A Topological Interpretation of the Cyclotomic Polynomial

Gregg Musiker (University of Minnesota)

Joint work with Vic Reiner

FPSAC 2011
June 16, 2011

Outline

(1) Introduction
(2) The Main Theorems
(3) Reformulation in terms of attaching maps
(9) Concordance with known results
(5) Open Questions and Final Comments

The Cyclotomic Polynomial

The Cyclotomic Polynomial $\Phi_{n}(x)$ is the minimal polynomial over \mathbb{Q} for any primitive nth root of unity $\zeta \in \mathbb{C}\left(\right.$ e.g. $\left.\zeta=e^{2 \pi i / n}\right)$.

$$
\begin{aligned}
& \Phi_{1}=x-1 \\
& \Phi_{2}=x+1 \\
& \Phi_{3}=x^{2}+x+1 \\
& \Phi_{4}=x^{2}+1 \\
& \Phi_{5}=x^{4}+x^{3}+x^{2}+x+1 \\
& \Phi_{6}=x^{2}-x+1
\end{aligned}
$$

The Cyclotomic Polynomial

The Cyclotomic Polynomial $\Phi_{n}(x)$ is the minimal polynomial over \mathbb{Q} for any primitive nth root of unity $\zeta \in \mathbb{C}\left(\right.$ e.g. $\left.\zeta=e^{2 \pi i / n}\right)$.

$$
\begin{aligned}
& \Phi_{1}=x-1 \\
& \Phi_{2}=x+1 \\
& \Phi_{3}=x^{2}+x+1 \\
& \Phi_{4}=x^{2}+1 \\
& \Phi_{5}=x^{4}+x^{3}+x^{2}+x+1 \\
& \Phi_{6}=x^{2}-x+1
\end{aligned}
$$

The polynomial $\Phi_{n}(x)$ can also be expressed in a number of ways:

1) $\Phi_{n}(x)=\prod_{(j \in \mathbb{Z} / n \mathbb{Z})^{\times}}\left(x-\zeta^{j}\right)$; e.g. $\Phi_{4}(x)=(x-i)\left(x-i^{3}\right)$.

The Cyclotomic Polynomial

2) Or we can factor $\left(x^{n}-1\right)$ into irreducibles, and obtain

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

The Cyclotomic Polynomial

2) Or we can factor $\left(x^{n}-1\right)$ into irreducibles, and obtain

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

Example:

$$
\begin{aligned}
x^{6}-1 & =(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) \\
& =\Phi_{1}(x) \cdot \Phi_{2}(x) \cdot \Phi_{3}(x) \cdot \Phi_{6}(x)
\end{aligned}
$$

The Cyclotomic Polynomial

2) Or we can factor $\left(x^{n}-1\right)$ into irreducibles, and obtain

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

Example:

$$
\begin{aligned}
x^{6}-1 & =(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) \\
& =\Phi_{1}(x) \cdot \Phi_{2}(x) \cdot \Phi_{3}(x) \cdot \Phi_{6}(x)
\end{aligned}
$$

Via Möbius inversion:

$$
\begin{aligned}
& \Phi_{n}(x)=\prod_{d \mid n}\left(x^{n / d}-1\right)^{\mu(d)} ; \\
& \mu(d)=\left\{\begin{array}{l}
0 \text { if } d \text { is not squarefree, } \\
(-1)^{k} \text { if } d=p_{1} p_{2} \cdots p_{k}
\end{array}\right.
\end{aligned} .
$$

Example of $\Phi_{15}(x)$

Euler-Phi function $\varphi(n)=\#\{j$ in $\{1,2, \ldots, n-1\}$ s.t. $\operatorname{gcd}(j, n)=1\}$.

Example of $\Phi_{15}(x)$

Euler-Phi function $\varphi(n)=\#\{j$ in $\{1,2, \ldots, n-1\}$ s.t. $\operatorname{gcd}(j, n)=1\}$.
Observations: 1) The degree of $\Phi_{n}(x)$ is always $\varphi(n)$.

Example of $\Phi_{15}(x)$

Euler-Phi function $\varphi(n)=\#\{j$ in $\{1,2, \ldots, n-1\}$ s.t. $\operatorname{gcd}(j, n)=1\}$.
Observations: 1) The degree of $\Phi_{n}(x)$ is always $\varphi(n)$.
2) The coefficients of $\Phi_{n}(x)$ are all integers.

Example of $\Phi_{15}(x)$

Euler-Phi function $\varphi(n)=\#\{j$ in $\{1,2, \ldots, n-1\}$ s.t. $\operatorname{gcd}(j, n)=1\}$.
Observations: 1) The degree of $\Phi_{n}(x)$ is always $\varphi(n)$.
2) The coefficients of $\Phi_{n}(x)$ are all integers.

Our running example will be

$$
\begin{aligned}
\Phi_{15}(x)= & (x-\zeta)\left(x-\zeta^{2}\right)\left(x-\zeta^{4}\right)\left(x-\zeta^{7}\right)\left(x-\zeta^{8}\right) \\
= & \cdot\left(x-\zeta^{11}\right)\left(x-\zeta^{13}\right)\left(x-\zeta^{14}\right) \\
& x^{7}+x^{5}-x^{4}+x^{3}-x+1
\end{aligned}
$$

The complete d-partite simplicial complex $K_{p_{1}, p_{2}, \ldots, p_{d}}$

We focus on the square-free case because if $n=p_{1}^{e_{1}} \cdots p_{d}^{e_{d}}$, then

$$
\Phi_{n}(x)=\Phi_{p_{1} p_{2} \cdots p_{d}}\left(x^{n / p_{1} \cdots p_{d}}\right)
$$

The complete d-partite simplicial complex $K_{p_{1}, p_{2}, \ldots, p_{d}}$

We focus on the square-free case because if $n=p_{1}^{e_{1}} \cdots p_{d}^{e_{d}}$, then

$$
\Phi_{n}(x)=\Phi_{p_{1} p_{2} \cdots p_{d}}\left(x^{n / p_{1} \cdots p_{d}}\right)
$$

So for the remainder of this talk, assume p_{1} through p_{d} are distinct primes.

