Graph Theoretical Cluster Expansion Formulas

Gregg Musiker

MIT

December 19, 2008
http//math.mit.edu/~ musiker/GraphTalk.pdf

Outline.

(1) Introduction
(2) Snake Graphs for Surfaces without Punctures
(3) Graphs for the Classical Types (Bipartite Seeds)
(4) Other Examples of Graph Theoretic Interpretations

Cluster Expansions

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra \mathcal{A} is a certain subalgebra of $k\left(x_{1}, \ldots, x_{m}\right)$, the field of rational functions over $\left\{x_{1}, \ldots, x_{m}\right\}$. Generators constructed by a series of exchange relations, which in turn induce all relations satisfied by the generators.

Cluster Expansions

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra \mathcal{A} is a certain subalgebra of $k\left(x_{1}, \ldots, x_{m}\right)$, the field of rational functions over $\left\{x_{1}, \ldots, x_{m}\right\}$. Generators constructed by a series of exchange relations, which in turn induce all relations satisfied by the generators.

Theorem. (The Laurent Phenomenon FZ 2001) For any cluster algebra defined by initial seed $\left(\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, B\right)$, all cluster variables of $\mathcal{A}(B)$ are Laurent polynomials in $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$
(with no coefficient x_{n+1}, \ldots, x_{m} in the denominator).
Thus, any cluster variable $x_{\alpha}=\frac{P_{\alpha}\left(x_{1}, \ldots, x_{m}\right)}{x_{1}^{\alpha_{1} \ldots x_{n}^{\alpha n}}}$ where $P_{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.
(We use the notation x_{α} since we only consider cases in this talk where denominator defines cluster variable.)

Cluster Expansions

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra \mathcal{A} is a certain subalgebra of $k\left(x_{1}, \ldots, x_{m}\right)$, the field of rational functions over $\left\{x_{1}, \ldots, x_{m}\right\}$. Generators constructed by a series of exchange relations, which in turn induce all relations satisfied by the generators.

Theorem. (The Laurent Phenomenon FZ 2001) For any cluster algebra defined by initial seed $\left(\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, B\right)$, all cluster variables of $\mathcal{A}(B)$ are Laurent polynomials in $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$
(with no coefficient x_{n+1}, \ldots, x_{m} in the denominator).
Thus, any cluster variable $x_{\alpha}=\frac{P_{\alpha}\left(x_{1}, \ldots, x_{m}\right)}{x_{1}^{\alpha_{1} \ldots x_{n}^{\alpha_{n}}}}$ where $P_{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.
(We use the notation x_{α} since we only consider cases in this talk where denominator defines cluster variable.)

Conjecture. (Positivity Conjecture FZ 2001) For any cluster variable x_{α} the polynomial $P_{\alpha}\left(x_{1}, \ldots, x_{n}\right)$ has nonnegative integer coefficients.

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemy algeras, cluster algebras of type A_{n} with boundary coefficients.

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemy algeras, cluster algebras of type A_{n} with boundary coefficients.
[FZ 2002] proved positivity for finite type with bipartite seed.

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemy algeras, cluster algebras of type A_{n} with boundary coefficients.
[FZ 2002] proved positivity for finite type with bipartite seed.
[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank two affine cluster algebras.

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemy algeras, cluster algebras of type A_{n} with boundary coefficients.
[FZ 2002] proved positivity for finite type with bipartite seed.
[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank two affine cluster algebras.
[Caldero-Zelevinsky 2006] combinatorial formulas for Euler characteristic of Quiver Grassmannian of Kronecker Quiver.

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemy algeras, cluster algebras of type A_{n} with boundary coefficients.
[FZ 2002] proved positivity for finite type with bipartite seed.
[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank two affine cluster algebras.
[Caldero-Zelevinsky 2006] combinatorial formulas for Euler characteristic of Quiver Grassmannian of Kronecker Quiver.

Positivity also proven for those cluster variables for an acyclic seed [Caldero-Reineke 2006],

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemy algeras, cluster algebras of type A_{n} with boundary coefficients.
[FZ 2002] proved positivity for finite type with bipartite seed.
[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank two affine cluster algebras.
[Caldero-Zelevinsky 2006] combinatorial formulas for Euler characteristic of Quiver Grassmannian of Kronecker Quiver.

