left(P_{\infty}\right)=P_{\infty}
$$

Fact

For point $P \in C\left(\overline{\mathbb{F}_{q}}\right)$,

$$
\pi(P) \in C\left(\overline{\mathbb{F}_{q}}\right)
$$

Fact

For point $P \in C\left(\mathbb{F}_{q^{k}}\right)$,

$$
\pi^{k}(P)=P
$$

Let N_{k} be the number of points on curve C, over finite field $\mathbb{F}_{q^{k}}$.
Alternatively, N_{k} counts the number of points in $C\left(\overline{\mathbb{F}_{q}}\right)$ which are fixed by the k th power of the Frobenius map, π^{k}.
$N_{k}=\mid C\left(\mathbb{F}_{q^{k}}| |\right.$ counts the number of points in $C\left(\overline{\mathbb{F}_{q}}\right)$ which are fixed by the k th power of the Frobenius map, π^{k}.

Using this sequence, we define the zeta function of an algebraic variety, which can be written several different ways, including as an exponential generating function.

$$
\begin{aligned}
Z(C, T) & =\exp \left(\sum_{k=1}^{\infty} N_{k} \frac{T^{k}}{k}\right)=1+\sum_{k \geq 1} H_{k} T^{k} \\
& =\prod_{\mathfrak{p}} \frac{1}{1-T^{\operatorname{deg} \mathfrak{p}}} \text { where } \mathfrak{p} \text { is a prime ideal } \\
\zeta(s) & =\prod_{p \text { prime integer }} \frac{1}{1-p^{-s}}=\sum_{n \geq 1} \frac{1}{n^{s}}
\end{aligned}
$$

Theorem (Rationality - Weil 1948)

$$
Z(C, T)=\frac{\left(1-\alpha_{1} T\right)\left(1-\alpha_{2} T\right) \cdots\left(1-\alpha_{2 g-1} T\right)\left(1-\alpha_{2 g} T\right)}{(1-T)(1-q T)}
$$

for complex numbers α_{i} 's, where g is the genus of the curve C. Furthermore, the numerator of $Z(C, T)$ has integer coefficients.

Theorem (Rationality - Weil 1948)

$$
Z(C, T)=\frac{\left(1-\alpha_{1} T\right)\left(1-\alpha_{2} T\right) \cdots\left(1-\alpha_{2 g-1} T\right)\left(1-\alpha_{2 g} T\right)}{(1-T)(1-q T)}
$$

for complex numbers α_{i} 's, where g is the genus of the curve C. Furthermore, the numerator of $Z(C, T)$ has integer coefficients.

Theorem (Functional Equation - Weil 1948)

$$
Z(C, T)=q^{g-1} T^{2 g-2} Z(C, 1 / q T)
$$

$$
\begin{aligned}
N_{k} & =p_{k}\left[1+q-\alpha_{1}-\cdots-\alpha_{2 g}\right] \\
& =1+q^{k}-\alpha_{1}^{k}-\cdots-\alpha_{2 g}^{k}
\end{aligned}
$$

The Zeta Function of curve C of genus g, hence the entire sequence of $\left\{N_{k}\right\}$'s, only depends on $\left\{q, N_{1}, N_{2}, \ldots, N_{g}\right\}$.

Elliptic Curves, and a Combinatorial Interpretation of N_{k}

Specializing to the case of an elliptic curve E, or a genus one curve, a lot more is known and there is additional structure.

Facts

(1) E can be represented as the zero locus in \mathbb{P}^{2} of the equation

$$
y^{2}=x^{3}+A x+B
$$

for $A, B \in \mathbb{F}_{q}$. (if $\left.p \neq 2,3\right)$

Elliptic Curves, and a Combinatorial Interpretation of N_{k}

Specializing to the case of an elliptic curve E, or a genus one curve, a lot more is known and there is additional structure.

Facts

(1) E can be represented as the zero locus in \mathbb{P}^{2} of the equation

$$
y^{2}=x^{3}+A x+B
$$

for $A, B \in \mathbb{F}_{q}$. (if $\left.p \neq 2,3\right)$
(2) E has a group structure where two points on E can be added to yield another point on the curve.

Elliptic Curves, and a Combinatorial Interpretation of N_{k}

Specializing to the case of an elliptic curve E, or a genus one curve, a lot more is known and there is additional structure.

Facts

(1) E can be represented as the zero locus in \mathbb{P}^{2} of the equation

$$
y^{2}=x^{3}+A x+B
$$

for $A, B \in \mathbb{F}_{q}$. (if $\left.p \neq 2,3\right)$
(2) E has a group structure where two points on E can be added to yield another point on the curve.
(3) The Frobenius map is compatible with the group structure:

$$
\pi(P \oplus Q)=\pi(P) \oplus \pi(Q)
$$

Recall that $\pi(x, y)=\left(x^{q}, y^{q}\right)$ and

$$
\pi^{k}(P)=P \text { if and only if } P \in E\left(\mathbb{F}_{q^{k}}\right)
$$

Elliptic Curve Group Law Geometrically

Draw Chord/Tangent Line and then reflect about horizontal axis

Elliptic Curve Group Law Algebraically

If $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$, then

$$
P_{1} \oplus P_{2}=P_{3}=\left(x_{3}, y_{3}\right) \text { where }
$$

1) If $x_{1} \neq x_{2}$ then

$$
x_{3}=m^{2}-x_{1}-x_{2} \text { and } y_{3}=m\left(x_{1}-x_{3}\right)-y_{1} \text { with } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} .
$$

2) If $x_{1}=x_{2}$ but $\left(y_{1} \neq y_{2}\right.$, or $\left.y_{1}=0=y_{2}\right)$ then $P_{3}=P_{\infty}$.
3) If $P_{1}=P_{2}$ and $y_{1} \neq 0$, then

$$
x_{3}=m^{2}-2 x_{1} \text { and } y_{3}=m\left(x_{1}-x_{3}\right)-y_{1} \text { with } m=\frac{3 x_{1}^{2}+A}{2 y_{1}} .
$$

4) P_{∞} acts as the identity element in this addition.

Rationality (Hasse 1933)

$$
Z(E, T)=\frac{\left(1-\alpha_{1} T\right)\left(1-\alpha_{2} T\right)}{(1-T)(1-q T)}=\frac{1-\left(1+q-N_{1}\right) T+q T^{2}}{(1-T)(1-q T)}
$$

for complex numbers α_{1} and α_{2}. (In fact $\left|\alpha_{1}\right|=\left|\alpha_{2}\right|=\sqrt{q}$.)

Functional Equation

$$
\begin{gathered}
Z(E, 1 / q T)=Z(E, T), \\
\begin{aligned}
N_{k} & =p_{k}\left[1+q-\alpha_{1}-\alpha_{2}\right] \\
& =1+q^{k}-\alpha_{1}^{k}-\alpha_{2}^{k}
\end{aligned}
\end{gathered}
$$

and the Functional Equation implies

$$
\alpha_{1} \alpha_{2}=q .
$$

Thus the entire sequence of N_{k} 's, for elliptic curve E, only depends on q and N_{1}.

Theorem (Garsia 2004)

For an elliptic curve, we can write N_{k} as a polynomial in terms of N_{1} and q such that

$$
N_{k}=\sum_{i=1}^{k}(-1)^{i-1} P_{k, i}(q) N_{1}^{i}
$$

where each $P_{k, i}$ is a polynomial in q with positive integer coefficients.