The complete d-partite simplicial complex $K_{p_{1}, p_{2}, \ldots, p_{d}}$

We focus on the square-free case because if $n=p_{1}^{e_{1}} \cdots p_{d}^{e_{d}}$, then

$$
\Phi_{n}(x)=\Phi_{p_{1} p_{2} \cdots p_{d}}\left(x^{n / p_{1} \cdots p_{d}}\right)
$$

So for the remainder of this talk, assume p_{1} through p_{d} are distinct primes.
Take the simplicial join of d vertex sets, each with p_{i} disconnected vertices.
Let $\mathbf{K}_{\mathbf{p}_{1}, \ldots, \mathbf{p}_{\mathbf{d}}}$ denote the resulting simplicial complex.
Example: $K_{3,5}$ is the graph (1-complex)

$\bmod 3$
$\bmod 5$

Labeling the facets of $K_{p_{1}, \ldots, p_{d}}$

By the Chinese Remainder Theorem, there is a unique $j \in\{0,1, \ldots, n-1\}$

$$
\begin{array}{rlll}
j & \equiv j_{1} \bmod p_{1} \\
j & \equiv j_{2} \bmod p_{2} \\
& \cdots \\
j & \equiv j_{d} \bmod p_{d}
\end{array}
$$

where $j_{i} \in\left\{0,1, \ldots, p_{i}-1\right\}$.

Labeling the facets of $K_{p_{1}, \ldots, p_{d}}$

By the Chinese Remainder Theorem, there is a unique $j \in\{0,1, \ldots, n-1\}$

$$
\begin{aligned}
j & \equiv j_{1} \bmod p_{1} \\
j & \equiv j_{2} \bmod p_{2} \\
& \cdots \\
j & \equiv j_{d} \bmod p_{d}
\end{aligned}
$$

where $j_{i} \in\left\{0,1, \ldots, p_{i}-1\right\}$. Thus each facet of $K_{p_{1}, \ldots, p_{d}}$ can be labeled by a number between 0 and $(n-1)$.

Labeling the facets of $K_{p_{1}, \ldots, p_{d}}$

By the Chinese Remainder Theorem, there is a unique $j \in\{0,1, \ldots, n-1\}$

$$
\begin{aligned}
j & \equiv j_{1} \bmod p_{1} \\
j & \equiv j_{2} \bmod p_{2} \\
& \cdots \\
j & \equiv j_{d} \bmod p_{d}
\end{aligned}
$$

where $j_{i} \in\left\{0,1, \ldots, p_{i}-1\right\}$. Thus each facet of $K_{p_{1}, \ldots, p_{d}}$ can be labeled by a number between 0 and $(n-1)$.

Example: $K_{3,5}$ with the facets (edges) labeled by $0,1, \ldots, 14$.

The subcomplexes K_{A} for a subset A

For any subset $A \subseteq\{0,1,2, \ldots, \varphi(n)\}, K_{A}$ is the $(d-1)$-dimensional subcomplex of $K_{p_{1}, \ldots, p_{d}}$ containing:

The subcomplexes K_{A} for a subset A

For any subset $A \subseteq\{0,1,2, \ldots, \varphi(n)\}, K_{A}$ is the $(d-1)$-dimensional subcomplex of $K_{p_{1}, \ldots, p_{d}}$ containing:

1) The entire ($d-2)$-skeleton,

The subcomplexes K_{A} for a subset A

For any subset $A \subseteq\{0,1,2, \ldots, \varphi(n)\}, K_{A}$ is the $(d-1)$-dimensional subcomplex of $K_{p_{1}, \ldots, p_{d}}$ containing:

1) The entire ($d-2$)-skeleton, and
2) all facets labeled by $\{\varphi(n)+1, \varphi(n)+2, \ldots, n-1\} \cup A$.

The subcomplexes K_{A} for a subset A

For any subset $A \subseteq\{0,1,2, \ldots, \varphi(n)\}, K_{A}$ is the $(d-1)$-dimensional subcomplex of $K_{p_{1}, \ldots, p_{d}}$ containing:

1) The entire (d - 2)-skeleton, and
2) all facets labeled by $\{\varphi(n)+1, \varphi(n)+2, \ldots, n-1\} \cup A$.

Main Examples: K_{\emptyset} has facets labeled by $\{\varphi(n)+1, \varphi(n)+2, \ldots, n-1\}$.

The subcomplexes K_{A} for a subset A

For any subset $A \subseteq\{0,1,2, \ldots, \varphi(n)\}, K_{A}$ is the $(d-1)$-dimensional subcomplex of $K_{p_{1}, \ldots, p_{d}}$ containing:

1) The entire (d - 2)-skeleton, and
2) all facets labeled by $\{\varphi(n)+1, \varphi(n)+2, \ldots, n-1\} \cup A$.

Main Examples: K_{\emptyset} has facets labeled by $\{\varphi(n)+1, \varphi(n)+2, \ldots, n-1\}$.
$K_{\{j\}}$ has facets labeled by $\{\varphi(n)+1, \varphi(n)+2, \ldots, n-1\} \cup\{j\}$.