Positivity also proven for those cluster variables for an acyclic seed [Caldero-Reineke 2006],
as well as for Cluster algebras arising from unpunctured surfaces [Schiffler-Thomas 2007, Schiffler 2008], generalizing Trails model of Carroll-Price.

Cluster Algebras of Triangulated Surfaces

We follow (Fomin-Shapiro-Thurston) and have a surface (S, M). We assume marked points $M \subset \partial S$ (no punctures).

Recall an arc γ satisfies (we care about arcs up to isotopy)

Cluster Algebras of Triangulated Surfaces

We follow (Fomin-Shapiro-Thurston) and have a surface (S, M). We assume marked points $M \subset \partial S$ (no punctures).

Recall an arc γ satisfies (we care about arcs up to isotopy)
(1) The endpoints of γ are in M.

Cluster Algebras of Triangulated Surfaces

We follow (Fomin-Shapiro-Thurston) and have a surface (S, M). We assume marked points $M \subset \partial S$ (no punctures).

Recall an arc γ satisfies (we care about arcs up to isotopy)
(1) The endpoints of γ are in M.
(2) γ does not cross itself.

Cluster Algebras of Triangulated Surfaces

We follow (Fomin-Shapiro-Thurston) and have a surface (S, M). We assume marked points $M \subset \partial S$ (no punctures).

Recall an arc γ satisfies (we care about arcs up to isotopy)
(1) The endpoints of γ are in M.
(2) γ does not cross itself.
(3) relative interior of γ is disjoint from M and the boundary of S.

Cluster Algebras of Triangulated Surfaces

We follow (Fomin-Shapiro-Thurston) and have a surface (S, M). We assume marked points $M \subset \partial S$ (no punctures).

Recall an arc γ satisfies (we care about arcs up to isotopy)
(1) The endpoints of γ are in M.
(2) γ does not cross itself.
(3) relative interior of γ is disjoint from M and the boundary of S.
(4) γ does not cut out a monogon or digon.

$$
\begin{gathered}
\text { Seed } \leftrightarrow \text { Triangulation } T=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\} \\
\text { Cluster Variable } \leftrightarrow \operatorname{Arc} \gamma \\
x_{i} \leftrightarrow \tau_{i} \in T .
\end{gathered}
$$

For $\gamma \notin T$ let $e_{i}(T: \gamma)$ be the minimal intersection number of $\tau_{\underline{\underline{\underline{E}}}}$ and γ.

A Graph Theoretic Approach

Recall from Ralf Schiffler's Talk:
Theorem. (M-Schiffler 2008) For every triangulation T (in a surface without punctures) and arc γ, we construct a snake graph $G_{\gamma, T}$ such that

$$
x_{\gamma}=\frac{\sum_{\text {perfect matching } M \text { of } G_{\gamma, T}} x(M) y(M)}{x_{1}^{e_{1}(T, \gamma)} x_{2}^{e_{2}(T, \gamma)} \cdots x_{n}^{e_{n}(T, \gamma)}}
$$

where $e_{i}(T, \gamma)$ is the crossing number of τ_{i} and γ, and $x(M), y(M)$ are each monomials. (x_{γ} is cluster variable with principal coefficients.)

A Graph Theoretic Approach

Recall from Ralf Schiffler's Talk:
Theorem. (M-Schiffler 2008) For every triangulation T (in a surface without punctures) and arc γ, we construct a snake graph $G_{\gamma, T}$ such that

$$
x_{\gamma}=\frac{\sum_{\text {perfect matching } M \text { of } G_{\gamma, T}} x(M) y(M)}{x_{1}^{e_{1}(T, \gamma)} x_{2}^{e_{2}(T, \gamma)} \cdots x_{n}^{e_{n}(T, \gamma)}}
$$

where $e_{i}(T, \gamma)$ is the crossing number of τ_{i} and γ, and $x(M), y(M)$ are each monomials. (x_{γ} is cluster variable with principal coefficients.)

Definition. Given a simple undirected graph $G=(V, E)$, a perfect matching $M \subseteq E$ is a set of distinguished edges so that every vertex of V is covered exactly once. (Each edge has weight $x(e)$ where $x(e)$ is allowed to be 1 (unweighted) or some variable x_{i}.)