Theorem (Garsia 2004)

For an elliptic curve, we can write N_{k} as a polynomial in terms of N_{1} and q such that

$$
N_{k}=\sum_{i=1}^{k}(-1)^{i-1} P_{k, i}(q) N_{1}^{i}
$$

where each $P_{k, i}$ is a polynomial in q with positive integer coefficients.

$$
\begin{aligned}
N_{2} & =(2+2 q) N_{1}-N_{1}^{2} \\
N_{3} & =\left(3+3 q+3 q^{2}\right) N_{1}-(3+3 q) N_{1}^{2}+N_{1}^{3} \\
N_{4} & =\left(4+4 q+4 q^{2}+4 q^{3}\right) N_{1}-\left(6+8 q+6 q^{2}\right) N_{1}^{2}+(4+4 q) N_{1}^{3}-N_{1}^{4} \\
N_{5} & =\left(5+5 q+5 q^{2}+5 q^{3}+5 q^{4}\right) N_{1}-\left(10+15 q+15 q^{2}+10 q^{3}\right) N_{1}^{2} \\
& +\left(10+15 q+10 q^{2}\right) N_{1}^{3}-(5+5 q) N_{1}^{4}+N_{1}^{5}
\end{aligned}
$$

Question

What is a combinatorial interpretation of these expressions, i.e. of the $P_{k, i}$'s?

And now for something completely different ...

And now for something completely different ...

Graph Theory Terminology:

Let $G=(V, E)$ be a finite graph. (We allow multiple edges between vertices, but not loops.)

A spanning tree (of an undirected graph) is a connected subgraph without cycles that is incident to all vertices.

And now for something completely different ...

Graph Theory Terminology:

Let $G=(V, E)$ be a finite graph. (We allow multiple edges between vertices, but not loops.)

A spanning tree (of an undirected graph) is a connected subgraph without cycles that is incident to all vertices.

We now consider directed graphs, edges are oriented.

And now for something completely different ...

Graph Theory Terminology:

Let $G=(V, E)$ be a finite graph. (We allow multiple edges between vertices, but not loops.)

A spanning tree (of an undirected graph) is a connected subgraph without cycles that is incident to all vertices.

We now consider directed graphs, edges are oriented.
Single out one of the vertices, v_{0}. We call this the root of G.

And now for something completely different ...

Graph Theory Terminology:

Let $G=(V, E)$ be a finite graph. (We allow multiple edges between vertices, but not loops.)

A spanning tree (of an undirected graph) is a connected subgraph without cycles that is incident to all vertices.

We now consider directed graphs, edges are oriented.
Single out one of the vertices, v_{0}. We call this the root of G.
A rooted oriented spanning tree of G is a spanning tree of the underlying undirected graph, and orientations of edges along the tree are chosen so that all edges point towards the root.

More Graph Theory Terminology: The Laplacian Matrix

The Laplacian matrix of a graph has diagonal entries d_{i} (outdegree of v_{i}) and off-diagonal entries $-d_{i j}$ (number of directed edges from v_{i} to v_{j}).

with the root vertex v_{0} in red. Then
$L(G)=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 2 & -2 \\ -1 & 0 & 0 & 0 & 1\end{array}\right]$. (Rows/Columns indexed as $\left.0,1,2,3,4\right)$

A Family of Examples

We let W_{k} denote the wheel graph which consists of k vertices on a circle and a central vertex which is adjacent to every other vertex.

Note that a spanning tree will consist of arcs on the rim and spokes. We construct a family of digraphs (directed with multiple edges allowed) whose vertex set equal the W_{k} 's.

We replace each rim edge with q clockwise edges and 1 counter-clockwise edge.

We replace each spoke with t spokes pointing towards the root.

The (q, t)-wheel graphs $\quad W_{k}(q, t) \quad$ for $k \geq 1$.

Definition

$\mathcal{W}_{k}(q, t)=$
The number of rooted oriented spanning trees in graph $W_{k}(q, t)$.

Theorem (M-2007)

$\mathcal{W}_{k}(q, t)$ can be written as a positive bivariate integer polynomial such that the coefficient of t^{i} in $\mathcal{W}_{k}(q, t)$ equals $P_{k, i}(q)$ in

$$
N_{k}=\sum_{i=1}^{k}(-1)^{i-1} P_{k, i}(q) N_{1}^{i}
$$

In other words, $\mathcal{W}_{k}\left(q,-N_{1}\right)=N_{k}$.

The $\mathcal{W}_{k}(q, t)$'s are integer polynomials

$\mathcal{W}_{k}(q, t)=$
The number of rooted oriented spanning trees in graph $W_{k}(q, t)$.
The Laplacian Matrix for $W_{k}(q, t)$ is
$L_{k}=\left[\begin{array}{ccccccc}1+q+t & -q & 0 & \ldots & 0 & -1 & -t \\ -1 & 1+q+t & -q & 0 & \cdots & 0 & -t \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & -t \\ 0 & \cdots & -1 & 1+q+t & -q & 0 & -t \\ 0 & \cdots & 0 & -1 & 1+q+t & -q & -t \\ -q & 0 & \cdots & 0 & -1 & 1+q+t & -t \\ -t & -t & -t & \cdots & -t & -t & k t\end{array}\right]$

The last row and column correspond to hub vertex, the root.

Proof of Integrality by the Matrix-Tree Theorem

By the Matrix-Tree theorem, the number of directed rooted spanning trees is $\operatorname{det}\left(L_{k}\right)_{0}$ where $\left(L_{k}\right)_{0}$ is matrix L_{k} with the last row and last column deleted.

Proof of Integrality by the Matrix-Tree Theorem

By the Matrix-Tree theorem, the number of directed rooted spanning trees is $\operatorname{det}\left(L_{k}\right)_{0}$ where $\left(L_{k}\right)_{0}$ is matrix L_{k} with the last row and last column deleted.

Let $\overline{M_{1}}=[t], \overline{M_{2}}=\left[\begin{array}{cc}1+q+t & -1-q \\ -1-q & 1+q+t\end{array}\right]$, and for $k \geq 3$, let $\overline{M_{k}}$ be the k-by- k "three-line" circulant matrix

$$
\left[\begin{array}{cccccc}
1+q+t & -q & 0 & \ldots & 0 & -1 \\
-1 & 1+q+t & -q & 0 & \cdots & 0 \\
\ldots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & -1 & 1+q+t & -q & 0 \\
0 & \cdots & 0 & -1 & 1+q+t & -q \\
-q & 0 & \cdots & 0 & -1 & 1+q+t
\end{array}\right]
$$

Theorem (M- 2007)

$$
\mathcal{W}_{k}(q, t)=\operatorname{det} \overline{M_{k}} \text { and } N_{k}(q, t)=-\left.\operatorname{det} \overline{M_{k}}\right|_{t=-N_{1}}
$$

The \mathcal{W}_{k} 's also are the cardinalities of a sequence of groups

Consider the quotient group

$$
K\left(G, v_{0}\right) \cong \mathbb{Z}^{|V(G)|-1} / \operatorname{Im}\left(L_{k}\right)_{0}
$$

where $\left(L_{k}\right)_{0}$ is the Laplacian matrix of graph G with the row and column corresponding to v_{0} deleted.

$$
\left|K\left(G, v_{0}\right)\right|=\# \text { Spanning Trees in Graph } G
$$

The \mathcal{W}_{k} 's also are the cardinalities of a sequence of groups

Consider the quotient group

$$
K\left(G, v_{0}\right) \cong \mathbb{Z}^{|V(G)|-1} / \operatorname{Im}\left(L_{k}\right)_{0}
$$

where $\left(L_{k}\right)_{0}$ is the Laplacian matrix of graph G with the row and column corresponding to v_{0} deleted.

$$
\left|K\left(G, v_{0}\right)\right|=\# \text { Spanning Trees in Graph } G
$$

This group goes by many names, critical group of graph G (w.r.t. v_{0}) from Biggs.