$K_{\emptyset}, K_{\{4\}}$, and $K_{\{6\}}$ for $K_{3,5}$

$$
\Phi_{15}(x)=x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1
$$

$K_{\emptyset}, K_{\{4\}}$, and $K_{\{6\}}$ for $K_{3,5}$

$$
\Phi_{15}(x)=x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1
$$

$K_{\emptyset}, K_{\{4\}}$, and $K_{\{6\}}$ for $K_{3,5}$

$$
\Phi_{15}(x)=x^{8}-x^{7}+0 x^{6}+x^{5}-x^{4}+x^{3}-x+1
$$

Theorem 1 (M-Reiner)

For a square-free positive integer $n=p_{1} p_{2} \cdots p_{d}>1$ with $\Phi_{n}(x)=\sum_{j=0}^{\varphi(n)} c_{j} x^{j}$, then

$$
\widetilde{H}_{i}\left(K_{\{j\}}, \mathbb{Z}\right)=\left\{\begin{array}{l}
\mathbb{Z} / c_{j} \mathbb{Z} \text { if } i=d-2 \\
\mathbb{Z} \text { if both } i=d-1 \text { and } c_{j}=0, \text { and } \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Theorem 1 (M-Reiner)

For a square-free positive integer $n=p_{1} p_{2} \cdots p_{d}>1$ with $\Phi_{n}(x)=\sum_{j=0}^{\varphi(n)} c_{j} x^{j}$, then

$$
\widetilde{H}_{i}\left(K_{\{j\}}, \mathbb{Z}\right)=\left\{\begin{array}{l}
\mathbb{Z} / c_{j} \mathbb{Z} \text { if } i=d-2 \\
\mathbb{Z} \text { if both } i=d-1 \text { and } c_{j}=0, \text { and } \\
0 \text { otherwise }
\end{array}\right.
$$

Example: For the graph $K_{p_{1}, p_{2}}$, the coefficient c_{j} in $\Phi_{p_{1} \cdot p_{2}}(x)$ is either zero or one.

Theorem 1 (M-Reiner)

For a square-free positive integer $n=p_{1} p_{2} \cdots p_{d}>1$ with $\Phi_{n}(x)=\sum_{j=0}^{\varphi(n)} c_{j} x^{j}$, then

$$
\widetilde{H}_{i}\left(K_{\{j\}}, \mathbb{Z}\right)=\left\{\begin{array}{l}
\mathbb{Z} / c_{j} \mathbb{Z} \text { if } i=d-2 \\
\mathbb{Z} \text { if both } i=d-1 \text { and } c_{j}=0, \text { and } \\
0 \text { otherwise }
\end{array}\right.
$$

Example: For the graph $K_{p_{1}, p_{2}}$, the coefficient c_{j} in $\Phi_{p_{1} \cdot p_{2}}(x)$ is either zero or one.

$$
\begin{gathered}
\widetilde{H_{0}}\left(K_{\{j\}}, \mathbb{Z}\right)=0 \cong \mathbb{Z} /(\pm 1 \mathbb{Z}) \quad \text { and } \\
\widetilde{H_{1}}\left(K_{\{j\}}, \mathbb{Z}\right)=0 \text { if } c_{j}= \pm 1
\end{gathered}
$$

Theorem 1 (M-Reiner)

For a square-free positive integer $n=p_{1} p_{2} \cdots p_{d}>1$ with $\Phi_{n}(x)=\sum_{j=0}^{\varphi(n)} c_{j} x^{j}$, then

$$
\widetilde{H}_{i}\left(K_{\{j\}}, \mathbb{Z}\right)=\left\{\begin{array}{l}
\mathbb{Z} / c_{j} \mathbb{Z} \text { if } i=d-2 \\
\mathbb{Z} \text { if both } i=d-1 \text { and } c_{j}=0, \text { and } \\
0 \text { otherwise }
\end{array}\right.
$$

Example: For the graph $K_{p_{1}, p_{2}}$, the coefficient c_{j} in $\Phi_{p_{1} \cdot p_{2}}(x)$ is either zero or one.

$$
\begin{gathered}
\widetilde{H_{0}}\left(K_{\{j\}}, \mathbb{Z}\right)=0 \cong \mathbb{Z} /(\pm 1 \mathbb{Z}) \quad \text { and } \\
\widetilde{H_{1}}\left(K_{\{j\}}, \mathbb{Z}\right)=0 \text { if } c_{j}= \pm 1
\end{gathered}
$$

$K_{\{j\}}$ is a spanning tree in this case.

Theorem 1 (M-Reiner)

For a square-free positive integer $n=p_{1} p_{2} \cdots p_{d}>1$ with $\Phi_{n}(x)=\sum_{j=0}^{\varphi(n)} c_{j} x^{j}$, then

$$
\widetilde{H}_{i}\left(K_{\{j\}}, \mathbb{Z}\right)=\left\{\begin{array}{l}
\mathbb{Z} / c_{j} \mathbb{Z} \text { if } i=d-2 \\
\mathbb{Z} \text { if both } i=d-1 \text { and } c_{j}=0, \text { and } \\
0 \text { otherwise }
\end{array}\right.
$$

Example: For the graph $K_{p_{1}, p_{2}}$, the coefficient c_{j} in $\Phi_{p_{1} \cdot p_{2}}(x)$ is either zero or one.

