A Topological Interpretation of the Cyclotomic Polynomial

Gregg Musiker (University of Minnesota)

Joint work with Vic Reiner

FPSAC 2011

June 16, 2011

Musiker-Reiner (University of Minnesota) Cyclotomic Polynomial Topologically

- Introduction
- 2 The Main Theorems
- 8 Reformulation in terms of attaching maps
- Oncordance with known results
- **Open Questions and Final Comments**

The **Cyclotomic Polynomial** $\Phi_n(x)$ is the minimal polynomial over \mathbb{Q} for any primitive *n*th root of unity $\zeta \in \mathbb{C}$ (e.g. $\zeta = e^{2\pi i/n}$).

$$\Phi_{1} = x - 1
\Phi_{2} = x + 1
\Phi_{3} = x^{2} + x + 1
\Phi_{4} = x^{2} + 1
\Phi_{5} = x^{4} + x^{3} + x^{2} + x + 1
\Phi_{6} = x^{2} - x + 1$$

イロン 不得 とくほう くほう 二日

The **Cyclotomic Polynomial** $\Phi_n(x)$ is the minimal polynomial over \mathbb{Q} for any primitive *n*th root of unity $\zeta \in \mathbb{C}$ (e.g. $\zeta = e^{2\pi i/n}$).

$$\Phi_{1} = x - 1
\Phi_{2} = x + 1
\Phi_{3} = x^{2} + x + 1
\Phi_{4} = x^{2} + 1
\Phi_{5} = x^{4} + x^{3} + x^{2} + x + 1
\Phi_{6} = x^{2} - x + 1$$

The polynomial $\Phi_n(x)$ can also be expressed in a number of ways:

1)
$$\Phi_n(x) = \prod_{(j \in \mathbb{Z}/n\mathbb{Z})^{\times}} (x - \zeta^j)$$
; e.g. $\Phi_4(x) = (x - i)(x - i^3)$.

2) Or we can factor $(x^n - 1)$ into irreducibles, and obtain

$$x^n - 1 = \prod_{d|n} \Phi_d(x).$$

(日) (同) (三) (三)

2) Or we can factor $(x^n - 1)$ into irreducibles, and obtain

$$x^n - 1 = \prod_{d|n} \Phi_d(x).$$

Example:

$$\begin{array}{rcl} x^6-1 & = & (x-1)(x+1)(x^2+x+1)(x^2-x+1) \\ & = & \Phi_1(x) \cdot \Phi_2(x) & \cdot & \Phi_3(x) & \cdot & \Phi_6(x) \end{array}$$

- 4 同 2 4 日 2 4 日 2

2) Or we can factor $(x^n - 1)$ into irreducibles, and obtain

$$x^n - 1 = \prod_{d|n} \Phi_d(x).$$

Example:

$$\begin{array}{rcl} x^6-1 & = & (x-1)(x+1)(x^2+x+1)(x^2-x+1) \\ & = & \Phi_1(x) \cdot \Phi_2(x) & \cdot & \Phi_3(x) & \cdot & \Phi_6(x) \end{array}$$

Via Möbius inversion:

$$\Phi_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)};$$

$$\mu(d) = \begin{cases} 0 \text{ if } d \text{ is not squarefree,} \\ (-1)^k \text{ if } d = p_1 p_2 \cdots p_k \end{cases}$$

Musiker-Reiner (University of Minnesota)

Cyclotomic Polynomial Topologically

.

Euler-Phi function $\varphi(n) = \# \{ j \text{ in } \{1, 2, \dots, n-1\} \text{ s.t. } gcd(j, n) = 1 \}.$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Euler-Phi function $\varphi(n) = \# \{ j \text{ in } \{1, 2, ..., n-1\} \text{ s.t. } gcd(j, n) = 1 \}.$

Observations: 1) The degree of $\Phi_n(x)$ is always $\varphi(n)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Euler-Phi function $\varphi(n) = \# \{ j \text{ in } \{1, 2, ..., n-1 \} \text{ s.t. } gcd(j, n) = 1 \}.$

Observations: 1) The degree of $\Phi_n(x)$ is always $\varphi(n)$.

2) The coefficients of $\Phi_n(x)$ are all integers.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Euler-Phi function $\varphi(n) = \# \{ j \text{ in } \{1, 2, \dots, n-1\} \text{ s.t. } gcd(j, n) = 1 \}.$

Observations: 1) The degree of $\Phi_n(x)$ is always $\varphi(n)$.

2) The coefficients of $\Phi_n(x)$ are all integers.

