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The Cyclotomic Polynomial

The Cyclotomic Polynomial Φn(x) is the minimal polynomial over Q for
any primitive nth root of unity ζ ∈ C (e.g. ζ = e2πi/n).

Φ1 = x − 1

Φ2 = x + 1

Φ3 = x2 + x + 1

Φ4 = x2 + 1

Φ5 = x4 + x3 + x2 + x + 1

Φ6 = x2 − x + 1
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The Cyclotomic Polynomial

The Cyclotomic Polynomial Φn(x) is the minimal polynomial over Q for
any primitive nth root of unity ζ ∈ C (e.g. ζ = e2πi/n).

Φ1 = x − 1

Φ2 = x + 1

Φ3 = x2 + x + 1

Φ4 = x2 + 1

Φ5 = x4 + x3 + x2 + x + 1

Φ6 = x2 − x + 1

The polynomial Φn(x) can also be expressed in a number of ways:

1) Φn(x) =
∏

(j∈Z/nZ)× (x − ζ j); e.g. Φ4(x) = (x − i)(x − i3).
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The Cyclotomic Polynomial

2) Or we can factor (xn − 1) into irreducibles, and obtain

xn − 1 =
∏

d|n

Φd(x).
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The Cyclotomic Polynomial

2) Or we can factor (xn − 1) into irreducibles, and obtain

xn − 1 =
∏

d|n

Φd(x).

Example:

x6 − 1 = (x − 1)(x + 1)(x2 + x + 1)(x2 − x + 1)

= Φ1(x) · Φ2(x) · Φ3(x) · Φ6(x)
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The Cyclotomic Polynomial

2) Or we can factor (xn − 1) into irreducibles, and obtain

xn − 1 =
∏

d|n

Φd(x).

Example:

x6 − 1 = (x − 1)(x + 1)(x2 + x + 1)(x2 − x + 1)

= Φ1(x) · Φ2(x) · Φ3(x) · Φ6(x)

Via Möbius inversion:

Φn(x) =
∏

d|n

(xn/d − 1)µ(d);

µ(d) =

{
0 if d is not squarefree,

(−1)k if d = p1p2 · · · pk

.
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Example of Φ15(x)

Euler-Phi function ϕ(n) = # { j in {1, 2, . . . , n − 1} s.t. gcd(j , n) = 1}.
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Example of Φ15(x)

Euler-Phi function ϕ(n) = # { j in {1, 2, . . . , n − 1} s.t. gcd(j , n) = 1}.

Observations: 1) The degree of Φn(x) is always ϕ(n).
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Example of Φ15(x)

Euler-Phi function ϕ(n) = # { j in {1, 2, . . . , n − 1} s.t. gcd(j , n) = 1}.

Observations: 1) The degree of Φn(x) is always ϕ(n).

2) The coefficients of Φn(x) are all integers.
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Example of Φ15(x)

Euler-Phi function ϕ(n) = # { j in {1, 2, . . . , n − 1} s.t. gcd(j , n) = 1}.

Observations: 1) The degree of Φn(x) is always ϕ(n).

2) The coefficients of Φn(x) are all integers.

Our running example will be

Φ15(x) = (x − ζ)(x − ζ2)(x − ζ4)(x − ζ7)(x − ζ8)

· (x − ζ11)(x − ζ13)(x − ζ14)

= x8 − x7 + x5 − x4 + x3 − x + 1
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The complete d -partite simplicial complex Kp1,p2,...,pd

We focus on the square-free case because if n = pe1
1 · · · p

ed

d , then

Φn(x) = Φp1p2···pd
(xn/p1 ···pd ).
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The complete d -partite simplicial complex Kp1,p2,...,pd

We focus on the square-free case because if n = pe1
1 · · · p

ed

d , then

Φn(x) = Φp1p2···pd
(xn/p1 ···pd ).

So for the remainder of this talk, assume p1 through pd are distinct primes.
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The complete d -partite simplicial complex Kp1,p2,...,pd

We focus on the square-free case because if n = pe1
1 · · · p

ed

d , then

Φn(x) = Φp1p2···pd
(xn/p1 ···pd ).