$$
\begin{gathered}
\widetilde{H}_{0}\left(K_{\{j\}}, \mathbb{Z}\right)=\mathbb{Z} \cong \mathbb{Z} /(0 \mathbb{Z}) \text { and } \\
\widetilde{H}_{1}\left(K_{\{j\}}, \mathbb{Z}\right)=\mathbb{Z} \text { if } c_{j}=0 .
\end{gathered}
$$

Theorem 1 (M-Reiner)

For a square-free positive integer $n=p_{1} p_{2} \cdots p_{d}>1$ with $\Phi_{n}(x)=\sum_{j=0}^{\varphi(n)} c_{j} x^{j}$, then

$$
\widetilde{H}_{i}\left(K_{\{j\}}, \mathbb{Z}\right)=\left\{\begin{array}{l}
\mathbb{Z} / c_{j} \mathbb{Z} \text { if } i=d-2 \\
\mathbb{Z} \text { if both } i=d-1 \text { and } c_{j}=0, \text { and } \\
0 \text { otherwise }
\end{array}\right.
$$

Example: For the graph $K_{p_{1}, p_{2}}$, the coefficient c_{j} in $\Phi_{p_{1} \cdot p_{2}}(x)$ is either zero or one.

$$
\begin{gathered}
\widetilde{H_{0}}\left(K_{\{j\}}, \mathbb{Z}\right)=\mathbb{Z} \cong \mathbb{Z} /(0 \mathbb{Z}) \quad \text { and } \\
\widetilde{H_{1}}\left(K_{\{j\}}, \mathbb{Z}\right)=\mathbb{Z} \text { if } c_{j}=0 .
\end{gathered}
$$

$K_{\{j\}}$ has a 1-cycle and two connected components in this second case.

Theorem 2 (M-Reiner)

Assume that $\Phi_{n}(x)$ is monic with $c_{\varphi(n)}=+1$.

Theorem 2 (M-Reiner)

Assume that $\Phi_{n}(x)$ is monic with $c_{\varphi(n)}=+1$.
We use oriented simplicial homology of $K_{\{j, \varphi(n)\}}$, the subcomplex of $K_{p_{1}, \ldots, p_{d}}$ with facets

$$
\{\varphi(n)+1, \varphi(n)+2, \ldots, n-1\} \cup\{j, \varphi(n)\} .
$$

Theorem 2 (M-Reiner)

Assume that $\Phi_{n}(x)$ is monic with $c_{\varphi(n)}=+1$.
We use oriented simplicial homology of $K_{\{j, \varphi(n)\}}$, the subcomplex of $K_{p_{1}, \ldots, p_{d}}$ with facets

$$
\{\varphi(n)+1, \varphi(n)+2, \ldots, n-1\} \cup\{j, \varphi(n)\}
$$

Theorem. If $c_{j} \neq 0$, then $\widetilde{H_{d-1}}\left(K_{\{j, \varphi(n)\}}, \mathbb{Z}\right) \cong \mathbb{Z}$ and any $(d-1)$-cycle $Z=\sum_{\ell} b_{\ell}\left[F_{\ell}\right]$ in this homology group will have $b_{j}, b_{\varphi(n)} \neq 0$ with

$$
\frac{c_{j}}{c_{\varphi(n)}}=\frac{-b_{\varphi(n)}}{b_{j}}
$$

Theorem 2 (M-Reiner)

Assume that $\Phi_{n}(x)$ is monic with $c_{\varphi(n)}=+1$.
We use oriented simplicial homology of $K_{\{j, \varphi(n)\}}$, the subcomplex of $K_{p_{1}, \ldots, p_{d}}$ with facets

$$
\{\varphi(n)+1, \varphi(n)+2, \ldots, n-1\} \cup\{j, \varphi(n)\} .
$$

Theorem. If $c_{j} \neq 0$, then $\widetilde{H_{d-1}}\left(K_{\{j, \varphi(n)\}}, \mathbb{Z}\right) \cong \mathbb{Z}$ and any $(d-1)$-cycle $Z=\sum_{\ell} b_{\ell}\left[F_{\ell}\right]$ in this homology group will have $b_{j}, b_{\varphi(n)} \neq 0$ with

$$
\frac{c_{j}}{c_{\varphi(n)}}=\frac{-b_{\varphi(n)}}{b_{j}}
$$

Coefficients $c_{j}, c_{\varphi(n)}$ have the same sign $\longleftrightarrow b_{j}, b_{\varphi(n)}$ have opposite signs.

Theorem 2 (M-Reiner) Example

Theorem. If $c_{j} \neq 0$, then $\widetilde{H_{d-1}}\left(K_{\{j, \varphi(n)\}}, \mathbb{Z}\right) \cong \mathbb{Z}$ and any $(d-1)$-cycle $Z=\sum_{\ell} b_{\ell}\left[F_{\ell}\right]$ in this homology group will have $b_{j}, b_{\varphi(n)} \neq 0$ with

$$
\frac{c_{j}}{c_{\varphi(n)}}=\frac{-b_{\varphi(n)}}{b_{j}}
$$

$$
K_{\{4,8\}} \leftrightarrow c_{4}=-1
$$

Theorem 2 (M-Reiner) Example

Theorem. If $c_{j} \neq 0$, then $\widetilde{H_{d-1}}\left(K_{\{j, \varphi(n)\}}, \mathbb{Z}\right) \cong \mathbb{Z}$ and any $(d-1)$-cycle $Z=\sum_{\ell} b_{\ell}\left[F_{\ell}\right]$ in this homology group will have $b_{j}, b_{\varphi(n)} \neq 0$ with

$$
\frac{c_{j}}{c_{\varphi(n)}}=\frac{-b_{\varphi(n)}}{b_{j}}
$$

$$
K_{\{3,8\}} \leftrightarrow c_{3}=+1
$$

Reformulation in terms of attaching maps

(These results are based on discussion with Dmitry Fuchs)
Consider the full $K_{p_{1}, \ldots, p_{d}}$ with all the oriented facets $\left[F_{j} \bmod n\right]$ for $j \in\{0,1, \ldots, n-1\}$.