Our running example will be

$$\Phi_{15}(x) = (x - \zeta)(x - \zeta^2)(x - \zeta^4)(x - \zeta^7)(x - \zeta^8)$$

$$\cdot (x - \zeta^{11})(x - \zeta^{13})(x - \zeta^{14})$$

$$= x^8 - x^7 + x^5 - x^4 + x^3 - x + 1$$

The complete *d*-partite simplicial complex $K_{p_1,p_2,...,p_d}$

We focus on the square-free case because if $n = p_1^{e_1} \cdots p_d^{e_d}$, then

$$\Phi_n(x) = \Phi_{p_1 p_2 \cdots p_d}(x^{n/p_1 \cdots p_d}).$$

The complete *d*-partite simplicial complex $K_{p_1,p_2,...,p_d}$

We focus on the square-free case because if $n = p_1^{e_1} \cdots p_d^{e_d}$, then

$$\Phi_n(x) = \Phi_{p_1 p_2 \cdots p_d}(x^{n/p_1 \cdots p_d}).$$

So for the remainder of this talk, assume p_1 through p_d are distinct primes.

The complete *d*-partite simplicial complex $K_{p_1,p_2,...,p_d}$

We focus on the square-free case because if $n = p_1^{e_1} \cdots p_d^{e_d}$, then

$$\Phi_n(x) = \Phi_{p_1 p_2 \cdots p_d}(x^{n/p_1 \cdots p_d}).$$

So for the remainder of this talk, assume p_1 through p_d are distinct primes.

Take the simplicial join of d vertex sets, each with p_i disconnected vertices.

Let K_{p_1,\dots,p_d} denote the resulting simplicial complex.

Example: $K_{3,5}$ is the graph (1-complex)

Labeling the facets of $K_{p_1,...,p_d}$

By the Chinese Remainder Theorem, there is a unique $j \in \{0, 1, ..., n-1\}$

$$j \equiv j_1 \mod p_1$$

 $j \equiv j_2 \mod p_2$

. . .

$$j \equiv j_d \mod p_d$$

where $j_i \in \{0, 1, ..., p_i - 1\}$.

Labeling the facets of K_{p_1,\ldots,p_d}

By the Chinese Remainder Theorem, there is a unique $j \in \{0, 1, \dots, n-1\}$

$$j \equiv j_1 \mod p_1$$

 $j \equiv j_2 \mod p_2$

$$j \equiv j_d \mod p_d$$

where $j_i \in \{0, 1, ..., p_i - 1\}$. Thus each facet of $K_{p_1,...,p_d}$ can be labeled by a number between 0 and (n - 1).

. . .

Labeling the facets of K_{p_1,\ldots,p_d}

By the Chinese Remainder Theorem, there is a unique $j \in \{0, 1, ..., n-1\}$

$$j \equiv j_1 \mod p_1$$

 $j \equiv j_2 \mod p_2$

$$j \equiv j_d \mod p_d$$

where $j_i \in \{0, 1, \dots, p_i - 1\}$. Thus each facet of K_{p_1,\dots,p_d} can be labeled by a number between 0 and (n - 1).

Example: $K_{3,5}$ with the facets (edges) labeled by $0, 1, \ldots, 14$.

The subcomplexes K_A for a subset A

For any subset $A \subseteq \{0, 1, 2, ..., \varphi(n)\}$, K_A is the (d - 1)-dimensional subcomplex of $K_{p_1,...,p_d}$ containing:

1) The entire (d-2)-skeleton,

1) The entire (d-2)-skeleton, and

2) all facets labeled by $\{\varphi(n) + 1, \varphi(n) + 2, \dots, n-1\} \cup A$.

1) The entire (d-2)-skeleton, and

2) all facets labeled by $\{\varphi(n) + 1, \varphi(n) + 2, \dots, n-1\} \cup A$.

Main Examples: K_{\emptyset} has facets labeled by $\{\varphi(n) + 1, \varphi(n) + 2, \dots, n-1\}$.

1) The entire (d-2)-skeleton, and

2) all facets labeled by $\{\varphi(n) + 1, \varphi(n) + 2, \dots, n-1\} \cup A$.

Main Examples: K_{\emptyset} has facets labeled by $\{\varphi(n) + 1, \varphi(n) + 2, \dots, n-1\}$.