The \mathcal{W}_{k} 's also are the cardinalities of a sequence of groups

Consider the quotient group

$$
K\left(G, v_{0}\right) \cong \mathbb{Z}^{|V(G)|-1} / \operatorname{Im}\left(L_{k}\right)_{0}
$$

where $\left(L_{k}\right)_{0}$ is the Laplacian matrix of graph G with the row and column corresponding to v_{0} deleted.

$$
\left|K\left(G, v_{0}\right)\right|=\# \text { Spanning Trees in Graph } G
$$

This group goes by many names, critical group of graph G (w.r.t. v_{0}) from Biggs. Also known as the Jacobian of a graph, studied by Baker-Norine,

The \mathcal{W}_{k} 's also are the cardinalities of a sequence of groups

Consider the quotient group

$$
K\left(G, v_{0}\right) \cong \mathbb{Z}^{|V(G)|-1} / \operatorname{Im}\left(L_{k}\right)_{0}
$$

where $\left(L_{k}\right)_{0}$ is the Laplacian matrix of graph G with the row and column corresponding to v_{0} deleted.

$$
\left|K\left(G, v_{0}\right)\right|=\# \text { Spanning Trees in Graph } G
$$

This group goes by many names, critical group of graph G (w.r.t. v_{0}) from Biggs. Also known as the Jacobian of a graph, studied by Baker-Norine, Group of components by Lorenzini,

The \mathcal{W}_{k} 's also are the cardinalities of a sequence of groups

Consider the quotient group

$$
K\left(G, v_{0}\right) \cong \mathbb{Z}^{|V(G)|-1} / \operatorname{Im}\left(L_{k}\right)_{0}
$$

where $\left(L_{k}\right)_{0}$ is the Laplacian matrix of graph G with the row and column corresponding to v_{0} deleted.

$$
\left|K\left(G, v_{0}\right)\right|=\# \text { Spanning Trees in Graph } G
$$

This group goes by many names, critical group of graph G (w.r.t. v_{0}) from Biggs. Also known as the Jacobian of a graph, studied by Baker-Norine, Group of components by Lorenzini, and Sandpile group by Dhar, Gabrielov, among others.

The \mathcal{W}_{k} 's also are the cardinalities of a sequence of groups

Consider the quotient group

$$
K\left(G, v_{0}\right) \cong \mathbb{Z}^{|V(G)|-1} / \operatorname{Im}\left(L_{k}\right)_{0}
$$

where $\left(L_{k}\right)_{0}$ is the Laplacian matrix of graph G with the row and column corresponding to v_{0} deleted.

$$
\left|K\left(G, v_{0}\right)\right|=\# \text { Spanning Trees in Graph } G
$$

This group goes by many names, critical group of graph G (w.r.t. v_{0}) from Biggs. Also known as the Jacobian of a graph, studied by Baker-Norine, Group of components by Lorenzini, and Sandpile group by Dhar, Gabrielov, among others.

Alternative definition with explicit coset representatives shortly.

Critical Group of The Complete Graph K_{n}

The complete graph K_{n} has n vertices and $\binom{n}{2}$ edges, one between each pair of vertices.

Critical Group of The Complete Graph K_{n}

The complete graph K_{n} has n vertices and $\binom{n}{2}$ edges, one between each pair of vertices. The number of spanning trees of K_{n} is n^{n-2}.

Critical Group of The Complete Graph K_{n}

The complete graph K_{n} has n vertices and $\binom{n}{2}$ edges, one between each pair of vertices. The number of spanning trees of K_{n} is n^{n-2}.

Theorem (Lorenzini 1991)
The critical group $K\left(K_{n}\right)$ decomposes as $(\mathbb{Z} / n \mathbb{Z})^{n-2}$.

Critical Group of The Complete Graph K_{n}

The complete graph K_{n} has n vertices and $\binom{n}{2}$ edges, one between each pair of vertices. The number of spanning trees of K_{n} is n^{n-2}.

Theorem (Lorenzini 1991)

The critical group $K\left(K_{n}\right)$ decomposes as $(\mathbb{Z} / n \mathbb{Z})^{n-2}$.

For a given family of graphs (e.g. W_{k}, C_{n}, P_{n}, products (such as hypercube $\left.Q_{n}\right)$), can be nontrivial to find $K(G)$.

Critical Group of The Complete Graph K_{n}

The complete graph K_{n} has n vertices and $\binom{n}{2}$ edges, one between each pair of vertices. The number of spanning trees of K_{n} is n^{n-2}.

Theorem (Lorenzini 1991)

The critical group $K\left(K_{n}\right)$ decomposes as $(\mathbb{Z} / n \mathbb{Z})^{n-2}$.

For a given family of graphs (e.g. W_{k}, C_{n}, P_{n}, products (such as hypercube $\left.Q_{n}\right)$), can be nontrivial to find $K(G)$.

For example, decomposition of $K\left(W_{k}\right)$ involves Fibonacci numbers (Biggs).

Chip-Firing: (Björner, Lovász, Shor 1991)

(1) Assign a nonnegative integer value C_{i} to each vertex v_{i} (number of chips).
(2) Start with vertex v_{1}.
(3) If C_{i}, the number of chips on v_{i}, is greater than or equal to the outdegree of v_{i}, then vertex v_{i} fires. Otherwise move on to v_{i+1}.
(9) If vertex v_{i} fires, then we take d_{i} chips off of v_{i} and distribute them to v_{i} 's neighbors.
(3) Now $C_{i}:=C_{i}-d_{i}$ and $C_{j}:=C_{j}+d_{i j}$ if v_{j} is a neighbor of v_{i}.
(0) We continue until we get to v_{n}.

Chip-Firing: (Björner, Lovász, Shor 1991)

(1) Assign a nonnegative integer value C_{i} to each vertex v_{i} (number of chips).
(2) Start with vertex v_{1}.
(3) If C_{i}, the number of chips on v_{i}, is greater than or equal to the outdegree of v_{i}, then vertex v_{i} fires. Otherwise move on to v_{i+1}.
(9) If vertex v_{i} fires, then we take d_{i} chips off of v_{i} and distribute them to v_{i} 's neighbors.
(3) Now $C_{i}:=C_{i}-d_{i}$ and $C_{j}:=C_{j}+d_{i j}$ if v_{j} is a neighbor of v_{i}.
(0) We continue until we get to v_{n}.
(3) We then start over with v_{1} and repeat.
(3) We continue forever or terminate when all $C_{i}<d_{i}$.