A Graph Theoretic Approach

Recall from Ralf Schiffler's Talk:
Theorem. (M-Schiffler 2008) For every triangulation T (in a surface without punctures) and arc γ, we construct a snake graph $G_{\gamma, T}$ such that

$$
x_{\gamma}=\frac{\sum_{\text {perfect matching } M \text { of } G_{\gamma, T}} x(M) y(M)}{x_{1}^{e_{1}(T, \gamma)} x_{2}^{e_{2}(T, \gamma)} \cdots x_{n}^{e_{n}(T, \gamma)}}
$$

where $e_{i}(T, \gamma)$ is the crossing number of τ_{i} and γ, and $x(M), y(M)$ are each monomials. (x_{γ} is cluster variable with principal coefficients.)

Definition. Given a simple undirected graph $G=(V, E)$, a perfect matching $M \subseteq E$ is a set of distinguished edges so that every vertex of V is covered exactly once. (Each edge has weight $x(e)$ where $x(e)$ is allowed to be 1 (unweighted) or some variable x_{i}.)

The weight of a matching M is the product of the weights of the constituent edges, i.e. $x(M)=\prod_{e \in M} x(e)$.

Example of Octagon

Example of Octagon

Recall that are 5 completed (T, γ)-paths of this octagon, with weights

$$
\frac{x_{3}^{2}+x_{3} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{1} x_{5}}{x_{1} x_{3} x_{5}}
$$

Example of Octagon (continued)

Consider the graph $G_{T_{o}, \gamma}=$

$G_{T_{O}, \gamma}$ has five perfect matchings $\left(x_{7}, x_{8}, \ldots, x_{13}=1\right)$:

$$
x_{3}\left(x_{8}\right) x_{3}\left(x_{13}\right),
$$

$x_{3}\left(x_{8}\right) x_{4}\left(x_{11}\right)$,

$\left(x_{7}\right) x_{2} x_{4}\left(x_{11}\right)$,

$\left(x_{7}\right) x_{1} x_{5}\left(x_{11}\right)$.

Example of Octagon (continued)

Consider the graph $G_{T_{o}, \gamma}=$

$G_{T_{O}, \gamma}$ has five perfect matchings $\left(x_{7}, x_{8}, \ldots, x_{13}=1\right)$:

$$
x_{3}\left(x_{8}\right) x_{3}\left(x_{13}\right),
$$

$\left(x_{7}\right) x_{2} x_{4}\left(x_{11}\right)$,

$$
\left(x_{7}\right) x_{1} x_{5}\left(x_{11}\right)
$$

Dividing each monomial by $x_{1} x_{3} x_{5}$, we obtain weights of (T, γ)-paths.

How to construct $G_{T, \gamma}$'s (unpunctured surfaces)

Definition. For $1 \leq i \leq n$ (i.e. all $\tau_{i} \in T$), define Tile $\overline{S_{i}}$ to be (weighted) triangulated quadrilateral homeomorphic to the quadrilateral bounding arc τ_{i} in surface S. (Diagonal NW - SE and opposite sides still opposite)

How to construct $G_{T, \gamma}$'s (unpunctured surfaces)

Definition. For $1 \leq i \leq n$ (i.e. all $\tau_{i} \in T$), define Tile $\overline{S_{i}}$ to be (weighted) triangulated quadrilateral homeomorphic to the quadrilateral bounding arc τ_{i} in surface S. (Diagonal NW - SE and opposite sides still opposite)
(1) Now given arc γ : Pick orientation of $\gamma: s \rightarrow t$.
(2) Label $p_{0}=s, p_{1}, \ldots, p_{d}, p_{d+1}=t$, the intersection points of γ with $T\left(p_{j} \in \tau_{i_{j}}\right)$.