Reformulation in terms of attaching maps

(These results are based on discussion with Dmitry Fuchs)
Consider the full $K_{p_{1}, \ldots, p_{d}}$ with all the oriented facets $\left[F_{j} \bmod n\right]$ for $j \in\{0,1, \ldots, n-1\}$.

Let $\left[Z_{j \bmod n}\right]=\partial\left[F_{j \bmod n}\right]$ denote the $(d-2)$-cycle in the image of the simplicial boundary map ∂.

Reformulation in terms of attaching maps

(These results are based on discussion with Dmitry Fuchs)
Consider the full $K_{p_{1}, \ldots, p_{d}}$ with all the oriented facets $\left[F_{j} \bmod n\right]$ for $j \in\{0,1, \ldots, n-1\}$.

Let $\left[Z_{j \bmod n}\right]=\partial\left[F_{j \bmod n}\right]$ denote the $(d-2)$-cycle in the image of the simplicial boundary map ∂.

Example: For $n=15, j=4$,

$$
\begin{array}{rlrl}
{\left[Z_{4} \bmod 15\right]} & =[1 \bmod 3,4 \widehat{\bmod 5}]-[1 \widehat{\bmod 3,} 4 \bmod 5] \\
& =[1 \bmod 3] & -[4 \bmod 5]
\end{array}
$$

Theorem 3 (M-Reiner)

1) We have a homology isomorphism

$$
\widetilde{H_{*}}\left(K_{\emptyset}\right) \cong \widetilde{H_{*}}\left(S^{d-2}\right),
$$

a $(d-2)$-sphere.

Theorem 3 (M-Reiner)

1) We have a homology isomorphism

$$
\widetilde{H_{*}}\left(K_{\emptyset}\right) \cong \widetilde{H_{*}}\left(S^{d-2}\right)
$$

a $(d-2)$-sphere.
2) Let c_{j} be the coefficient of x^{j} in $\Phi_{n}(x)$. Then

$$
\left[\begin{array}{ll}
Z_{j} & \bmod n
\end{array}\right]=c_{j}\left[Z_{\varphi(n)} \bmod n\right] \text { in } \widetilde{H_{d-2}}\left(K_{\emptyset}\right) \cong \mathbb{Z}
$$

Theorem 3 (M-Reiner)

1) We have a homology isomorphism

$$
\widetilde{H_{*}}\left(K_{\emptyset}\right) \cong \widetilde{H_{*}}\left(S^{d-2}\right)
$$

a $(d-2)$-sphere.
2) Let c_{j} be the coefficient of x^{j} in $\Phi_{n}(x)$. Then

$$
\left[Z_{j} \bmod n\right]=c_{j}\left[Z_{\varphi(n)} \bmod n\right] \text { in } \widetilde{H_{d-2}}\left(K_{\emptyset}\right) \cong \mathbb{Z}
$$

3) Further, we have a homology isomorphism

$$
\widetilde{H}_{*}\left(K_{\{j\}}\right) \cong \widetilde{H}_{*}\left(B^{d-1} \cup_{f_{j}} S^{d-2}\right)
$$

where f_{j} is a map winding S^{d-2} onto the boundary of the ball B^{d-1} with $\operatorname{deg}\left(f_{j}\right)=c_{j}$.

Theorem 3 (M-Reiner)

1) We have a homology isomorphism

$$
\widetilde{H_{*}}\left(K_{\emptyset}\right) \cong \widetilde{H_{*}}\left(S^{d-2}\right)
$$

a $(d-2)$-sphere.
2) Let c_{j} be the coefficient of x^{j} in $\Phi_{n}(x)$. Then

$$
\left[\begin{array}{ll}
Z_{j} & \bmod n
\end{array}\right]=c_{j}\left[Z_{\varphi(n)} \bmod n\right] \text { in } \widetilde{H_{d-2}}\left(K_{\emptyset}\right) \cong \mathbb{Z}
$$

3) Further, we have a homology isomorphism

$$
\widetilde{H}_{*}\left(K_{\{j\}}\right) \cong \widetilde{H}_{*}\left(B^{d-1} \cup_{f_{j}} S^{d-2}\right)
$$

where f_{j} is a map winding S^{d-2} onto the boundary of the ball B^{d-1} with $\operatorname{deg}\left(f_{j}\right)=c_{j}$. Point: We are gluing one more facet to a homology sphere.

From homology to homotopy

We also get a homotopy-theoretic version of Theorem 3 except for $d=3$:

From homology to homotopy

We also get a homotopy-theoretic version of Theorem 3 except for $d=3$:

1) $K_{\emptyset} \simeq S^{d-2}$ and contains $\left[Z_{\varphi(n) \bmod n}\right]$ as a fundamental $(d-2)$-cycle.

From homology to homotopy

We also get a homotopy-theoretic version of Theorem 3 except for $d=3$:

1) $K_{\emptyset} \simeq S^{d-2}$ and contains $\left[Z_{\varphi(n) \bmod n}\right]$ as a fundamental $(d-2)$-cycle.
2) The coefficient c_{j} is the degree of the attaching map from the oriented boundary $\left[Z_{j} \bmod n\right]$ of the facet $\left[F_{j \bmod n}\right]$ into the homotopy $(d-2)$-sphere K_{\emptyset}.