We consider a variant due to Norman Biggs known as the Dollar Game:

We consider a variant due to Norman Biggs known as the Dollar Game:
(1) We designate one vertex v_{0} to be the bank, and allow C_{0} to be negative. All the other C_{i} 's still must be nonnegative.

We consider a variant due to Norman Biggs known as the Dollar Game:
(1) We designate one vertex v_{0} to be the bank, and allow C_{0} to be negative. All the other C_{i} 's still must be nonnegative.
(2) To limit extraneous configurations, we presume that the sum $\sum_{i=0}^{\# V-1} C_{i}=0$. (Thus in particular, C_{0} will be non-positive.)

We consider a variant due to Norman Biggs known as the Dollar Game:
(1) We designate one vertex v_{0} to be the bank, and allow C_{0} to be negative. All the other C_{i} 's still must be nonnegative.
(2) To limit extraneous configurations, we presume that the sum $\sum_{i=0}^{\# V-1} C_{i}=0$. (Thus in particular, C_{0} will be non-positive.)
(3) The bank, i.e. vertex v_{0}, is only allowed to fire if no other vertex can fire. Note that since we now allow C_{0} to be negative, v_{0} is allowed to fire even when it is smaller than its outdegree.

A configuration is stable if v_{0} is the only vertex that can fire A configuration C is recurrent if there is firing sequence which will lead back to C.
(Note that this will necessarily require the use of v_{0} firing.)
We call a configuration critical if it is both stable and recurrent.

A configuration is stable if v_{0} is the only vertex that can fire
A configuration C is recurrent if there is firing sequence which will lead back to C.
(Note that this will necessarily require the use of v_{0} firing.)
We call a configuration critical if it is both stable and recurrent.

Theorem (Gabrielov 1993)

For any initial configuration C with $\sum_{i=0}^{k} C_{i}=0$ and $C_{i} \geq 0$ for all $1 \leq i \leq k$, there exists a unique critical configuration that can be reached by an allowable firing sequence.

Coset Representatives for Critical Group

We can define $K\left(G, v_{0}\right)$ to be the set of critical configurations, with addition given by $C_{1} \oplus C_{2}=\overline{C_{1}+C_{2}}$.

Here + signifies the usual pointwise vector addition and \bar{C} represents the unique critical configuration in the same coset as C, modulo the Laplacian.

When v_{0} is understood, we will abbreviate this group as the critical group of graph G, and denote it as $K(G)$.

Coset Representatives for Critical Group

We can define $K\left(G, v_{0}\right)$ to be the set of critical configurations, with addition given by $C_{1} \oplus C_{2}=\overline{C_{1}+C_{2}}$.

Here + signifies the usual pointwise vector addition and \bar{C} represents the unique critical configuration in the same coset as C, modulo the Laplacian.

When v_{0} is understood, we will abbreviate this group as the critical group of graph G, and denote it as $K(G)$.
Corollary (Gabrielov 1993)
$K(G)$ is an abelian (associative) group.

For example, consider the following two wheels with chip distributions as given. These are both critical configurations.

We do not label the number of chips on the hub vertex since forced.

If we add these together pointwise we obtain

This is not a critical configuration, but by the theorem, reduces to a unique critical configuration.

This last one is critical.

Critical Groups of (q, t)-Wheel Graphs

We want to analogize theory of elliptic curves: For example, there is a tower of groups

$$
E\left(\mathbb{F}_{q}\right) \subset E\left(\mathbb{F}_{q^{k_{1}}}\right) \subset E\left(\mathbb{F}_{q^{k_{2}}}\right) \subset \cdots \subset E\left(\overline{\mathbb{F}_{q}}\right)
$$

Critical Groups of (q, t)-Wheel Graphs

We want to analogize theory of elliptic curves: For example, there is a tower of groups

$$
E\left(\mathbb{F}_{q}\right) \subset E\left(\mathbb{F}_{q^{k_{1}}}\right) \subset E\left(\mathbb{F}_{q^{k_{2}}}\right) \subset \cdots \subset E\left(\overline{\mathbb{F}_{q}}\right)
$$

Understanding the sequence of Critical Groups:

$$
K\left(W_{1}(q, t)\right), K\left(W_{2}(q, t)\right), K\left(W_{3}(q, t)\right), \ldots
$$

The set $\left\{\right.$ Elements of the critical group $\left.K\left(W_{k}(q, t)\right)\right\}$ is a subset of the set of length k words in alphabet $\{0,1,2, \ldots, q+t\}$.

$$
\text { Example: }[2,4,2] \oplus[0,4,1] \equiv[1,0,4] \text { in } W_{3}(q=3, t=2) \text { versus }
$$

$[2,4,2,2,4,2] \oplus[0,4,1,0,4,1] \equiv[1,0,4,1,0,4]$ in $W_{6}(q=3, t=2)$

Chip-firing is a local process.

Proposition

The map $\psi: w \rightarrow w w w \ldots w$ is an injective group homomorphism between $K\left(W_{k_{1}}(q, t)\right)$ and $K\left(W_{k_{2}}(q, t)\right)$ whenever $k_{1} \mid k_{2}$. Here map ψ replaces w with k_{2} / k_{1} copies of w.

Proposition

The map $\psi: w \rightarrow w w w \ldots w$ is an injective group homomorphism between $K\left(W_{k_{1}}(q, t)\right)$ and $K\left(W_{k_{2}}(q, t)\right)$ whenever $k_{1} \mid k_{2}$. Here map ψ replaces w with k_{2} / k_{1} copies of w.

Define ρ to be the counter-clockwise rotation map on $K\left(W_{k}(q, t)\right)$.

$$
\rho\left(\left[C_{1}, C_{2}, \ldots, C_{k}\right]\right)=\left[C_{2}, C_{3}, \ldots, C_{k}, C_{1}\right] .
$$

Proposition

The map $\psi: w \rightarrow w w w \ldots w$ is an injective group homomorphism between $K\left(W_{k_{1}}(q, t)\right)$ and $K\left(W_{k_{2}}(q, t)\right)$ whenever $k_{1} \mid k_{2}$. Here map ψ replaces w with k_{2} / k_{1} copies of w.

Define ρ to be the counter-clockwise rotation map on $K\left(W_{k}(q, t)\right)$.

$$
\rho\left(\left[C_{1}, C_{2}, \ldots, C_{k}\right]\right)=\left[C_{2}, C_{3}, \ldots, C_{k}, C_{1}\right]
$$

Proposition

The kernel of $\left(1-\rho^{k_{1}}\right)$ acting on $K\left(W_{k_{2}}(q, t)\right)$ is isomorphic to the subgroup $K\left(W_{k_{1}}(q, t)\right)$ whenever $k_{1} \mid k_{2}$.

Proposition

The kernel of $\left(1-\rho^{k_{1}}\right)$ acting on $K\left(W_{k_{2}}(q, t)\right)$ is isomorphic to the subgroup $K\left(W_{k_{1}}(q, t)\right)$ whenever $k_{1} \mid k_{2}$.

We therefore can define a direct limit

$$
K(\bar{W}(q, t)) \cong \bigcup_{k=1}^{\infty} K\left(W_{k}(q, t)\right)
$$

where ρ provides the transition maps.

Proposition

The kernel of $\left(1-\rho^{k_{1}}\right)$ acting on $K\left(W_{k_{2}}(q, t)\right)$ is isomorphic to the subgroup $K\left(W_{k_{1}}(q, t)\right)$ whenever $k_{1} \mid k_{2}$.