 $\mathcal{K}_{\{j\}}$ has facets labeled by $\{\varphi(n) + 1, \varphi(n) + 2, \dots, n-1\} \cup \{j\}.$

 K_{\emptyset} , $K_{\{4\}}$, and $K_{\{6\}}$ for $K_{3,5}$

 K_{\emptyset} , $K_{\{4\}}$, and $K_{\{6\}}$ for $K_{3,5}$

June 16, 2011 9 / 19

 K_{\emptyset} , $K_{\{4\}}$, and $K_{\{6\}}$ for $K_{3,5}$

For a square-free positive integer $n = p_1 p_2 \cdots p_d > 1$ with $\Phi_n(x) = \sum_{j=0}^{\varphi(n)} c_j x^j$, then

$$\widetilde{H_i}(K_{\{j\}},\mathbb{Z}) = \begin{cases} \mathbb{Z}/c_j\mathbb{Z} \text{ if } i = d-2\\ \mathbb{Z} \text{ if both } i = d-1 \text{ and } c_j = 0, \text{ and} \\ 0 \text{ otherwise} \end{cases}$$

For a square-free positive integer $n = p_1 p_2 \cdots p_d > 1$ with $\Phi_n(x) = \sum_{j=0}^{\varphi(n)} c_j x^j$, then

$$\widetilde{H_i}(K_{\{j\}},\mathbb{Z}) = \begin{cases} \mathbb{Z}/c_j\mathbb{Z} \text{ if } i = d-2\\ \mathbb{Z} \text{ if both } i = d-1 \text{ and } c_j = 0, \text{ and} \\ 0 \text{ otherwise} \end{cases}$$

Example: For the graph K_{p_1,p_2} , the coefficient c_j in $\Phi_{p_1 \cdot p_2}(x)$ is either zero or one.

For a square-free positive integer $n = p_1 p_2 \cdots p_d > 1$ with $\Phi_n(x) = \sum_{j=0}^{\varphi(n)} c_j x^j$, then

$$\widetilde{H_i}(K_{\{j\}},\mathbb{Z}) = \begin{cases} \mathbb{Z}/c_j\mathbb{Z} \text{ if } i = d-2\\ \mathbb{Z} \text{ if both } i = d-1 \text{ and } c_j = 0, \text{ and} \\ 0 \text{ otherwise} \end{cases}$$

Example: For the graph K_{p_1,p_2} , the coefficient c_j in $\Phi_{p_1 \cdot p_2}(x)$ is either zero or one.

$$\widetilde{H}_0(K_{\{j\}},\mathbb{Z}) = 0 \cong \mathbb{Z}/(\pm 1\mathbb{Z})$$
 and

$$\widetilde{H}_1(K_{\{j\}},\mathbb{Z})=0 ext{ if } c_j=\pm 1.$$

For a square-free positive integer $n = p_1 p_2 \cdots p_d > 1$ with $\Phi_n(x) = \sum_{j=0}^{\varphi(n)} c_j x^j$, then

$$\widetilde{H_i}(K_{\{j\}},\mathbb{Z}) = \begin{cases} \mathbb{Z}/c_j\mathbb{Z} \text{ if } i = d-2\\ \mathbb{Z} \text{ if both } i = d-1 \text{ and } c_j = 0, \text{ and} \\ 0 \text{ otherwise} \end{cases}$$

Example: For the graph K_{p_1,p_2} , the coefficient c_j in $\Phi_{p_1 \cdot p_2}(x)$ is either zero or one.

$$\widetilde{H}_0(K_{\{j\}},\mathbb{Z}) = 0 \cong \mathbb{Z}/(\pm 1\mathbb{Z})$$
 and

$$\widetilde{H_1}(K_{\{j\}},\mathbb{Z})=0 ext{ if } c_j=\pm 1.$$

 $K_{\{j\}}$ is a spanning tree in this case.

June 16, 2011 10 / 19

For a square-free positive integer $n = p_1 p_2 \cdots p_d > 1$ with $\Phi_n(x) = \sum_{j=0}^{\varphi(n)} c_j x^j$, then

$$\widetilde{H_i}(K_{\{j\}},\mathbb{Z}) = \begin{cases} \mathbb{Z}/c_j\mathbb{Z} \text{ if } i = d-2\\ \mathbb{Z} \text{ if both } i = d-1 \text{ and } c_j = 0, \text{ and} \\ 0 \text{ otherwise} \end{cases}$$

Example: For the graph K_{p_1,p_2} , the coefficient c_j in $\Phi_{p_1 \cdot p_2}(x)$ is either zero or one.

$$\widetilde{H}_0(K_{\{j\}},\mathbb{Z}) = \mathbb{Z} \cong \mathbb{Z}/(0\mathbb{Z})$$
 and

$$\widetilde{H}_1(K_{\{j\}},\mathbb{Z})=\mathbb{Z} \text{ if } c_j=0.$$

For a square-free positive integer $n = p_1 p_2 \cdots p_d > 1$ with $\Phi_n(x) = \sum_{j=0}^{\varphi(n)} c_j x^j$, then

$$\widetilde{H_i}(K_{\{j\}},\mathbb{Z}) = \begin{cases} \mathbb{Z}/c_j\mathbb{Z} \text{ if } i = d-2\\ \mathbb{Z} \text{ if both } i = d-1 \text{ and } c_j = 0, \text{ and} \\ 0 \text{ otherwise} \end{cases}$$