This is respect to a choice of a fundamental cycle $\left[Z_{\varphi(n)} \bmod n\right]$.

From homology to homotopy

We also get a homotopy-theoretic version of Theorem 3 except for $d=3$:

1) $K_{\emptyset} \simeq S^{d-2}$ and contains $\left[Z_{\varphi(n) \bmod n}\right]$ as a fundamental $(d-2)$-cycle.
2) The coefficient c_{j} is the degree of the attaching map from the oriented boundary $\left[Z_{j} \bmod n\right]$ of the facet $\left[F_{j \bmod n}\right]$ into the homotopy $(d-2)$-sphere K_{\emptyset}.

This is respect to a choice of a fundamental cycle $\left[Z_{\varphi(n)} \bmod n\right]$.
3) $K_{\{j\}} \simeq S^{d-2} \cup_{f_{j}} B^{d-1}$ with $\operatorname{deg}\left(f_{j}\right)=c_{j}$.

From homology to homotopy

We also get a homotopy-theoretic version of Theorem 3 except for $d=3$:

1) $K_{\emptyset} \simeq S^{d-2}$ and contains $\left[Z_{\varphi(n) \bmod n}\right]$ as a fundamental $(d-2)$-cycle.
2) The coefficient c_{j} is the degree of the attaching map from the oriented boundary $\left[Z_{j} \bmod n\right]$ of the facet $\left[F_{j \bmod n}\right]$ into the homotopy $(d-2)$-sphere K_{\emptyset}.

This is respect to a choice of a fundamental cycle $\left[Z_{\varphi(n) \bmod n}\right]$.
3) $K_{\{j\}} \simeq S^{d-2} \cup_{f_{j}} B^{d-1}$ with $\operatorname{deg}\left(f_{j}\right)=c_{j}$.

Question: For $n=p_{1} p_{2} \ldots p_{d}, d \geq 3$, let b be the $(d-1)$-co-chain with value c_{j} on $\left[F_{j} \bmod n\right]$.

From homology to homotopy

We also get a homotopy-theoretic version of Theorem 3 except for $d=3$:

1) $K_{\emptyset} \simeq S^{d-2}$ and contains $\left[Z_{\varphi(n) \bmod n}\right]$ as a fundamental $(d-2)$-cycle.
2) The coefficient c_{j} is the degree of the attaching map from the oriented boundary $\left[Z_{j \bmod n}\right]$ of the facet $\left[F_{j \bmod n}\right]$ into the homotopy $(d-2)$-sphere K_{\emptyset}.

This is respect to a choice of a fundamental cycle $\left[Z_{\varphi(n) \bmod n}\right]$.
3) $K_{\{j\}} \simeq S^{d-2} \cup_{f_{j}} B^{d-1}$ with $\operatorname{deg}\left(f_{j}\right)=c_{j}$.

Question: For $n=p_{1} p_{2} \ldots p_{d}, d \geq 3$, let b be the $(d-1)$-co-chain with value c_{j} on $\left[F_{j} \bmod n\right]$.

Is there a natural way to write a $(d-2)$-chain with a co-boundary b ?

Corollary to this approach (suggested by Fuchs)

Example: For $n=p q, p<q$,

$$
b=\delta\left([0 \bmod p]+[q \bmod p]+\cdots+\left[d_{1} q \bmod p\right]\right.
$$

$+[1 \bmod q]+[p+1 \bmod q]+\cdots+\left[d_{2} p+1 \bmod q\right]$
where $\left(d_{1}+1\right) q \equiv 1 \bmod p$ and $\left(d_{2}+1\right) p+1 \equiv 0 \bmod q$.

Corollary to this approach (suggested by Fuchs)

Example: For $n=p q, p<q$,

$$
\begin{aligned}
b & =\delta\left([0 \bmod p]+[q \bmod p]+\cdots+\left[d_{1} q \bmod p\right]\right. \\
& +[1 \bmod q]+[p+1 \bmod q]+\cdots+\left[d_{2} p+1 \bmod q\right]
\end{aligned}
$$

where $\left(d_{1}+1\right) q \equiv 1 \bmod p$ and $\left(d_{2}+1\right) p+1 \equiv 0 \bmod q$.

Corollary to this approach (suggested by Fuchs)

Example: For $n=p q, p<q$,

$$
\begin{aligned}
b & =\delta\left([0 \bmod p]+[q \bmod p]+\cdots+\left[d_{1} q \bmod p\right]\right. \\
& +[1 \bmod q]+[p+1 \bmod q]+\cdots+\left[d_{2} p+1 \bmod q\right]
\end{aligned}
$$

where $\left(d_{1}+1\right) q \equiv 1 \bmod p$ and $\left(d_{2}+1\right) p+1 \equiv 0 \bmod q$.

Corollary to this approach (suggested by Fuchs)

Example: For $n=p q, p<q$,

$$
\begin{aligned}
b & =\delta\left([0 \bmod p]+[q \bmod p]+\cdots+\left[d_{1} q \bmod p\right]\right. \\
& +[1 \bmod q]+[p+1 \bmod q]+\cdots+\left[d_{2} p+1 \bmod q\right]
\end{aligned}
$$

where $\left(d_{1}+1\right) q \equiv 1 \bmod p$ and $\left(d_{2}+1\right) p+1 \equiv 0 \bmod q$.