How to construct $G_{T, \gamma}$'s (unpunctured surfaces)

Definition. For $1 \leq i \leq n$ (i.e. all $\tau_{i} \in T$), define Tile $\overline{S_{i}}$ to be (weighted) triangulated quadrilateral homeomorphic to the quadrilateral bounding arc τ_{i} in surface S. (Diagonal NW - SE and opposite sides still opposite)
(1) Now given arc γ : Pick orientation of $\gamma: s \rightarrow t$.
(2) Label $p_{0}=s, p_{1}, \ldots, p_{d}, p_{d+1}=t$, the intersection points of γ with $T\left(p_{j} \in \tau_{i j}\right)$.
(3) Let Δ_{i} (for $1 \leq j \leq d-1$) denote the triangles bounded by arcs $\tau_{i_{j}}$ and $\tau_{i_{j+1}}$. (Δ_{0} and Δ_{d} denote the first and last triangles that γ traverses.)
(9) Let $\left[\gamma_{j}\right]$ denote the third side of Δ_{j} for $1 \leq j \leq d-1$.

How to construct $G_{T, \gamma}$'s (unpunctured surfaces)

Definition. For $1 \leq i \leq n$ (i.e. all $\tau_{i} \in T$), define Tile $\overline{S_{i}}$ to be (weighted) triangulated quadrilateral homeomorphic to the quadrilateral bounding arc τ_{i} in surface S. (Diagonal NW - SE and opposite sides still opposite)
(1) Now given arc γ : Pick orientation of $\gamma: s \rightarrow t$.
(2) Label $p_{0}=s, p_{1}, \ldots, p_{d}, p_{d+1}=t$, the intersection points of γ with $T\left(p_{j} \in \tau_{i j}\right)$.
(3) Let Δ_{i} (for $1 \leq j \leq d-1$) denote the triangles bounded by arcs $\tau_{i_{j}}$ and $\tau_{i_{j+1}}$. (Δ_{0} and Δ_{d} denote the first and last triangles that γ traverses.)
(9) Let $\left[\gamma_{j}\right]$ denote the third side of Δ_{j} for $1 \leq j \leq d-1$.
(3) By convention Let $\overline{G_{\gamma, 1}}:=\overline{S_{i_{1}}}$.

How to construct $G_{T, \gamma}$'s (unpunctured surfaces)

Definition. For $1 \leq i \leq n$ (i.e. all $\tau_{i} \in T$), define Tile $\overline{S_{i}}$ to be (weighted) triangulated quadrilateral homeomorphic to the quadrilateral bounding arc τ_{i} in surface S. (Diagonal NW - SE and opposite sides still opposite)
(1) Now given arc γ : Pick orientation of $\gamma: s \rightarrow t$.
(2) Label $p_{0}=s, p_{1}, \ldots, p_{d}, p_{d+1}=t$, the intersection points of γ with $T\left(p_{j} \in \tau_{i_{j}}\right)$.
(3) Let Δ_{i} (for $1 \leq j \leq d-1$) denote the triangles bounded by arcs $\tau_{i_{j}}$ and $\tau_{i_{j+1}}$. (Δ_{0} and Δ_{d} denote the first and last triangles that γ traverses.)
(9) Let $\left[\gamma_{j}\right]$ denote the third side of Δ_{j} for $1 \leq j \leq d-1$.
(3) By convention Let $\overline{G_{\gamma, 1}}:=\overline{S_{i_{1}}}$.
(c) Inductively attach tile $\overline{S_{i_{j+1}}}$ to graph $\overline{G_{\gamma, j}}$ to obtain $\overline{G_{\gamma, j+1}}$.

How to construct $G_{T, \gamma}$'s (unpunctured surfaces)

Definition. For $1 \leq i \leq n$ (i.e. all $\tau_{i} \in T$), define Tile $\overline{S_{i}}$ to be (weighted) triangulated quadrilateral homeomorphic to the quadrilateral bounding arc τ_{i} in surface S. (Diagonal NW - SE and opposite sides still opposite)
(1) Now given arc γ : Pick orientation of $\gamma: s \rightarrow t$.
(2) Label $p_{0}=s, p_{1}, \ldots, p_{d}, p_{d+1}=t$, the intersection points of γ with $T\left(p_{j} \in \tau_{i_{j}}\right)$.
(3) Let Δ_{i} (for $1 \leq j \leq d-1$) denote the triangles bounded by arcs $\tau_{i_{j}}$ and $\tau_{i_{j+1}}$. (Δ_{0} and Δ_{d} denote the first and last triangles that γ traverses.)
(9) Let $\left[\gamma_{j}\right]$ denote the third side of Δ_{j} for $1 \leq j \leq d-1$.
(3) By convention Let $\overline{G_{\gamma, 1}}:=\overline{S_{i_{1}}}$.
(0) Inductively attach tile $\overline{S_{j+1}}$ to graph $\overline{G_{\gamma, j}}$ to obtain $\overline{G_{\gamma, j+1}}$. (N or E edge of $\overline{G_{\gamma, j}}$ agrees with tile $\overline{S_{i_{j+1}}}: N \leftrightarrow E$ and $S \leftrightarrow W$)