Example: For the graph K_{p_1,p_2} , the coefficient c_j in $\Phi_{p_1 \cdot p_2}(x)$ is either zero or one.

$$\widetilde{H}_0(K_{\{j\}},\mathbb{Z}) = \mathbb{Z} \cong \mathbb{Z}/(0\mathbb{Z})$$
 and

$$\widetilde{H_1}(K_{\{j\}},\mathbb{Z})=\mathbb{Z} \text{ if } c_j=0.$$

 $K_{\{i\}}$ has a 1-cycle and two connected components in this second case.

Assume that $\Phi_n(x)$ is monic with $c_{\varphi(n)} = +1$.

(日) (圖) (문) (문) (문)

Assume that $\Phi_n(x)$ is monic with $c_{\varphi(n)} = +1$.

We use oriented simplicial homology of $K_{\{j,\varphi(n)\}}$, the subcomplex of $K_{p_1,...,p_d}$ with facets

$$\{\varphi(n)+1,\varphi(n)+2,\ldots,n-1\}\cup\{j,\varphi(n)\}.$$

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ─ 臣 ─ のへで

Assume that $\Phi_n(x)$ is monic with $c_{\varphi(n)} = +1$.

We use oriented simplicial homology of $K_{\{j,\varphi(n)\}}$, the subcomplex of $K_{p_1,...,p_d}$ with facets

$$\{\varphi(n)+1,\varphi(n)+2,\ldots,n-1\}\cup\{j,\varphi(n)\}.$$

Theorem. If $c_j \neq 0$, then $H_{d-1}(K_{\{j,\varphi(n)\}},\mathbb{Z}) \cong \mathbb{Z}$ and any (d-1)-cycle $Z = \sum_{\ell} b_{\ell} [F_{\ell}]$ in this homology group will have b_j , $b_{\varphi(n)} \neq 0$ with

$$rac{c_j}{c_{arphi(n)}} = rac{-b_{arphi(n)}}{b_j}$$

Assume that $\Phi_n(x)$ is monic with $c_{\varphi(n)} = +1$.

We use oriented simplicial homology of $K_{\{j,\varphi(n)\}}$, the subcomplex of $K_{p_1,...,p_d}$ with facets

$$\{\varphi(n)+1,\varphi(n)+2,\ldots,n-1\}\cup\{j,\varphi(n)\}.$$

Theorem. If $c_j \neq 0$, then $\widetilde{H}_{d-1}(K_{\{j,\varphi(n)\}},\mathbb{Z}) \cong \mathbb{Z}$ and any (d-1)-cycle $Z = \sum_{\ell} b_{\ell} [F_{\ell}]$ in this homology group will have b_j , $b_{\varphi(n)} \neq 0$ with

$$rac{c_j}{c_{arphi(n)}} = rac{-b_{arphi(n)}}{b_j}$$

Coefficients c_j , $c_{\varphi(n)}$ have the same sign $\longleftrightarrow b_j$, $b_{\varphi(n)}$ have opposite signs.

Theorem 2 (M-Reiner) Example

Theorem. If $c_j \neq 0$, then $H_{d-1}(K_{\{j,\varphi(n)\}},\mathbb{Z}) \cong \mathbb{Z}$ and any (d-1)-cycle $Z = \sum_{\ell} b_{\ell} [F_{\ell}]$ in this homology group will have b_j , $b_{\varphi(n)} \neq 0$ with

$$rac{c_j}{c_{arphi(n)}} = rac{-b_{arphi(n)}}{b_j}.$$

Theorem 2 (M-Reiner) Example

Theorem. If $c_j \neq 0$, then $H_{d-1}(K_{\{j,\varphi(n)\}},\mathbb{Z}) \cong \mathbb{Z}$ and any (d-1)-cycle $Z = \sum_{\ell} b_{\ell} [F_{\ell}]$ in this homology group will have b_j , $b_{\varphi(n)} \neq 0$ with

$$rac{c_j}{c_{arphi(n)}} = rac{-b_{arphi(n)}}{b_j}.$$

$$K_{\{3,8\}} \leftrightarrow c_3 = +1$$

Reformulation in terms of attaching maps

(These results are based on discussion with Dmitry Fuchs)

Consider the full $K_{p_1,...,p_d}$ with all the oriented facets $[F_{j \mod n}]$ for $j \in \{0, 1, ..., n-1\}$.