Corollary to this approach (suggested by Fuchs)

Example: For $n=p q, p<q$,

$$
\begin{aligned}
b & =\delta\left([0 \bmod p]+[q \bmod p]+\cdots+\left[d_{1} q \bmod p\right]\right. \\
& +[1 \bmod q]+[p+1 \bmod q]+\cdots+\left[d_{2} p+1 \bmod q\right]
\end{aligned}
$$

where $\left(d_{1}+1\right) q \equiv 1 \bmod p$ and $\left(d_{2}+1\right) p+1 \equiv 0 \bmod q$.

Agrees with pq case elsewhere in literature, e.g. Sam Elder.

Corollary to this approach (suggested by Fuchs)

Example: For $n=p q, p<q$,

$$
\begin{aligned}
b & =\delta\left([0 \bmod p]+[q \bmod p]+\cdots+\left[d_{1} q \bmod p\right]\right. \\
& +[1 \bmod q]+[p+1 \bmod q]+\cdots+\left[d_{2} p+1 \bmod q\right]
\end{aligned}
$$

where $\left(d_{1}+1\right) q \equiv 1 \bmod p$ and $\left(d_{2}+1\right) p+1 \equiv 0 \bmod q$.

Ricky Liu also has analyzed co-boundaries related to $\Phi_{p q r}(x)$.

Concordance with other known results

1) Let $n=2 p_{2} p_{3} \cdots p_{d}$. It is known that $\Phi_{2 p_{2} \cdots p_{d}}(x)=\Phi_{p_{2} \cdots p_{d}}(-x)$.

Concordance with other known results

1) Let $n=2 p_{2} p_{3} \cdots p_{d}$. It is known that $\Phi_{2 p_{2} \cdots p_{d}}(x)=\Phi_{p_{2} \cdots p_{d}}(-x)$.
$K_{2, p_{2}, \ldots, p_{d}}$ equals the two point suspension.

Concordance with other known results

1) Let $n=2 p_{2} p_{3} \cdots p_{d}$. It is known that $\Phi_{2 p_{2} \cdots p_{d}}(x)=\Phi_{p_{2} \cdots p_{d}}(-x)$.
$K_{2, p_{2}, \ldots, p_{d}}$ equals the two point suspension.
Each ($d-2$)-cycle in $K_{p_{2}, \ldots, p_{d}}$ corresponds to a ($d-1$)-cycle in $K_{2, p_{2}, \ldots, p_{d}}$ and orientation differs in an appropriate way only when j is even.

Concordance with other known results

1) Let $n=2 p_{2} p_{3} \cdots p_{d}$. It is known that $\Phi_{2 p_{2} \cdots p_{d}}(x)=\Phi_{p_{2} \cdots p_{d}}(-x)$.
$K_{2, p_{2}, \ldots, p_{d}}$ equals the two point suspension.
Each ($d-2$)-cycle in $K_{p_{2}, \ldots, p_{d}}$ corresponds to a $(d-1)$-cycle in $K_{2, p_{2}, \ldots, p_{d}}$ and orientation differs in an appropriate way only when j is even.
2) Another well-known result about cyclotomic polynomials is that the coefficients are symmetric.

$$
\Phi_{15}(x)=x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1
$$

Concordance with other known results

1) Let $n=2 p_{2} p_{3} \cdots p_{d}$. It is known that $\Phi_{2 p_{2} \cdots p_{d}}(x)=\Phi_{p_{2} \cdots p_{d}}(-x)$.
$K_{2, p_{2}, \ldots, p_{d}}$ equals the two point suspension.
Each ($d-2$)-cycle in $K_{p_{2}, \ldots, p_{d}}$ corresponds to a $(d-1)$-cycle in $K_{2, p_{2}, \ldots, p_{d}}$ and orientation differs in an appropriate way only when j is even.
2) Another well-known result about cyclotomic polynomials is that the coefficients are symmetric.

$$
\Phi_{15}(x)=x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1
$$

This symmetry can be seen by simplicial automorphisms.

Open Questions and Final Comments

If $1 \leq n \leq 104, \Phi_{n}(x)$ has only coefficients that are in $\{-1,0,1\}$.

Open Questions and Final Comments

If $1 \leq n \leq 104, \Phi_{n}(x)$ has only coefficients that are in $\{-1,0,1\}$. However

$$
\Phi_{105}(x)=x^{48}+\cdots-2^{41}+\cdots-2 x^{7}+\cdots+1
$$

Open Questions and Final Comments

If $1 \leq n \leq 104, \Phi_{n}(x)$ has only coefficients that are in $\{-1,0,1\}$. However

$$
\Phi_{105}(x)=x^{48}+\cdots-2^{41}+\cdots-2 x^{7}+\cdots+1
$$

So, by Theorem 1, $\widetilde{H_{1}}\left(K_{\{7\}}\right)$ and $\widetilde{H_{1}}\left(K_{\{41\}}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$.

Open Questions and Final Comments

If $1 \leq n \leq 104, \Phi_{n}(x)$ has only coefficients that are in $\{-1,0,1\}$. However

$$
\Phi_{105}(x)=x^{48}+\cdots-2^{41}+\cdots-2 x^{7}+\cdots+1
$$

So, by Theorem 1, $\widetilde{H_{1}}\left(K_{\{7\}}\right)$ and $\widetilde{H_{1}}\left(K_{\{41\}}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$.
These simplicial complexes have 57 facets, but by computation, it seems that they only collapse down to complex with 44 facets.