So for the remainder of this talk, assume p1 through pd are distinct primes.

Take the simplicial join of d vertex sets, each with pi disconnected vertices.

Let Kp1,...,pd
denote the resulting simplicial complex.

Example: K3,5 is the graph (1-complex)

mod 31 0 2

0 3 2 4 1 mod 5
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Labeling the facets of Kp1,...,pd

By the Chinese Remainder Theorem, there is a unique j ∈ {0, 1, . . . , n− 1}

j ≡ j1 mod p1

j ≡ j2 mod p2

. . .

j ≡ jd mod pd

where ji ∈ {0, 1, . . . , pi − 1}.
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Labeling the facets of Kp1,...,pd

By the Chinese Remainder Theorem, there is a unique j ∈ {0, 1, . . . , n− 1}

j ≡ j1 mod p1

j ≡ j2 mod p2

. . .

j ≡ jd mod pd

where ji ∈ {0, 1, . . . , pi − 1}. Thus each facet of Kp1,...,pd
can be labeled

by a number between 0 and (n − 1).
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Labeling the facets of Kp1,...,pd

By the Chinese Remainder Theorem, there is a unique j ∈ {0, 1, . . . , n− 1}

j ≡ j1 mod p1

j ≡ j2 mod p2

. . .

j ≡ jd mod pd

where ji ∈ {0, 1, . . . , pi − 1}. Thus each facet of Kp1,...,pd
can be labeled

by a number between 0 and (n − 1).

Example: K3,5 with the facets (edges) labeled by 0, 1, . . . , 14.

2

1 0 2

0 3 2 4 1

10

1 6

mod 5

mod 3

13

7

0

3

12

9
5 8

4

11

14
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The subcomplexes KA for a subset A

For any subset A ⊆ {0, 1, 2, . . . , ϕ(n)}, KA is the (d − 1)-dimensional
subcomplex of Kp1,...,pd

containing:
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The subcomplexes KA for a subset A

For any subset A ⊆ {0, 1, 2, . . . , ϕ(n)}, KA is the (d − 1)-dimensional
subcomplex of Kp1,...,pd

containing:

1) The entire (d − 2)-skeleton,
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The subcomplexes KA for a subset A

For any subset A ⊆ {0, 1, 2, . . . , ϕ(n)}, KA is the (d − 1)-dimensional
subcomplex of Kp1,...,pd

containing:

1) The entire (d − 2)-skeleton, and

2) all facets labeled by {ϕ(n) + 1, ϕ(n) + 2, . . . , n − 1} ∪ A.
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The subcomplexes KA for a subset A

For any subset A ⊆ {0, 1, 2, . . . , ϕ(n)}, KA is the (d − 1)-dimensional
subcomplex of Kp1,...,pd

containing:

1) The entire (d − 2)-skeleton, and

2) all facets labeled by {ϕ(n) + 1, ϕ(n) + 2, . . . , n − 1} ∪ A.

Main Examples: K∅ has facets labeled by {ϕ(n) + 1, ϕ(n) + 2, . . . , n− 1}.
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The subcomplexes KA for a subset A

For any subset A ⊆ {0, 1, 2, . . . , ϕ(n)}, KA is the (d − 1)-dimensional
subcomplex of Kp1,...,pd

containing:

1) The entire (d − 2)-skeleton, and

2) all facets labeled by {ϕ(n) + 1, ϕ(n) + 2, . . . , n − 1} ∪ A.

Main Examples: K∅ has facets labeled by {ϕ(n) + 1, ϕ(n) + 2, . . . , n− 1}.

K{j} has facets labeled by {ϕ(n) + 1, ϕ(n) + 2, . . . , n − 1} ∪ {j}.