We therefore can define a direct limit

$$
K(\bar{W}(q, t)) \cong \bigcup_{k=1}^{\infty} K\left(W_{k}(q, t)\right)
$$

where ρ provides the transition maps.
In particular we obtain

$$
K\left(W_{k}(q, t)\right) \cong K \operatorname{Ker}\left(1-\rho^{k}\right): K(\bar{W}(q, t)) \rightarrow K(\bar{W}(q, t)) .
$$

Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1

$$
\begin{aligned}
K\left(W_{k}(q, t)\right) & \cong \operatorname{Ker}\left(1-\rho^{k}\right): K(\bar{W}(q, t)) \rightarrow K(\bar{W}(q, t)) \quad \text { just as } \\
E\left(\mathbb{F}_{q^{k}}\right) & =\operatorname{Ker}\left(1-\pi^{k}\right): E\left(\overline{\mathbb{F}_{q}}\right) \rightarrow E\left(\overline{\mathbb{F}_{q}}\right) .
\end{aligned}
$$

Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1

$$
\begin{aligned}
K\left(W_{k}(q, t)\right) & \cong \operatorname{Ker}\left(1-\rho^{k}\right): K(\bar{W}(q, t)) \rightarrow K(\bar{W}(q, t)) \quad \text { just as } \\
E\left(\mathbb{F}_{q^{k}}\right) & =\operatorname{Ker}\left(1-\pi^{k}\right): E\left(\overline{\mathbb{F}_{q}}\right) \rightarrow E\left(\overline{\mathbb{F}_{q}}\right) .
\end{aligned}
$$

2 There is a characteristic equation $\pi^{2}-\left(1+q-N_{1}\right) \pi+q=0$ on $E\left(\overline{\mathbb{F}_{q}}\right)$, an elliptic curve over the algebraic closure.

Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1

$$
\begin{aligned}
K\left(W_{k}(q, t)\right) & \cong \operatorname{Ker}\left(1-\rho^{k}\right): K(\bar{W}(q, t)) \rightarrow K(\bar{W}(q, t)) \quad \text { just as } \\
E\left(\mathbb{F}_{q^{k}}\right) & =\operatorname{Ker}\left(1-\pi^{k}\right): E\left(\overline{\mathbb{F}_{q}}\right) \rightarrow E\left(\overline{\mathbb{F}_{q}}\right) .
\end{aligned}
$$

2 There is a characteristic equation $\pi^{2}-\left(1+q-N_{1}\right) \pi+q=0$ on $E\left(\overline{\mathbb{F}_{q}}\right)$, an elliptic curve over the algebraic closure.

We get an analogous equation $\rho^{2}-(1+q+t) \rho+q=0$ on $K(\bar{W}(q, t))$.

Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1

$$
\begin{aligned}
K\left(W_{k}(q, t)\right) & \cong \operatorname{Ker}\left(1-\rho^{k}\right): K(\bar{W}(q, t)) \rightarrow K(\bar{W}(q, t)) \quad \text { just as } \\
E\left(\mathbb{F}_{q^{k}}\right) & =\operatorname{Ker}\left(1-\pi^{k}\right): E\left(\overline{\mathbb{F}_{q}}\right) \rightarrow E\left(\overline{\mathbb{F}_{q}}\right) .
\end{aligned}
$$

2 There is a characteristic equation $\pi^{2}-\left(1+q-N_{1}\right) \pi+q=0$ on $E\left(\overline{\mathbb{F}_{q}}\right)$, an elliptic curve over the algebraic closure.

We get an analogous equation $\rho^{2}-(1+q+t) \rho+q=0$ on $K(\bar{W}(q, t))$. (Linear Algebraic Techniques suffice)

Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1

$$
\begin{aligned}
K\left(W_{k}(q, t)\right) & \cong \operatorname{Ker}\left(1-\rho^{k}\right): K(\bar{W}(q, t)) \rightarrow K(\bar{W}(q, t)) \quad \text { just as } \\
E\left(\mathbb{F}_{q^{k}}\right) & =\operatorname{Ker}\left(1-\pi^{k}\right): E\left(\overline{\mathbb{F}_{q}}\right) \rightarrow E\left(\overline{\mathbb{F}_{q}}\right) .
\end{aligned}
$$

2 There is a characteristic equation $\pi^{2}-\left(1+q-N_{1}\right) \pi+q=0$ on $E\left(\overline{\mathbb{F}_{q}}\right)$, an elliptic curve over the algebraic closure.

We get an analogous equation $\rho^{2}-(1+q+t) \rho+q=0$ on $K(\bar{W}(q, t))$. (Linear Algebraic Techniques suffice)

3 Both the collection of $E\left(\mathbb{F}_{q^{k}}\right)$'s and $K\left(W_{k}(q, t)\right.$)'s are abelian groups which decompose into at most two cyclic subgroups.

Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1

$$
\begin{aligned}
K\left(W_{k}(q, t)\right) & \cong \operatorname{Ker}\left(1-\rho^{k}\right): K(\bar{W}(q, t)) \rightarrow K(\bar{W}(q, t)) \quad \text { just as } \\
E\left(\mathbb{F}_{q^{k}}\right) & =\operatorname{Ker}\left(1-\pi^{k}\right): E\left(\overline{\mathbb{F}_{q}}\right) \rightarrow E\left(\overline{\mathbb{F}_{q}}\right) .
\end{aligned}
$$

2 There is a characteristic equation $\pi^{2}-\left(1+q-N_{1}\right) \pi+q=0$ on $E\left(\overline{\mathbb{F}_{q}}\right)$, an elliptic curve over the algebraic closure.

We get an analogous equation $\rho^{2}-(1+q+t) \rho+q=0$ on $K(\bar{W}(q, t))$. (Linear Algebraic Techniques suffice)

3 Both the collection of $E\left(\mathbb{F}_{q^{k}}\right)$'s and $K\left(W_{k}(q, t)\right.$)'s are abelian groups which decompose into at most two cyclic subgroups. (Proof via the Smith normal form of Laplacian matrix.)

Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1

$$
\begin{aligned}
K\left(W_{k}(q, t)\right) & \cong \operatorname{Ker}\left(1-\rho^{k}\right): K(\bar{W}(q, t)) \rightarrow K(\bar{W}(q, t)) \quad \text { just as } \\
E\left(\mathbb{F}_{q^{k}}\right) & =\operatorname{Ker}\left(1-\pi^{k}\right): E\left(\overline{\mathbb{F}_{q}}\right) \rightarrow E\left(\overline{\mathbb{F}_{q}}\right) .
\end{aligned}
$$

2 There is a characteristic equation $\pi^{2}-\left(1+q-N_{1}\right) \pi+q=0$ on $E\left(\overline{\mathbb{F}_{q}}\right)$, an elliptic curve over the algebraic closure.

We get an analogous equation $\rho^{2}-(1+q+t) \rho+q=0$ on $K(\bar{W}(q, t))$. (Linear Algebraic Techniques suffice)

3 Both the collection of $E\left(\mathbb{F}_{q^{k}}\right)$'s and $K\left(W_{k}(q, t)\right.$)'s are abelian groups which decompose into at most two cyclic subgroups. (Proof via the Smith normal form of Laplacian matrix.)