Reformulation in terms of attaching maps

(These results are based on discussion with Dmitry Fuchs)

Consider the full $K_{p_1,...,p_d}$ with all the oriented facets $[F_{j \mod n}]$ for $j \in \{0, 1, ..., n-1\}$.

Let $[Z_{j \mod n}] = \partial [F_{j \mod n}]$ denote the (d-2)-cycle in the image of the simplicial boundary map ∂ .

Reformulation in terms of attaching maps

(These results are based on discussion with Dmitry Fuchs)

Consider the full $K_{p_1,...,p_d}$ with all the oriented facets $[F_{j \mod n}]$ for $j \in \{0, 1, ..., n-1\}$.

Let $[Z_{j \mod n}] = \partial [F_{j \mod n}]$ denote the (d-2)-cycle in the image of the simplicial boundary map ∂ .

Example: For n = 15, j = 4,

$$\begin{bmatrix} Z_4 \mod 15 \end{bmatrix} = \begin{bmatrix} 1 \mod 3, & 4 \mod 5 \end{bmatrix} - \begin{bmatrix} 1 \mod 3, & 4 \mod 5 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \mod 3 \end{bmatrix} - \begin{bmatrix} 4 \mod 5 \end{bmatrix}$$

1) We have a homology isomorphism

$$\widetilde{H_*}(K_{\emptyset}) \cong \widetilde{H_*}(S^{d-2}),$$

a (d-2)-sphere.

(ロ) (部) (E) (E) (E)

1) We have a homology isomorphism

$$\widetilde{H_*}(K_{\emptyset}) \cong \widetilde{H_*}(S^{d-2}),$$

a (d-2)-sphere.

2) Let c_j be the coefficient of x^j in $\Phi_n(x)$. Then

$$[Z_{j \mod n}] = c_j[Z_{\varphi(n) \mod n}] \text{ in } \widetilde{H_{d-2}}(K_{\emptyset}) \cong \mathbb{Z}.$$

1) We have a homology isomorphism

$$\widetilde{H_*}(K_{\emptyset}) \cong \widetilde{H_*}(S^{d-2}),$$

a (d-2)-sphere.

2) Let c_j be the coefficient of x^j in $\Phi_n(x)$. Then

$$[Z_{j \mod n}] = c_j[Z_{\varphi(n) \mod n}] \text{ in } \widetilde{H_{d-2}}(K_{\emptyset}) \cong \mathbb{Z}.$$

3) Further, we have a homology isomorphism

$$\widetilde{H_*}(K_{\{j\}}) \cong \widetilde{H_*}(B^{d-1} \cup_{f_j} S^{d-2})$$

where f_j is a map winding S^{d-2} onto the boundary of the ball B^{d-1} with $deg(f_j) = c_j$.

1) We have a homology isomorphism

$$\widetilde{H_*}(K_{\emptyset}) \cong \widetilde{H_*}(S^{d-2}),$$

a (d-2)-sphere.

2) Let c_j be the coefficient of x^j in $\Phi_n(x)$. Then

$$\begin{bmatrix} Z_j \mod n \end{bmatrix} = c_j \begin{bmatrix} Z_{\varphi(n)} \mod n \end{bmatrix} \text{ in } \widetilde{H_{d-2}}(K_{\emptyset}) \cong \mathbb{Z}.$$

3) Further, we have a homology isomorphism

$$\widetilde{H_*}(K_{\{j\}}) \cong \widetilde{H_*}(B^{d-1} \cup_{f_j} S^{d-2})$$

where f_j is a map winding S^{d-2} onto the boundary of the ball B^{d-1} with $deg(f_j) = c_j$. **Point:** We are gluing one more facet to a homology sphere.

= 990

We also get a homotopy-theoretic version of Theorem 3 except for d = 3:

3

We also get a homotopy-theoretic version of Theorem 3 except for d = 3: 1) $K_{\emptyset} \simeq S^{d-2}$ and contains $[Z_{\varphi(n) \mod n}]$ as a fundamental (d-2)-cycle.

We also get a homotopy-theoretic version of Theorem 3 except for d = 3:

1) $\mathcal{K}_{\emptyset} \simeq S^{d-2}$ and contains $[Z_{\varphi(n) \mod n}]$ as a fundamental (d-2)-cycle.

2) The coefficient c_j is the degree of the attaching map from the oriented boundary $[Z_{j \mod n}]$ of the facet $[F_{j \mod n}]$ into the homotopy (d-2)-sphere K_{\emptyset} .

This is respect to a choice of a fundamental cycle $[Z_{\varphi(n) \mod n}]$.