Musiker-Reiner (University of Minnesota) Cyclotomic Polynomial Topologically June 16, 2011 8 / 19



K∅, K{4}, and K{6} for K3,5

Φ15(x) = x8 − x7 + x5 − x4 + x3 − x + 1

K∅

11

1 0 2

0 3 2 4 1

10

mod 5

mod 3

13 12 9 14
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K∅, K{4}, and K{6} for K3,5

Φ15(x) = x8 − x7 + x5−x4 + x3 − x + 1

K{4}

4

1 0 2

0 3 2 4 1

10

mod 5

mod 3

13 12 9 14 11
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K∅, K{4}, and K{6} for K3,5

Φ15(x) = x8 − x7+0x6 + x5 − x4 + x3 − x + 1

K{6}

6

1 0 2

0 3 2 4 1

10

mod 5

mod 3

13 12 9 14 11
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Theorem 1 (M-Reiner)

For a square-free positive integer n = p1p2 · · · pd > 1 with

Φn(x) =
∑ϕ(n)

j=0 cjx
j , then

H̃i (K{j}, Z) =





Z/cjZ if i = d − 2

Z if both i = d − 1 and cj = 0, and

0 otherwise
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Theorem 1 (M-Reiner)

For a square-free positive integer n = p1p2 · · · pd > 1 with

Φn(x) =
∑ϕ(n)

j=0 cjx
j , then

H̃i (K{j}, Z) =





Z/cjZ if i = d − 2

Z if both i = d − 1 and cj = 0, and

0 otherwise

Example: For the graph Kp1,p2 , the coefficient cj in Φp1·p2(x) is either
zero or one.
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Theorem 1 (M-Reiner)

For a square-free positive integer n = p1p2 · · · pd > 1 with

Φn(x) =
∑ϕ(n)

j=0 cjx
j , then

H̃i (K{j}, Z) =





Z/cjZ if i = d − 2

Z if both i = d − 1 and cj = 0, and

0 otherwise

Example: For the graph Kp1,p2 , the coefficient cj in Φp1·p2(x) is either
zero or one.

H̃0(K{j}, Z) = 0 ∼= Z/(±1Z) and

H̃1(K{j}, Z) = 0 if cj = ±1.
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Theorem 1 (M-Reiner)

For a square-free positive integer n = p1p2 · · · pd > 1 with

Φn(x) =
∑ϕ(n)

j=0 cjx
j , then

H̃i (K{j}, Z) =





Z/cjZ if i = d − 2

Z if both i = d − 1 and cj = 0, and

0 otherwise

Example: For the graph Kp1,p2 , the coefficient cj in Φp1·p2(x) is either
zero or one.

H̃0(K{j}, Z) = 0 ∼= Z/(±1Z) and

H̃1(K{j}, Z) = 0 if cj = ±1.

K{j} is a spanning tree in this case.
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Theorem 1 (M-Reiner)

For a square-free positive integer n = p1p2 · · · pd > 1 with

Φn(x) =
∑ϕ(n)

j=0 cjx
j , then

H̃i (K{j}, Z) =





Z/cjZ if i = d − 2

Z if both i = d − 1 and cj = 0, and

0 otherwise

Example: For the graph Kp1,p2 , the coefficient cj in Φp1·p2(x) is either
zero or one.

H̃0(K{j}, Z) = Z ∼= Z/(0Z) and

H̃1(K{j}, Z) = Z if cj = 0.
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Theorem 1 (M-Reiner)

For a square-free positive integer n = p1p2 · · · pd > 1 with

Φn(x) =
∑ϕ(n)

j=0 cjx
j , then

H̃i (K{j}, Z) =





Z/cjZ if i = d − 2

Z if both i = d − 1 and cj = 0, and

0 otherwise

Example: For the graph Kp1,p2 , the coefficient cj in Φp1·p2(x) is either
zero or one.

H̃0(K{j}, Z) = Z ∼= Z/(0Z) and

H̃1(K{j}, Z) = Z if cj = 0.

K{j} has a 1-cycle and two connected components in this second case.
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Theorem 2 (M-Reiner)

Assume that Φn(x) is monic with cϕ(n) = +1.
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Theorem 2 (M-Reiner)

Assume that Φn(x) is monic with cϕ(n) = +1.

We use oriented simplicial homology of K{j ,ϕ(n)}, the subcomplex of
Kp1,...,pd

with facets

{ϕ(n) + 1, ϕ(n) + 2, . . . , n − 1} ∪ {j , ϕ(n)}.
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Theorem 2 (M-Reiner)

Assume that Φn(x) is monic with cϕ(n) = +1.