4 One last surprising connection ...

Behavior of Torsion Subgroups of $K(\bar{W}(q, t))$

4 The Group $K(\bar{W}(q, t))$ (the direct limit of the $K\left(W_{k}(q, t)\right)$'s) contains the subgroup $\mathbb{Z} / n \mathbb{Z}$ for all $n \geq 1$, and $K(\bar{W}(q, t))$ contains the subgroup $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ if and only if n and q are coprime.

Behavior of Torsion Subgroups of $K(\bar{W}(q, t))$

4 The Group $K(\bar{W}(q, t))$ (the direct limit of the $K\left(W_{k}(q, t)\right)$'s) contains the subgroup $\mathbb{Z} / n \mathbb{Z}$ for all $n \geq 1$, and
$K(\bar{W}(q, t))$ contains the subgroup $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ if and only if n and q are coprime.
(Analogous to $E\left(\overline{\mathbb{F}_{q}}\right)$ when E is an ordinary elliptic curve.)

Behavior of Torsion Subgroups of $K(\bar{W}(q, t))$

4 The Group $K(\bar{W}(q, t))$ (the direct limit of the $K\left(W_{k}(q, t)\right)$'s) contains the subgroup $\mathbb{Z} / n \mathbb{Z}$ for all $n \geq 1$, and
$K(\bar{W}(q, t))$ contains the subgroup $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ if and only if n and q are coprime.
(Analogous to $E\left(\overline{\mathbb{F}_{q}}\right)$ when E is an ordinary elliptic curve.)

What does the proof use?

Behavior of Torsion Subgroups of $K(\bar{W}(q, t))$

4 The Group $K(\bar{W}(q, t))$ (the direct limit of the $K\left(W_{k}(q, t)\right)$'s) contains the subgroup $\mathbb{Z} / n \mathbb{Z}$ for all $n \geq 1$, and $K(\bar{W}(q, t))$ contains the subgroup $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ if and only if n and q are coprime.
(Analogous to $E\left(\overline{\mathbb{F}_{q}}\right)$ when E is an ordinary elliptic curve.)

What does the proof use?

Question

Given an integer $n \geq 1$, does there exist a $k \geq 1$ such that n divides the k th Fibonacci number?

Behavior of Torsion Subgroups of $K(\bar{W}(q, t))$

4 The Group $K(\bar{W}(q, t))$ (the direct limit of the $K\left(W_{k}(q, t)\right)$'s) contains the subgroup $\mathbb{Z} / n \mathbb{Z}$ for all $n \geq 1$, and $K(\bar{W}(q, t))$ contains the subgroup $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ if and only if n and q are coprime.
(Analogous to $E\left(\overline{\mathbb{F}_{q}}\right)$ when E is an ordinary elliptic curve.)

What does the proof use?

Question

Given an integer $n \geq 1$, does there exist a $k \geq 1$ such that n divides the k th Fibonacci number?

Answer provided by a result of D.D Wall from 1960.

Lemma (Wall 1960)

The sequence $\left\{F_{k} \bmod n: k \in \mathbb{Z}\right\}$ is periodic, and $F_{k} \equiv 0 \bmod n$ for some $k \geq 1$.

Proof. Finite number $\left(n^{2}\right)$ of possibilities for a window of length two, and an infinite number of k. Thus there will be two identical windows.

Lemma (Wall 1960)

The sequence $\left\{F_{k} \bmod n: k \in \mathbb{Z}\right\}$ is periodic, and $F_{k} \equiv 0 \bmod n$ for some $k \geq 1$.

Proof. Finite number $\left(n^{2}\right)$ of possibilities for a window of length two, and an infinite number of k. Thus there will be two identical windows.

Using linear recurrence in both directions, we obtain periodicity.

Lemma (Wall 1960)

The sequence $\left\{F_{k} \bmod n: k \in \mathbb{Z}\right\}$ is periodic, and $F_{k} \equiv 0 \bmod n$ for some $k \geq 1$.

Proof. Finite number $\left(n^{2}\right)$ of possibilities for a window of length two, and an infinite number of k. Thus there will be two identical windows.

Using linear recurrence in both directions, we obtain periodicity.
Letting $F_{1}=F_{2}=1$ and running recurrence backwards, $F_{0}=0$. Thus $F_{k_{0}} \equiv 0 \bmod n$ for some $k_{0} \geq 1$ too.

Application to Torison Groups

Theorem (M-2009)

For $k \geq 3$, the Smith normal form of $\left(L_{k}\right)_{0}$ is equivalent to a direct sum of the identity matrix and

$$
\left[\begin{array}{cc}
q \hat{F}_{2 k-4}+1 & q \hat{F}_{2 k-2} \\
\hat{F}_{2 k-2} & \hat{F}_{2 k}-1
\end{array}\right] \equiv\left[\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right], \quad d_{1} \mid d_{2}
$$

where \hat{F}_{k} denotes a bivariate analogue of the Fibonacci numbers:
We let S range over all subsets $\{1,2, \ldots, 2 k\}$ with no two consecutive elements, and define

$$
\hat{F}_{2 k}(q, t)=\sum_{S} q^{\# \text { even elements in } S} t^{k-\# S}
$$

Application to Torison Groups

Theorem (M-2009)

For $k \geq 3$, the Smith normal form of $\left(L_{k}\right)_{0}$ is equivalent to a direct sum of the identity matrix and

$$
\left[\begin{array}{cc}
q \hat{F}_{2 k-4}+1 & q \hat{F}_{2 k-2} \\
\hat{F}_{2 k-2} & \hat{F}_{2 k}-1
\end{array}\right] \equiv\left[\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right], \quad d_{1} \mid d_{2}
$$

where \hat{F}_{k} denotes a bivariate analogue of the Fibonacci numbers:
We let S range over all subsets $\{1,2, \ldots, 2 k\}$ with no two consecutive elements, and define

$$
\hat{F}_{2 k}(q, t)=\sum_{S} q^{\# \text { even elements in } S} t^{k-\# S}
$$

The \hat{F}_{k} 's satisfy the reccurence $\hat{F}_{2 k+2}=(1+q+t) \hat{F}_{2 k}-q \hat{F}_{2 k-2}$.

Factorizations of N_{k} and Elliptic Cyclotomic Polynomials

$\mathcal{W}_{k}(q, t)=-\left.N_{k}\right|_{N_{1}=-t}=\sum_{i=1}^{k} P_{k, i}(q) t^{i}$ for all $k \geq 1$.
$\overline{M_{k}}$ be the k-by- k "three-line" circulant matrix

$$
\left[\begin{array}{cccccc}
1+q+t & -q & 0 & \cdots & 0 & -1 \\
-1 & 1+q+t & -q & 0 & \cdots & 0 \\
\ldots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & -1 & 1+q+t & -q & 0 \\
0 & \cdots & 0 & -1 & 1+q+t & -q \\
-q & 0 & \cdots & 0 & -1 & 1+q+t
\end{array}\right]
$$

Let $M_{k}=\left.\overline{M_{k}}\right|_{t=-N_{1}}$.