We also get a homotopy-theoretic version of Theorem 3 except for d = 3:

1) $\mathcal{K}_{\emptyset} \simeq S^{d-2}$ and contains $[Z_{\varphi(n) \mod n}]$ as a fundamental (d-2)-cycle.

2) The coefficient c_j is the degree of the attaching map from the oriented boundary $[Z_{j \mod n}]$ of the facet $[F_{j \mod n}]$ into the homotopy (d-2)-sphere K_{\emptyset} .

This is respect to a choice of a fundamental cycle $[Z_{\varphi(n) \mod n}]$.

3) $K_{\{j\}} \simeq S^{d-2} \cup_{f_j} B^{d-1}$ with $\deg(f_j) = c_j$.

We also get a homotopy-theoretic version of Theorem 3 except for d = 3:

1) $\mathcal{K}_{\emptyset} \simeq S^{d-2}$ and contains $[Z_{\varphi(n) \mod n}]$ as a fundamental (d-2)-cycle.

2) The coefficient c_j is the degree of the attaching map from the oriented boundary $[Z_{j \mod n}]$ of the facet $[F_{j \mod n}]$ into the homotopy (d-2)-sphere K_{\emptyset} .

This is respect to a choice of a fundamental cycle $[Z_{\varphi(n) \mod n}]$.

3) $K_{\{j\}} \simeq S^{d-2} \cup_{f_j} B^{d-1}$ with $\deg(f_j) = c_j$.

Question: For $n = p_1 p_2 \dots p_d$, $d \ge 3$, let b be the (d - 1)-co-chain with value c_j on $[F_j \mod n]$.

We also get a homotopy-theoretic version of Theorem 3 except for d = 3:

1) $\mathcal{K}_{\emptyset} \simeq S^{d-2}$ and contains $[Z_{\varphi(n) \mod n}]$ as a fundamental (d-2)-cycle.

2) The coefficient c_j is the degree of the attaching map from the oriented boundary $[Z_{j \mod n}]$ of the facet $[F_{j \mod n}]$ into the homotopy (d-2)-sphere K_{\emptyset} .

This is respect to a choice of a fundamental cycle $[Z_{\varphi(n) \mod n}]$.

3) $K_{\{j\}} \simeq S^{d-2} \cup_{f_j} B^{d-1}$ with $\deg(f_j) = c_j$.

Question: For $n = p_1 p_2 \dots p_d$, $d \ge 3$, let b be the (d - 1)-co-chain with value c_j on $[F_j \mod n]$.

Is there a natural way to write a (d-2)-chain with a co-boundary b?

Example: For n = pq, p < q,

$$b = \delta([0 \mod p] + [q \mod p] + \dots + [d_1q \mod p] + [1 \mod q] + [p+1 \mod q] + \dots + [d_2p+1 \mod q]$$

where $(d_1+1)q \equiv 1 \mod p$ and $(d_2+1)p+1 \equiv 0 \mod q$.

Example: For n = pq, p < q,

$$b = \delta([0 \mod p] + [q \mod p] + \dots + [d_1q \mod p] + [1 \mod q] + [p+1 \mod q] + \dots + [d_2p+1 \mod q]$$

where $(d_1+1)q \equiv 1 \mod p$ and $(d_2+1)p+1 \equiv 0 \mod q$.

Example: For n = pq, p < q,

$$b = \delta([0 \mod p] + [q \mod p] + \dots + [d_1q \mod p] + [1 \mod q] + [p+1 \mod q] + \dots + [d_2p+1 \mod q]$$

where $(d_1+1)q \equiv 1 \mod p$ and $(d_2+1)p+1 \equiv 0 \mod q$.

Example: For n = pq, p < q,

$$b = \delta([0 \mod p] + [q \mod p] + \dots + [d_1q \mod p] + [1 \mod q] + [p+1 \mod q] + \dots + [d_2p+1 \mod q]$$

where $(d_1+1)q \equiv 1 \mod p$ and $(d_2+1)p+1 \equiv 0 \mod q$.

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example: For n = pq, p < q,

$$b = \delta([0 \mod p] + [q \mod p] + \dots + [d_1q \mod p] + [1 \mod q] + [p+1 \mod q] + \dots + [d_2p+1 \mod q]$$

where $(d_1+1)q \equiv 1 \mod p$ and $(d_2+1)p+1 \equiv 0 \mod q$.

Agrees with pq case elsewhere in literature, e.g. Sam Elder.

Example: For n = pq, p < q,

$$b = \delta([0 \mod p] + [q \mod p] + \dots + [d_1q \mod p] + \dots + [1 \mod q] + [p+1 \mod q] + \dots + [d_2p+1 \mod q]$$

where $(d_1+1)q \equiv 1 \mod p$ and $(d_2+1)p+1 \equiv 0 \mod q$.