We use oriented simplicial homology of K{j ,ϕ(n)}, the subcomplex of
Kp1,...,pd

with facets

{ϕ(n) + 1, ϕ(n) + 2, . . . , n − 1} ∪ {j , ϕ(n)}.

Theorem. If cj 6= 0, then H̃d−1(K{j ,ϕ(n)}, Z) ∼= Z and any (d − 1)-cycle
Z =

∑
ℓ bℓ [Fℓ] in this homology group will have bj , bϕ(n) 6= 0 with

cj

cϕ(n)
=
−bϕ(n)

bj

.
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Theorem 2 (M-Reiner)

Assume that Φn(x) is monic with cϕ(n) = +1.

We use oriented simplicial homology of K{j ,ϕ(n)}, the subcomplex of
Kp1,...,pd

with facets

{ϕ(n) + 1, ϕ(n) + 2, . . . , n − 1} ∪ {j , ϕ(n)}.

Theorem. If cj 6= 0, then H̃d−1(K{j ,ϕ(n)}, Z) ∼= Z and any (d − 1)-cycle
Z =

∑
ℓ bℓ [Fℓ] in this homology group will have bj , bϕ(n) 6= 0 with

cj

cϕ(n)
=
−bϕ(n)

bj

.

Coefficients cj , cϕ(n) have the same sign ←→ bj , bϕ(n) have opposite signs.
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Theorem 2 (M-Reiner) Example

Theorem. If cj 6= 0, then H̃d−1(K{j ,ϕ(n)}, Z) ∼= Z and any (d − 1)-cycle
Z =

∑
ℓ bℓ [Fℓ] in this homology group will have bj , bϕ(n) 6= 0 with

cj

cϕ(n)
=
−bϕ(n)

bj

.

+

1 0 2

0 3 2 4 1

10 13 12 9 14 118

+−

4

−

K{4,8} ↔ c4 = −1
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Theorem 2 (M-Reiner) Example

Theorem. If cj 6= 0, then H̃d−1(K{j ,ϕ(n)}, Z) ∼= Z and any (d − 1)-cycle
Z =

∑
ℓ bℓ [Fℓ] in this homology group will have bj , bϕ(n) 6= 0 with

cj

cϕ(n)
=
−bϕ(n)

bj

.

+

1 0 2

0 3 2 4 1

10 13 12 9 14 118

+ −

3

−

K{3,8} ↔ c3 = +1
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Reformulation in terms of attaching maps

(These results are based on discussion with Dmitry Fuchs)

Consider the full Kp1,...,pd
with all the oriented facets [Fj mod n] for

j ∈ {0, 1, . . . , n − 1}.
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Reformulation in terms of attaching maps

(These results are based on discussion with Dmitry Fuchs)

Consider the full Kp1,...,pd
with all the oriented facets [Fj mod n] for

j ∈ {0, 1, . . . , n − 1}.

Let [Zj mod n] = ∂[Fj mod n] denote the (d − 2)-cycle in the image of the
simplicial boundary map ∂.
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Reformulation in terms of attaching maps

(These results are based on discussion with Dmitry Fuchs)

Consider the full Kp1,...,pd
with all the oriented facets [Fj mod n] for

j ∈ {0, 1, . . . , n − 1}.

Let [Zj mod n] = ∂[Fj mod n] denote the (d − 2)-cycle in the image of the
simplicial boundary map ∂.

Example: For n = 15, j = 4,

[Z4 mod 15] = [1 mod 3, ̂4 mod 5]− [ ̂1 mod 3, 4 mod 5]

= [1 mod 3] − [4 mod 5]
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Theorem 3 (M-Reiner)

1) We have a homology isomorphism

H̃∗(K∅) ∼= H̃∗(S
d−2),

a (d − 2)-sphere.
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Theorem 3 (M-Reiner)

1) We have a homology isomorphism

H̃∗(K∅) ∼= H̃∗(S
d−2),

a (d − 2)-sphere.