How to construct $G_{T, \gamma}$'s (unpunctured surfaces)

Definition. For $1 \leq i \leq n$ (i.e. all $\tau_{i} \in T$), define Tile $\overline{S_{i}}$ to be (weighted) triangulated quadrilateral homeomorphic to the quadrilateral bounding arc τ_{i} in surface S. (Diagonal NW - SE and opposite sides still opposite)
(1) Now given arc γ : Pick orientation of $\gamma: s \rightarrow t$.
(2) Label $p_{0}=s, p_{1}, \ldots, p_{d}, p_{d+1}=t$, the intersection points of γ with $T\left(p_{j} \in \tau_{i_{j}}\right)$.
(3) Let Δ_{i} (for $1 \leq j \leq d-1$) denote the triangles bounded by arcs $\tau_{i_{j}}$ and $\tau_{i_{j+1}}$. (Δ_{0} and Δ_{d} denote the first and last triangles that γ traverses.)
(9) Let $\left[\gamma_{j}\right]$ denote the third side of Δ_{j} for $1 \leq j \leq d-1$.
(3) By convention Let $\overline{G_{\gamma, 1}}:=\overline{S_{i_{1}}}$.
(0) Inductively attach tile $\overline{S_{j+1}}$ to graph $\overline{G_{\gamma, j}}$ to obtain $\overline{G_{\gamma, j+1}}$. (N or E edge of $\overline{G_{\gamma, j}}$ agrees with tile $\overline{S_{i_{j+1}}}: N \leftrightarrow E$ and $S \leftrightarrow W$)
(7) We define $\overline{G_{T, \gamma}}$ to be $\overline{G_{\gamma, d}}$.

How to construct $G_{T, \gamma}$'s (unpunctured surfaces)

Definition. For $1 \leq i \leq n$ (i.e. all $\tau_{i} \in T$), define Tile $\overline{S_{i}}$ to be (weighted) triangulated quadrilateral homeomorphic to the quadrilateral bounding arc τ_{i} in surface S. (Diagonal $N W-S E$ and opposite sides still opposite)
(1) Now given arc γ : Pick orientation of $\gamma: s \rightarrow t$.
(2) Label $p_{0}=s, p_{1}, \ldots, p_{d}, p_{d+1}=t$, the intersection points of γ with $T\left(p_{j} \in \tau_{i_{j}}\right)$.
(3) Let Δ_{i} (for $1 \leq j \leq d-1$) denote the triangles bounded by arcs $\tau_{i_{j}}$ and $\tau_{i_{j+1}}$. (Δ_{0} and Δ_{d} denote the first and last triangles that γ traverses.)
(9) Let $\left[\gamma_{j}\right]$ denote the third side of Δ_{j} for $1 \leq j \leq d-1$.
(3) By convention Let $\overline{G_{\gamma, 1}}:=\overline{S_{i_{1}}}$.
(c) Inductively attach tile $\overline{S_{j+1}}$ to graph $\overline{G_{\gamma, j}}$ to obtain $\overline{G_{\gamma, j+1}}$. (N or E edge of $\overline{G_{\gamma, j}}$ agrees with tile $\overline{S_{i_{j+1}}}: N \leftrightarrow E$ and $S \leftrightarrow W$)
(1) We define $\overline{G_{T, \gamma}}$ to be $\overline{G_{\gamma, d}}$.
(Erase diagonals to obtain $G_{T, \gamma}$.)

Examples of $G_{T, \gamma}$

Example 1. Use above construction for

Thus

Examples of $G_{T, \gamma}$ (continued)

Example 2. We now construct graph $G_{T_{A}, \gamma}$.

Examples of $G_{T, \gamma}$ (continued)

Example 2. We now construct graph $G_{T_{A}, \gamma}$.