Corollary (M- 2007)

The sequence of integers $N_{k}=\# E\left(\mathbb{F}_{q^{k}}\right)$ satisfies the relation

$$
N_{k}=-\operatorname{det} M_{k} \text { for all } k \geq 1
$$

Elliptic Cyclotomic Polynomials

We have a determinantal formula for N_{k}, and

Combinatorial interpretations for the summands when we write N_{k} as an alternating sum in powers of N_{1}

Elliptic Cyclotomic Polynomials

We have a determinantal formula for N_{k}, and

Combinatorial interpretations for the summands when we write N_{k} as an alternating sum in powers of N_{1}

We now look at factorizations of N_{k} into $\mathbb{Z}\left[q, N_{1}\right]$ polynomials.

$$
\text { e.g. } \quad N_{2}=N_{1}\left(2+2 q-N_{1}\right)
$$

Motivates a combinatorial interpretation of $E\left(\mathbb{F}_{q^{k}}\right)$ as Cartesian Product of smaller subsets.

$$
\begin{aligned}
N_{2} & =N_{1}\left(2+2 q-N_{1}\right) \\
N_{3} & =N_{1}\left(\left(3+3 q+3 q^{2}\right)-(3+3 q) N_{1}+N_{1}^{2}\right) \\
N_{4} & =N_{1}\left(2+2 q-N_{1}\right)\left(\left(2 q^{2}+2\right)-(2 q+2) N_{1}+N_{1}^{2}\right) \\
N_{5} & =N_{1}\left(\left(5+5 q+5 q^{2}+5 q^{3}+5 q^{4}\right)-\left(10+15 q+15 q^{2}+10 q^{3}\right) N_{1}\right. \\
& \left.+\left(10+15 q+10 q^{2}\right) N_{1}^{2}-(5+5 q) N_{1}^{3}+N_{1}^{4}\right) \\
N_{6} & =N_{1}\left(2+2 q-N_{1}\right)\left(\left(3+3 q+3 q^{2}\right)-(3+3 q) N_{1}+N_{1}^{2}\right) \\
& \times\left(\left(q^{2}-q+1\right)-(q+1) N_{1}+N_{1}^{2}\right)
\end{aligned}
$$

Factoring N_{k} in general:

Theorem (M- 2007)

There exists integral polynomials, which we will denote as $E C y c_{d}$, in N_{1} and q, only depending on d such that

$$
N_{k}\left(N_{1}, q\right)=\prod_{d \mid k} E C y c_{d} .
$$

Compare with $1-x^{k}=\prod_{d \mid k} \operatorname{Cyc}_{d}(x)$.

Factoring N_{k} in general:

Theorem (M- 2007)

There exists integral polynomials, which we will denote as ECyc ${ }_{d}$, in N_{1} and q, only depending on d such that

$$
N_{k}\left(N_{1}, q\right)=\prod_{d \mid k} E C y c_{d} .
$$

Compare with $1-x^{k}=\prod_{d \mid k} \operatorname{Cyc}_{d}(x)$.
We call these Elliptic Cyclotomic Polynomials.

Definition

$E C y c_{d}\left(q, N_{1}\right)=\operatorname{Cyc}\left(\alpha_{1}\right) \operatorname{Cyc}_{d}\left(\alpha_{2}\right)$ where α_{1} and α_{2} are the two complex roots of quadratic $T^{2}-\left(1+q-N_{1}\right) T+q$, and

$$
C y c_{d}(x)=\prod_{e \mid d}\left(1-x^{e}\right)^{\mu(d / e)}
$$

$$
\begin{aligned}
&{E C y c_{1}}=N_{1} \\
&{E C y c_{2}}=2+2 q-N_{1} \\
&{E C y c_{3}}=\left(3+3 q+3 q^{2}\right)-(3+3 q) N_{1}+N_{1}^{2} \\
&{E C y c_{4}}=\left(2 q^{2}+2\right)-(2 q+2) N_{1}+N_{1}^{2} \\
&{E C y c_{5}}=\left(5+5 q+5 q^{2}+5 q^{3}+5 q^{4}\right)-\left(10+15 q+15 q^{2}+10 q^{3}\right) N_{1} \\
&+\left(10+15 q+10 q^{2}\right) N_{1}^{2}-(5+5 q) N_{1}^{3}+N_{1}^{4} \\
& \text { ECyc }_{6}=\left(q^{2}-q+1\right)-(q+1) N_{1}+N_{1}^{2}
\end{aligned}
$$

Proposition (M- 2007)

$$
\left.E C y c_{d}\right|_{N_{1}=0}=C y c_{d}(1) \cdot C y c_{d}(q)
$$

where $\operatorname{Cyc}_{1}(1)=0, \operatorname{Cyc}_{d}(1)=p$ if $d=p^{k}$ and $\operatorname{Cyc}_{d}(1)$ equals 1 otherwise.

Conjecture

$$
\text { For } d \geq 2, E C y c_{d}\left(q, N_{1}\right)=C y c_{d}(1) \cdot C y c_{d}(q)+\sum_{i=1}^{\phi(d)}(-1)^{i} Q_{i, d}(q) N_{1}^{i}
$$ where $Q_{i, d}$ is a univariate polynomial with positive integer coefficients.

Conjecture

$$
\text { For } d \geq 2, E C y c_{d}\left(q, N_{1}\right)=C y c_{d}(1) \cdot C y c_{d}(q)+\sum_{i=1}^{\phi(d)}(-1)^{i} Q_{i, d}(q) N_{1}^{i}
$$

where $Q_{i, d}$ is a univariate polynomial with positive integer coefficients.

True for $2 \leq d \leq 104$.

Conjecture

$$
\text { For } d \geq 2, E C y c_{d}\left(q, N_{1}\right)=C y c_{d}(1) \cdot C y c_{d}(q)+\sum_{i=1}^{\phi(d)}(-1)^{i} Q_{i, d}(q) N_{1}^{i}
$$

where $Q_{i, d}$ is a univariate polynomial with positive integer coefficients.

True for $2 \leq d \leq 104$.

However, Conjecture fails for $d=105$.

Nonetheless, we can give a geometric interpretation of the values $E C y c_{d}\left(q, N_{1}\right)$ for a given q and $N_{1}=\left|E\left(\mathbb{F}_{q}\right)\right|$.

Nonetheless, we can give a geometric interpretation of the values $E C y c_{d}\left(q, N_{1}\right)$ for a given q and $N_{1}=\left|E\left(\mathbb{F}_{q}\right)\right|$.

Theorem (M- 2007)

$$
E C y c_{d}\left(q, N_{1}\right)=\left|\operatorname{Ker~Cyc_{d}}(\pi): E\left(\overline{\mathbb{F}_{q}}\right) \circlearrowleft\right|
$$

where $\mathrm{Cyc}_{d}(\pi)$ denotes the isogeny obtained from the d th Cyclotomic polynomial of the Frobenius map.

Ker $M=\left\{P \in E\left(\overline{\mathbb{F}_{q}}\right): M(P)=P_{\infty}\right\}$

From Chip-Firing to Tropical Geometry

Variant of earlier discussion: Let $G=(V, E)$ be any undirected graph.
A chip configuration C is an assignment of integers to each vertex.

From Chip-Firing to Tropical Geometry

Variant of earlier discussion: Let $G=(V, E)$ be any undirected graph.
A chip configuration C is an assignment of integers to each vertex.
A chip-firing move is a choice of a vertex v_{i}. v_{i} gives $d_{i j}$ chips to each of its neighbors v_{j}. Such chip configurations are also called divisors. (Like algebraic geometric definition where a divisor is a formal \mathbb{Z}-linear combination of points on a curve.)