2) Let cj be the coefficient of x j in Φn(x). Then

[Zj mod n] = cj [Zϕ(n) mod n] in H̃d−2(K∅) ∼= Z.
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Theorem 3 (M-Reiner)

1) We have a homology isomorphism

H̃∗(K∅) ∼= H̃∗(S
d−2),

a (d − 2)-sphere.

2) Let cj be the coefficient of x j in Φn(x). Then

[Zj mod n] = cj [Zϕ(n) mod n] in H̃d−2(K∅) ∼= Z.

3) Further, we have a homology isomorphism

H̃∗(K{j}) ∼= H̃∗(B
d−1 ∪fj Sd−2)

where fj is a map winding Sd−2 onto the boundary of the ball Bd−1 with
deg(fj) = cj .
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Theorem 3 (M-Reiner)

1) We have a homology isomorphism

H̃∗(K∅) ∼= H̃∗(S
d−2),

a (d − 2)-sphere.

2) Let cj be the coefficient of x j in Φn(x). Then

[Zj mod n] = cj [Zϕ(n) mod n] in H̃d−2(K∅) ∼= Z.

3) Further, we have a homology isomorphism

H̃∗(K{j}) ∼= H̃∗(B
d−1 ∪fj Sd−2)

where fj is a map winding Sd−2 onto the boundary of the ball Bd−1 with
deg(fj) = cj . Point: We are gluing one more facet to a homology sphere.
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From homology to homotopy

We also get a homotopy-theoretic version of Theorem 3 except for d = 3:
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From homology to homotopy

We also get a homotopy-theoretic version of Theorem 3 except for d = 3:

1) K∅ ≃ Sd−2 and contains [Zϕ(n) mod n] as a fundamental (d − 2)-cycle.
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From homology to homotopy

We also get a homotopy-theoretic version of Theorem 3 except for d = 3:

1) K∅ ≃ Sd−2 and contains [Zϕ(n) mod n] as a fundamental (d − 2)-cycle.

2) The coefficient cj is the degree of the attaching map from the oriented
boundary [Zj mod n] of the facet [Fj mod n] into the homotopy
(d − 2)-sphere K∅.

This is respect to a choice of a fundamental cycle [Zϕ(n) mod n].
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From homology to homotopy

We also get a homotopy-theoretic version of Theorem 3 except for d = 3:

1) K∅ ≃ Sd−2 and contains [Zϕ(n) mod n] as a fundamental (d − 2)-cycle.

2) The coefficient cj is the degree of the attaching map from the oriented
boundary [Zj mod n] of the facet [Fj mod n] into the homotopy
(d − 2)-sphere K∅.

This is respect to a choice of a fundamental cycle [Zϕ(n) mod n].

3) K{j} ≃ Sd−2 ∪fj Bd−1 with deg(fj) = cj .
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From homology to homotopy

We also get a homotopy-theoretic version of Theorem 3 except for d = 3:

1) K∅ ≃ Sd−2 and contains [Zϕ(n) mod n] as a fundamental (d − 2)-cycle.

2) The coefficient cj is the degree of the attaching map from the oriented
boundary [Zj mod n] of the facet [Fj mod n] into the homotopy
(d − 2)-sphere K∅.

This is respect to a choice of a fundamental cycle [Zϕ(n) mod n].

3) K{j} ≃ Sd−2 ∪fj Bd−1 with deg(fj) = cj .

Question: For n = p1p2 . . . pd , d ≥ 3, let b be the (d − 1)-co-chain with
value cj on [Fj mod n].
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From homology to homotopy

We also get a homotopy-theoretic version of Theorem 3 except for d = 3:

1) K∅ ≃ Sd−2 and contains [Zϕ(n) mod n] as a fundamental (d − 2)-cycle.

2) The coefficient cj is the degree of the attaching map from the oriented
boundary [Zj mod n] of the facet [Fj mod n] into the homotopy
(d − 2)-sphere K∅.

This is respect to a choice of a fundamental cycle [Zϕ(n) mod n].

3) K{j} ≃ Sd−2 ∪fj Bd−1 with deg(fj) = cj .

Question: For n = p1p2 . . . pd , d ≥ 3, let b be the (d − 1)-co-chain with
value cj on [Fj mod n].