Ricky Liu also has analyzed co-boundaries related to $\Phi_{par}(x)$.

1) Let $n = 2p_2p_3 \cdots p_d$. It is known that $\Phi_{2p_2\cdots p_d}(x) = \Phi_{p_2\cdots p_d}(-x)$.

1) Let $n = 2p_2p_3\cdots p_d$. It is known that $\Phi_{2p_2\cdots p_d}(x) = \Phi_{p_2\cdots p_d}(-x)$.

 K_{2,p_2,\ldots,p_d} equals the two point suspension.

1) Let $n = 2p_2p_3 \cdots p_d$. It is known that $\Phi_{2p_2 \cdots p_d}(x) = \Phi_{p_2 \cdots p_d}(-x)$.

 K_{2,p_2,\ldots,p_d} equals the two point suspension.

Each (d-2)-cycle in $K_{p_2,...,p_d}$ corresponds to a (d-1)-cycle in $K_{2,p_2,...,p_d}$ and orientation differs in an appropriate way only when j is even.

1) Let $n = 2p_2p_3 \cdots p_d$. It is known that $\Phi_{2p_2 \cdots p_d}(x) = \Phi_{p_2 \cdots p_d}(-x)$.

 K_{2,p_2,\ldots,p_d} equals the two point suspension.

Each (d-2)-cycle in $K_{p_2,...,p_d}$ corresponds to a (d-1)-cycle in $K_{2,p_2,...,p_d}$ and orientation differs in an appropriate way only when j is even.

2) Another well-known result about cyclotomic polynomials is that the coefficients are symmetric.

$$\Phi_{15}(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1.$$

1) Let $n = 2p_2p_3 \cdots p_d$. It is known that $\Phi_{2p_2 \cdots p_d}(x) = \Phi_{p_2 \cdots p_d}(-x)$.

 K_{2,p_2,\ldots,p_d} equals the two point suspension.

Each (d-2)-cycle in $K_{p_2,...,p_d}$ corresponds to a (d-1)-cycle in $K_{2,p_2,...,p_d}$ and orientation differs in an appropriate way only when j is even.

2) Another well-known result about cyclotomic polynomials is that the coefficients are symmetric.

$$\Phi_{15}(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1.$$

This symmetry can be seen by simplicial automorphisms.

If $1 \le n \le 104$, $\Phi_n(x)$ has only coefficients that are in $\{-1, 0, 1\}$.

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ─ 臣 ─ のへで

If $1 \le n \le 104$, $\Phi_n(x)$ has only coefficients that are in $\{-1, 0, 1\}$. However $\Phi_{105}(x) = x^{48} + \dots - 2^{41} + \dots - 2x^7 + \dots + 1$.

If $1 \le n \le 104$, $\Phi_n(x)$ has only coefficients that are in $\{-1, 0, 1\}$. However $\Phi_{105}(x) = x^{48} + \dots - 2^{41} + \dots - 2x^7 + \dots + 1.$

So, by Theorem 1, $\widetilde{H_1}(K_{\{7\}})$ and $\widetilde{H_1}(K_{\{41\}}) \cong \mathbb{Z}/2\mathbb{Z}$.

If $1 \le n \le 104$, $\Phi_n(x)$ has only coefficients that are in $\{-1, 0, 1\}$. However

$$\Phi_{105}(x) = x^{48} + \dots - 2^{41} + \dots - 2x^7 + \dots + 1.$$

So, by Theorem 1, $\widetilde{H_1}(K_{\{7\}})$ and $\widetilde{H_1}(K_{\{41\}}) \cong \mathbb{Z}/2\mathbb{Z}$.

These simplicial complexes have 57 facets, but by computation, it seems that they only collapse down to complex with 44 facets.

If $1 \le n \le 104$, $\Phi_n(x)$ has only coefficients that are in $\{-1, 0, 1\}$. However

$$\Phi_{105}(x) = x^{48} + \dots - 2^{41} + \dots - 2x^7 + \dots + 1.$$

So, by Theorem 1, $\widetilde{H_1}(K_{\{7\}})$ and $\widetilde{H_1}(K_{\{41\}}) \cong \mathbb{Z}/2\mathbb{Z}$.

These simplicial complexes have 57 facets, but by computation, it seems that they only collapse down to complex with 44 facets.

We still can see the $\mathbb{Z}/2\mathbb{Z}$ -torsion in this example, but it is far from a real projective plane.