Height Functions (of Perfect Matchings of Snake Graphs)

We now wish to give formula for $y(M)$'s, i.e. the terms in the F-polynomials.

Height Functions (of Perfect Matchings of Snake Graphs)

We now wish to give formula for $y(M)$'s, i.e. the terms in the F-polynomials.

Definiton. [W. Thurston-Conway] (Following description of [Elkies-Larsen-Kuperberg-Propp])

Given a snake graph G, up to orientation, there is a choice of minimal matching (M_{-}) which consists of every-other edge on the boundary.

Height Functions (of Perfect Matchings of Snake Graphs)

We now wish to give formula for $y(M)$'s, i.e. the terms in the F-polynomials.

Definiton. [W. Thurston-Conway] (Following description of [Elkies-Larsen-Kuperberg-Propp])
Given a snake graph G, up to orientation, there is a choice of minimal matching (M_{-}) which consists of every-other edge on the boundary.

Given any other matching M, let $M \ominus M_{-}$denote the symmetric difference.
The height $h_{M}: \operatorname{Faces}(G) \rightarrow \mathbb{Z}_{\geq 0}$ of matching M is a function recording which faces are enclosed by $M \ominus M_{-}$.

Height Functions (of Perfect Matchings of Snake Graphs)

We now wish to give formula for $y(M)$'s, i.e. the terms in the F-polynomials.

Definiton. [W. Thurston-Conway] (Following description of [Elkies-Larsen-Kuperberg-Propp])
Given a snake graph G, up to orientation, there is a choice of minimal matching (M_{-}) which consists of every-other edge on the boundary.

Given any other matching M, let $M \ominus M_{-}$denote the symmetric difference.
The height $h_{M}: \operatorname{Faces}(G) \rightarrow \mathbb{Z}_{\geq 0}$ of matching M is a function recording which faces are enclosed by $M \ominus M_{-}$.

For snake graphs, $h_{M}(F) \in\{0,1\}$ and we obtain the formula

$$
y(M):=\prod_{i} y_{i} \sum_{\text {Faces Labeled } i} h_{M}(F)
$$

Height Function Examples

Recall that $G_{T_{0, \gamma}}$ has three faces, labeled 1, 3 and 5 . $G_{T_{0}, \gamma}$ has five perfect matchings $\left(x_{7}, x_{8}, \ldots, x_{13}=1\right)$:

$x_{3}^{2} y_{1} y_{3} y_{5}$,

$x_{2} x_{3} y_{3} y_{5}$,

$x_{3} x_{4} y_{1} y_{3}$,

$x_{2} x_{4} y_{3}$,

$x_{1} x_{5}(1)$.
$\left(\longleftarrow\right.$ This matching is $\left.M_{-}.\right)$

Height Function Examples

Recall that $G_{T_{0, \gamma}}$ has three faces, labeled 1, 3 and 5 . $G_{T_{0, \gamma}}$ has five perfect matchings $\left(x_{7}, x_{8}, \ldots, x_{13}=1\right)$:

$$
x_{3}^{2} y_{1} y_{3} y_{5}
$$

$x_{2} x_{3} y_{3} y_{5}$,

$x_{3} x_{4} y_{1} y_{3}$,

$x_{2} x_{4} y_{3}$,

$\left(\longleftarrow\right.$ This matching is $\left.M_{-}.\right)$
For example, we get heights $y_{1} y_{3}, y_{3}$, and $y_{3} y_{5}$ because of superpositions:

Height Function Examples (continued)

Height Function Examples (continued)

Height Function Examples (continued)

Height Function Examples (continued)

which has height $y_{1} y_{2}^{2}$. So one of the 17 terms in the cluster expansion of x_{γ} is

$$
\frac{x_{4}^{2} x_{2}}{x_{1}^{2} x_{2}^{2} x_{3} x_{4}}\left(y_{1} y_{2}^{2}\right) .
$$

Summary

Theorem. (M-Schiffler 2008) For every triangulation T of unpunctured surface and arc γ, we construct a snake graph $G_{\gamma, T}$ such that

$$
x_{\gamma}=\frac{\sum_{\text {perfect matching } M \text { of } G_{\gamma, T}} x(M) y(M)}{x_{1}^{e_{1}(T, \gamma)} x_{2}^{e_{2}(T, \gamma)} \cdots x_{n}^{e_{n}(T, \gamma)}}
$$

where $e_{i}(T, \gamma)$ is the crossing number of τ_{i} and $\gamma, x(M)$ is the edge-weight of perfect matching M, and $y(M)$ is the height of perfect matching M. (x_{γ} is cluster variable with principal coefficients.)