Is there a natural way to write a (d − 2)-chain with a co-boundary b?
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Corollary to this approach (suggested by Fuchs)

Example: For n = pq, p < q,

b = δ([0 mod p] + [q mod p] + · · ·+ [d1q mod p]

+ [1 mod q] + [p + 1 mod q] + · · ·+ [d2p + 1 mod q]

where (d1 + 1)q ≡ 1 mod p and (d2 + 1)p + 1 ≡ 0 mod q.

2

1 0 2

0 3 2 4 1

10

1 6

mod 5

mod 3

13

7

0

3

12

9
5 8

4

11

14
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Φ15(x) = x8 − x7 + x5 − x4 + x3 − x + 1.
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Agrees with pq case elsewhere in literature, e.g. Sam Elder.
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Ricky Liu also has analyzed co-boundaries related to Φpqr (x).
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Concordance with other known results

1) Let n = 2p2p3 · · · pd . It is known that Φ2p2···pd
(x) = Φp2···pd

(−x).
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1) Let n = 2p2p3 · · · pd . It is known that Φ2p2···pd
(x) = Φp2···pd

(−x).

K2,p2,...,pd
equals the two point suspension.

Each (d − 2)-cycle in Kp2,...,pd
corresponds to a (d − 1)-cycle in K2,p2,...,pd

and orientation differs in an appropriate way only when j is even.
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Concordance with other known results

1) Let n = 2p2p3 · · · pd . It is known that Φ2p2···pd
(x) = Φp2···pd

(−x).

K2,p2,...,pd
equals the two point suspension.

Each (d − 2)-cycle in Kp2,...,pd
corresponds to a (d − 1)-cycle in K2,p2,...,pd

and orientation differs in an appropriate way only when j is even.

2) Another well-known result about cyclotomic polynomials is that the
coefficients are symmetric.

Φ15(x) = x8 − x7 + x5 − x4 + x3 − x + 1.

This symmetry can be seen by simplicial automorphisms.
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Open Questions and Final Comments

If 1 ≤ n ≤ 104, Φn(x) has only coefficients that are in {−1, 0, 1}.
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Φ105(x) = x48 + · · · − 241 + · · · − 2x7 + · · ·+ 1.

So, by Theorem 1, H̃1(K{7}) and H̃1(K{41}) ∼= Z/2Z.

These simplicial complexes have 57 facets, but by computation, it seems
that they only collapse down to complex with 44 facets.

We still can see the Z/2Z-torsion in this example, but it is far from a real
projective plane.

Recent observation: for n = 3 · 5 · 29, (29 ≡ −1 mod 15) seems all the
K{j}’s do seem to be collapsable. (Φn(x) has only coefficients {−1, 0, 1}
in cases like this.)
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If 1 ≤ n ≤ 104, Φn(x) has only coefficients that are in {−1, 0, 1}. However

Φ105(x) = x48 + · · · − 241 + · · · − 2x7 + · · ·+ 1.

So, by Theorem 1, H̃1(K{7}) and H̃1(K{41}) ∼= Z/2Z.

These simplicial complexes have 57 facets, but by computation, it seems
that they only collapse down to complex with 44 facets.

We still can see the Z/2Z-torsion in this example, but it is far from a real
projective plane.

Recent observation: for n = 3 · 5 · 29, (29 ≡ −1 mod 15) seems all the
K{j}’s do seem to be collapsable. (Φn(x) has only coefficients {−1, 0, 1}
in cases like this.)

(Nathan Kaplan showed that if r ≡ ±1 mod pq, then Φpqr (x) has is flat.)
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Open Questions and Final Comments

Revised Beiter Conjecture (although recently solved by other means): If
p, q, r are distinct primes, then the absolute values of coefficients of
Φpqr (x) can only be so big. (e.g. bound for Φ3qr (x) is 2).
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• Or that successive differences of coefficients in Φpqr are 0 or ±1?
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Thanks for Listening!

The Cyclotomic Polynomial Topologically (with Vic Reiner),
http://arxiv.org/pdf/1012.1844.pdf
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