From Chip-Firing to Tropical Geometry

Variant of earlier discussion: Let $G=(V, E)$ be any undirected graph.
A chip configuration C is an assignment of integers to each vertex.
A chip-firing move is a choice of a vertex v_{i}. v_{i} gives $d_{i j}$ chips to each of its neighbors v_{j}. Such chip configurations are also called divisors. (Like algebraic geometric definition where a divisor is a formal \mathbb{Z}-linear combination of points on a curve.)

Definition

The degree of a divisor $D=\sum_{i=1}^{n} C_{i} v_{i}$ is $\sum_{i=1}^{n} C_{i}$.
D is effective if $C_{i} \geq 0$ for all i.

From Chip-Firing to Tropical Geometry

Variant of earlier discussion: Let $G=(V, E)$ be any undirected graph.
A chip configuration C is an assignment of integers to each vertex.
A chip-firing move is a choice of a vertex v_{i}. v_{i} gives $d_{i j}$ chips to each of its neighbors v_{j}. Such chip configurations are also called divisors. (Like algebraic geometric definition where a divisor is a formal \mathbb{Z}-linear combination of points on a curve.)

Definition

The degree of a divisor $D=\sum_{i=1}^{n} C_{i} v_{i}$ is $\sum_{i=1}^{n} C_{i}$.
D is effective if $C_{i} \geq 0$ for all i.
Two divisors D_{1} and D_{2} are said to be linearly equivalent $\left(D_{1} \sim D_{2}\right)$ if D_{2} can be reached from D_{1} by a sequence of chip-firing moves.

From Chip-Firing to Tropical Geometry

Variant of earlier discussion: Let $G=(V, E)$ be any undirected graph.
A chip configuration C is an assignment of integers to each vertex.
A chip-firing move is a choice of a vertex v_{i}. v_{i} gives $d_{i j}$ chips to each of its neighbors v_{j}. Such chip configurations are also called divisors. (Like algebraic geometric definition where a divisor is a formal \mathbb{Z}-linear combination of points on a curve.)

Definition

The degree of a divisor $D=\sum_{i=1}^{n} C_{i} v_{i}$ is $\sum_{i=1}^{n} C_{i}$.
D is effective if $C_{i} \geq 0$ for all i.
Two divisors D_{1} and D_{2} are said to be linearly equivalent $\left(D_{1} \sim D_{2}\right)$ if D_{2} can be reached from D_{1} by a sequence of chip-firing moves.

Equivalently, $D_{1}-D_{2}$ is a \mathbb{Z}-sum of columns of the Laplacian matrix $Ł(G)$.

From Chip-Firing to Tropical Geometry

Definition

The Linear System of D, denoted as $|D|$, is the set
$\left\{D^{\prime}: D^{\prime} \sim D\right.$ and D^{\prime} is effective. $\}$.
The following definitions are from Baker-Norine.
(1) Let $K(G)=\left[\left(\operatorname{deg} v_{1}\right)-2,\left(\operatorname{deg} v_{2}\right)-2, \ldots,\left(\operatorname{deg} v_{n}\right)-2\right]$, the canonical divisor of G.

From Chip-Firing to Tropical Geometry

Definition

The Linear System of D, denoted as $|D|$, is the set $\left\{D^{\prime}: D^{\prime} \sim D\right.$ and D^{\prime} is effective. $\}$.

The following definitions are from Baker-Norine.
(1) Let $K(G)=\left[\left(\operatorname{deg} v_{1}\right)-2,\left(\operatorname{deg} v_{2}\right)-2, \ldots,\left(\operatorname{deg} v_{n}\right)-2\right]$, the canonical divisor of G.
(2) $g(G)=|E|-|V|+1$, the genus of G. Also the 1st Betti number of the graph as a 1-complex.

From Chip-Firing to Tropical Geometry

Definition

The Linear System of D, denoted as $|D|$, is the set $\left\{D^{\prime}: D^{\prime} \sim D\right.$ and D^{\prime} is effective. $\}$.

The following definitions are from Baker-Norine.
(1) Let $K(G)=\left[\left(\operatorname{deg} v_{1}\right)-2,\left(\operatorname{deg} v_{2}\right)-2, \ldots,\left(\operatorname{deg} v_{n}\right)-2\right]$, the canonical divisor of G.
(2) $g(G)=|E|-|V|+1$, the genus of G. Also the 1st Betti number of the graph as a 1 -complex.
(3) The rank of $D, r(D)$, is the biggest $k \geq 0$ such that for all effective E of degree $k,|D-E| \neq \emptyset$ if such a k exists.
(By convention $r(D)=-1$ if $|D|=\emptyset$.)

From Chip-Firing to Tropical Geometry

Definition

The Linear System of D, denoted as $|D|$, is the set $\left\{D^{\prime}: D^{\prime} \sim D\right.$ and D^{\prime} is effective. $\}$.

The following definitions are from Baker-Norine.
(1) Let $K(G)=\left[\left(\operatorname{deg} v_{1}\right)-2,\left(\operatorname{deg} v_{2}\right)-2, \ldots,\left(\operatorname{deg} v_{n}\right)-2\right]$, the canonical divisor of G.
(2) $g(G)=|E|-|V|+1$, the genus of G. Also the 1st Betti number of the graph as a 1 -complex.
(3) The rank of $D, r(D)$, is the biggest $k \geq 0$ such that for all effective E of degree $k,|D-E| \neq \emptyset$ if such a k exists.
(By convention $r(D)=-1$ if $|D|=\emptyset$.)
Theorem (Baker-Norine 2006 - Riemann-Roch Theorem for Graphs)

$$
r(D)-r(K-D)=\operatorname{deg} D-g+1
$$

From Chip-Firing to Tropical Geometry

This has motivated search for further analogies between algebraic curve theory and graph theory.

From Chip-Firing to Tropical Geometry

This has motivated search for further analogies between algebraic curve theory and graph theory.

Gathmann-Kerber and Mikhalkin-Zharkov showed

Corollary

Riemmann-Roch Theorem for Tropical Curves (Metric graphs satisfying certain balancing conditons)

From Chip-Firing to Tropical Geometry

This has motivated search for further analogies between algebraic curve theory and graph theory.

Gathmann-Kerber and Mikhalkin-Zharkov showed

Corollary

Riemmann-Roch Theorem for Tropical Curves (Metric graphs satisfying certain balancing conditons)

With Christian Haase and Josephine Yu:
(1) We explictly describe cell structures of $|D|$ as a polyhedral cell complex
(2) Show how to embed $|D|$ into tropical projective space.
(3) Also get generalization of chip-firing to metric graphs, called weighted chip-firing games.
http://arxiv.org/pdf/0909.3685.pdf

Thanks For Coming

```
http://math.mit.edu/~ musiker/CGs.pdf
```

G. Musiker, Combinatorial aspects of elliptic curves, Seminaire Lotharingien de Combinatoire 56 (2007), Article B56f, 1-31
G. Musiker, The critical groups of a family of graphs and elliptic curves over finite fields, Journal of Algebraic Combinatorics: Vol. 30, Issue 2 (2009), 255-276
C. Haase, G. Musiker, and J. Yu, Linear systems on tropical curves, http://arxiv.org/pdf/0909.3685.pdf