If $1 \le n \le 104$, $\Phi_n(x)$ has only coefficients that are in $\{-1, 0, 1\}$. However

$$\Phi_{105}(x) = x^{48} + \dots - 2^{41} + \dots - 2x^7 + \dots + 1.$$

So, by Theorem 1, $\widetilde{H_1}(K_{\{7\}})$ and $\widetilde{H_1}(K_{\{41\}}) \cong \mathbb{Z}/2\mathbb{Z}$.

These simplicial complexes have 57 facets, but by computation, it seems that they only collapse down to complex with 44 facets.

We still can see the $\mathbb{Z}/2\mathbb{Z}$ -torsion in this example, but it is far from a real projective plane.

Recent observation: for $n = 3 \cdot 5 \cdot 29$, $(29 \equiv -1 \mod 15)$ seems all the $K_{\{j\}}$'s do seem to be collapsable. $(\Phi_n(x) \text{ has only coefficients } \{-1,0,1\}$ in cases like this.)

If $1 \le n \le 104$, $\Phi_n(x)$ has only coefficients that are in $\{-1, 0, 1\}$. However

$$\Phi_{105}(x) = x^{48} + \dots - 2^{41} + \dots - 2x^7 + \dots + 1.$$

So, by Theorem 1, $\widetilde{H_1}(K_{\{7\}})$ and $\widetilde{H_1}(K_{\{41\}}) \cong \mathbb{Z}/2\mathbb{Z}$.

These simplicial complexes have 57 facets, but by computation, it seems that they only collapse down to complex with 44 facets.

We still can see the $\mathbb{Z}/2\mathbb{Z}$ -torsion in this example, but it is far from a real projective plane.

Recent observation: for $n = 3 \cdot 5 \cdot 29$, $(29 \equiv -1 \mod 15)$ seems all the $K_{\{j\}}$'s do seem to be collapsable. $(\Phi_n(x) \text{ has only coefficients } \{-1,0,1\}$ in cases like this.)

(Nathan Kaplan showed that if $r \equiv \pm 1 \mod pq$, then $\Phi_{pqr}(x)$ has is flat.)

Revised Beiter Conjecture (although recently solved by other means): If p, q, r are distinct primes, then the absolute values of coefficients of $\Phi_{pqr}(x)$ can only be so big. (e.g. bound for $\Phi_{3qr}(x)$ is 2).

Revised Beiter Conjecture (although recently solved by other means): If p, q, r are distinct primes, then the absolute values of coefficients of $\Phi_{pqr}(x)$ can only be so big. (e.g. bound for $\Phi_{3qr}(x)$ is 2).

Nathan Kaplan and Pieter Moree mentioned other questions such as: • Can one show through this topological approach that the nonzero coefficients of Φ_{pq} alternate in sign?

• Or that successive differences of coefficients in Φ_{pqr} are 0 or ± 1 ?

Revised Beiter Conjecture (although recently solved by other means): If p, q, r are distinct primes, then the absolute values of coefficients of $\Phi_{pqr}(x)$ can only be so big. (e.g. bound for $\Phi_{3qr}(x)$ is 2).

Nathan Kaplan and Pieter Moree mentioned other questions such as: • Can one show through this topological approach that the nonzero coefficients of Φ_{pq} alternate in sign?

• Or that successive differences of coefficients in Φ_{pqr} are 0 or ± 1 ?

-Progress on second question by Ricky Liu.

Revised Beiter Conjecture (although recently solved by other means): If p, q, r are distinct primes, then the absolute values of coefficients of $\Phi_{pqr}(x)$ can only be so big. (e.g. bound for $\Phi_{3qr}(x)$ is 2).

Nathan Kaplan and Pieter Moree mentioned other questions such as:

- Can one show through this topological approach that the nonzero coefficients of Φ_{pq} alternate in sign?
- Or that successive differences of coefficients in Φ_{pqr} are 0 or ± 1 ?

-Progress on second question by Ricky Liu.

-Other work by Roy Meshulam uses the Fourier transform to further study the homology of these and other complexes.

イロン 不得 とくき とくき とうき

Revised Beiter Conjecture (although recently solved by other means): If p, q, r are distinct primes, then the absolute values of coefficients of $\Phi_{pqr}(x)$ can only be so big. (e.g. bound for $\Phi_{3qr}(x)$ is 2).

Nathan Kaplan and Pieter Moree mentioned other questions such as:

- Can one show through this topological approach that the nonzero coefficients of Φ_{pq} alternate in sign?
- Or that successive differences of coefficients in Φ_{pqr} are 0 or ± 1 ?

-Progress on second question by Ricky Liu.

-Other work by Roy Meshulam uses the Fourier transform to further study the homology of these and other complexes.

Thanks for Listening!

The Cyclotomic Polynomial Topologically (with Vic Reiner), http://arxiv.org/pdf/1012.1844.pdf