Summary

Theorem. (M-Schiffler 2008) For every triangulation T of unpunctured surface and arc γ, we construct a snake graph $G_{\gamma, T}$ such that

$$
x_{\gamma}=\frac{\sum_{\text {perfect matching } M \text { of } G_{\gamma, T}} x(M) y(M)}{x_{1}^{e_{1}(T, \gamma)} x_{2}^{e_{2}(T, \gamma)} \cdots x_{n}^{e_{n}(T, \gamma)}}
$$

where $e_{i}(T, \gamma)$ is the crossing number of τ_{i} and $\gamma, x(M)$ is the edge-weight of perfect matching M, and $y(M)$ is the height of perfect matching M. (x_{γ} is cluster variable with principal coefficients.)

Corollary. The F-polynomial equals $\sum_{M} y(M)$, is positive, and has constant term 1.

The g-vector satisfies $\mathbf{x}^{g}=x\left(M_{-}\right)$.
Corollary. The Laurent expansion of cluster variable x_{γ} is positive for any cluster algebra (of geometric type) arising from a triangulated surface without punctures.

Partially Generalizes Earlier Work on Classical Types

Theorem. (M 2007) For every classical root system, let B_{Φ} denote the corresponding bipartite seed (without coefficients). Then there exists a family of graphs $\mathcal{G}_{\Phi}=\left\{G_{\alpha}\right\}_{\alpha \in \Phi_{+}}$such that x_{α}, the cluster variable of $\mathcal{A}\left(B_{\Phi}\right)$ corresponding to $\alpha \in \Phi_{+}$, can be expressed as

$$
x_{\alpha}=\frac{P_{G_{\alpha}}\left(x_{1}, \ldots, x_{n}\right)}{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}}
$$

Further, we will construct the graphs in a very simple manner using the tiles T_{k}.

Tiles for the four classical types

Graphs for A_{n} and C_{n}

A_{5}

2	3	4	5

1	2	3	4

4	5

2	3	4

Graphs for A_{n} and C_{n} (cont.)

C_{3} folds onto A_{5} (Take right-half including middle)

Tiles for the four classical types (cont.)

The B_{n} and D_{n} cases

$B_{4} \quad$ After mutating with respect to x_{1} and $x_{3}\left(x_{2}\right.$ and $\left.x_{4}\right)$, we obtain
3

The B_{n} and D_{n} cases (cont.)

The B_{n} and D_{n} cases (cont.)

The B_{n} and D_{n} cases (cont.)

D_{5}

The B_{n} and D_{n} cases (cont.)

D_{5} (cont.)

The B_{n} and D_{n} cases (cont.)

D_{5} (cont.)

The B_{n} and D_{n} cases (cont.)

D_{5} (cont.)

Seed matrix is $B=\left[\begin{array}{cc}0 & 1 \\ -3 & 0\end{array}\right]$ Hexagon has x_{1} on NW, NE, and S sides, Trapezoid has x_{2} on N side.

Affine Rank 2

Joint work with Jim Propp.
Let $B=\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]$ or $\left[\begin{array}{cc}0 & -4 \\ 1 & 0\end{array}\right]$.
Here we also exploit invariance of matrices B under mutation.
So we are considering (b, c)-sequence

$$
x_{n} x_{n-2}=\left\{\begin{array}{l}
x_{n-1}^{b}+1 \text { if } n \text { odd } \\
x_{n-1}^{c}+1 \text { if } n \text { even }
\end{array}\right.
$$

for $(b, c)=(2,2)$ or $(1,4)$.

Affine Rank 2 (cont.)

Since cluster algebra structure, (b, c) sequence consists of Laurent polynomials.

Work of Sherman and Zelevinsky verifies positive coefficients for $(1,4)$ and $(2,2)$ using Newton polytope, and Caldero-Zelevinsky give another proof of positivity for $(2,2)$ case via Quiver Grassmannians.