Open Questions and Final Comments

If $1 \leq n \leq 104, \Phi_{n}(x)$ has only coefficients that are in $\{-1,0,1\}$. However

$$
\Phi_{105}(x)=x^{48}+\cdots-2^{41}+\cdots-2 x^{7}+\cdots+1
$$

So, by Theorem 1, $\widetilde{H_{1}}\left(K_{\{7\}}\right)$ and $\widetilde{H_{1}}\left(K_{\{41\}}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$.
These simplicial complexes have 57 facets, but by computation, it seems that they only collapse down to complex with 44 facets.

We still can see the $\mathbb{Z} / 2 \mathbb{Z}$-torsion in this example, but it is far from a real projective plane.

Open Questions and Final Comments

If $1 \leq n \leq 104, \Phi_{n}(x)$ has only coefficients that are in $\{-1,0,1\}$. However

$$
\Phi_{105}(x)=x^{48}+\cdots-2^{41}+\cdots-2 x^{7}+\cdots+1
$$

So, by Theorem 1, $\widetilde{H_{1}}\left(K_{\{7\}}\right)$ and $\widetilde{H_{1}}\left(K_{\{41\}}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$.
These simplicial complexes have 57 facets, but by computation, it seems that they only collapse down to complex with 44 facets.

We still can see the $\mathbb{Z} / 2 \mathbb{Z}$-torsion in this example, but it is far from a real projective plane.

Recent observation: for $n=3 \cdot 5 \cdot 29,(29 \equiv-1 \bmod 15)$ seems all the $K_{\{j\}}$'s do seem to be collapsable. ($\Phi_{n}(x)$ has only coefficients $\{-1,0,1\}$ in cases like this.)

Open Questions and Final Comments

If $1 \leq n \leq 104, \Phi_{n}(x)$ has only coefficients that are in $\{-1,0,1\}$. However

$$
\Phi_{105}(x)=x^{48}+\cdots-2^{41}+\cdots-2 x^{7}+\cdots+1
$$

So, by Theorem 1, $\widetilde{H_{1}}\left(K_{\{7\}}\right)$ and $\widetilde{H_{1}}\left(K_{\{41\}}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$.
These simplicial complexes have 57 facets, but by computation, it seems that they only collapse down to complex with 44 facets.

We still can see the $\mathbb{Z} / 2 \mathbb{Z}$-torsion in this example, but it is far from a real projective plane.

Recent observation: for $n=3 \cdot 5 \cdot 29,(29 \equiv-1 \bmod 15)$ seems all the $K_{\{j\}}$'s do seem to be collapsable. ($\Phi_{n}(x)$ has only coefficients $\{-1,0,1\}$ in cases like this.)
(Nathan Kaplan showed that if $r \equiv \pm 1 \bmod p q$, then $\Phi_{p q r}(x)$ has is flat.)

Open Questions and Final Comments

Revised Beiter Conjecture (although recently solved by other means): If p, q, r are distinct primes, then the absolute values of coefficients of $\Phi_{p q r}(x)$ can only be so big. (e.g. bound for $\Phi_{3 q r}(x)$ is 2).

Open Questions and Final Comments

Revised Beiter Conjecture (although recently solved by other means): If p, q, r are distinct primes, then the absolute values of coefficients of $\Phi_{p q r}(x)$ can only be so big. (e.g. bound for $\Phi_{3 q r}(x)$ is 2).

Nathan Kaplan and Pieter Moree mentioned other questions such as:

- Can one show through this topological approach that the nonzero coefficients of $\Phi_{p q}$ alternate in sign?
- Or that successive differences of coefficients in $\Phi_{p q r}$ are 0 or ± 1 ?

Open Questions and Final Comments

Revised Beiter Conjecture (although recently solved by other means): If p, q, r are distinct primes, then the absolute values of coefficients of $\Phi_{p q r}(x)$ can only be so big. (e.g. bound for $\Phi_{3 q r}(x)$ is 2).

Nathan Kaplan and Pieter Moree mentioned other questions such as:

- Can one show through this topological approach that the nonzero coefficients of $\Phi_{p q}$ alternate in sign?
- Or that successive differences of coefficients in $\Phi_{p q r}$ are 0 or ± 1 ?
-Progress on second question by Ricky Liu.

Open Questions and Final Comments

Revised Beiter Conjecture (although recently solved by other means): If p, q, r are distinct primes, then the absolute values of coefficients of $\Phi_{p q r}(x)$ can only be so big. (e.g. bound for $\Phi_{3 q r}(x)$ is 2).

Nathan Kaplan and Pieter Moree mentioned other questions such as:

- Can one show through this topological approach that the nonzero coefficients of $\Phi_{p q}$ alternate in sign?
- Or that successive differences of coefficients in $\Phi_{p q r}$ are 0 or ± 1 ?
-Progress on second question by Ricky Liu.
-Other work by Roy Meshulam uses the Fourier transform to further study the homology of these and other complexes.

Open Questions and Final Comments

Revised Beiter Conjecture (although recently solved by other means): If p, q, r are distinct primes, then the absolute values of coefficients of $\Phi_{p q r}(x)$ can only be so big. (e.g. bound for $\Phi_{3 q r}(x)$ is 2).

Nathan Kaplan and Pieter Moree mentioned other questions such as:

- Can one show through this topological approach that the nonzero coefficients of $\Phi_{p q}$ alternate in sign?
- Or that successive differences of coefficients in $\Phi_{p q r}$ are 0 or ± 1 ?
-Progress on second question by Ricky Liu.
-Other work by Roy Meshulam uses the Fourier transform to further study the homology of these and other complexes.

Thanks for Listening!

The Cyclotomic Polynomial Topologically (with Vic Reiner), http://arxiv.org/pdf/1012.1844.pdf