This cluster algebra also comes from an annulus with one marked point on each boundary (no punctures).

Equivalently, this is a cluster algebra of affine type $\widetilde{A}_{1,1}$.
We give proof of positivity via graph theoretical interpretation similar to above.

Affine Rank 2 (cont.)

$(2,2)$: all cluster variables have denominators $x_{1}^{d} x_{2}^{d+1}$ (resp. $x_{1}^{d+1} x_{2}^{d}$) We string together corresponding number of sqares

in an intertwining fashion.

Affine Rank 2 (cont.)

$(2,2)$: all cluster variables have denominators $x_{1}^{d} x_{2}^{d+1}$ (resp. $x_{1}^{d+1} x_{2}^{d}$) We string together corresponding number of sqares

in an intertwining fashion.
Examples:

$\frac{x_{2}{ }^{4}+2 x_{2}{ }^{2}+1+x_{1}{ }^{2}}{x_{1}{ }^{2} x_{2}} \leftrightarrow$| 1 | 2 | 1 |
| :--- | :--- | :--- |

$\frac{x_{1}{ }^{6}+3 x_{1}{ }^{4}+3 x_{1}{ }^{2}+2 x_{2}{ }^{2} x_{1}{ }^{2}+x_{2}{ }^{4}+1+2 x_{2}{ }^{2}}{x_{2}{ }^{3} x_{1}{ }^{2}} \leftrightarrow$| 2 | 1 | 2 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- |

Affine Rank 2 (cont.)

$(1,4)$: Tiles are a square and an octagon:

Sequnce Continues

$x_{6} \quad 386$ terms

Sequnce Continues (cont.)

$x_{8} \quad 8857$ terms

$X 9$
206 terms

Running the $(1,4)$ sequence backwards

Running the $(1,4)$ sequence backwards (cont.)

X_{-5}
67 terms

321 terms

$x_{-8} 493697$ terms

Markoff polynomials

Joint work by Carroll, Itsara, Le, M, Price, Thurston, and Viana under Propp in REACH program.

$$
B=\left[\begin{array}{ccc}
0 & 2 & -2 \\
-2 & 0 & 2 \\
2 & -2 & 0
\end{array}\right], \quad \text { Exchange graph is free ternary tree. }
$$

B invariant under mutation. All exchanges have form $(x, y, z) \mapsto\left(x^{\prime}, y, z\right)$ where $x x^{\prime}=y^{2}+z^{2}$.
(Cluster algebra corresponds to once punctured torus.)

Markoff polynomials

Joint work by Carroll, Itsara, Le, M, Price, Thurston, and Viana under Propp in REACH program.

$$
B=\left[\begin{array}{ccc}
0 & 2 & -2 \\
-2 & 0 & 2 \\
2 & -2 & 0
\end{array}\right], \quad \text { Exchange graph is free ternary tree. }
$$

B invariant under mutation. All exchanges have form $(x, y, z) \mapsto\left(x^{\prime}, y, z\right)$ where $x x^{\prime}=y^{2}+z^{2}$.
(Cluster algebra corresponds to once punctured torus.)
These also have graph theoretic interpretation: Snake Graphs, .e.g

Work in Progress with Ralf Schiffler and Lauren Williams

- Theorem. Formulas for F-polynomials and g-vectors for types A, B, C, D with respect to any seed (not nec. acyclic).
- In Progress. Snake Graph Interpretations for Triangulated Surfaces (even in prescence of punctures).

Thank You For Listening

Cluster Expansion Formulas and Perfect Matchings (with Ralf Schiffler), arXiv:math.CO/0810.3638

A Graph Theoretic Expansion Formula for Cluster Algebras of Classical Type, http://www-math.mit.edu/~ musiker/Finite.pdf, (To appear in the Annals of Combinatorics)

Combinatorial Interpretations for Rank-Two Cluster Algebras of Affine Type (with Jim Propp), Electronic Journal of Combinatorics. Vol. 14 (R15), 2007.

The Combinatorics of Frieze Patterns and Markoff Numbers (by Jim Propp), arXiv:math.C0/0511633

Slides Available at http//math.mit.edu/~ musiker/GraphTalk.pdf

