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1 Introduction

A tropical curve is a combinatorial or graph-theorectic analogue of an alge-
braic curve or a Riemann surface. Divisors, ranks of divisors, linear systems,
and Jacobians on tropical curves have been studied recently by other authors
[Bak08,BF06,BF09,BN07,CDPR10,GK08,MZ06]. A Riemann-Roch Theorem
for tropical curves was proven independently by Gathmann and Kerber [GK08]
and by Mikhalkin and Zharkov [MZ06], using the work of Baker and Norine
for finite graphs [BN07]. The tropical Jacobian was studied by Mikhalkin and
Zharkov [MZ06] and by Baker and Faber [BF09]. In [Bak08], Baker showed
that the rank of a linear system cannot decrease when specializing from an
arithmetic surface to a graph or a tropical curve. Using this result, Cools,
Draisma, Payne, and Robeva gave a new proof the Brill-Noether Theorem
[CDPR10]. In this paper, we study linear systems on tropical curves from an
abstract combinatorial piont of view. We give combinatorial proofs of some
results about linear systems on tropical curves that are analogous to those
about algebraic curves, and we give examples where this analogy fails.

An abstract tropical curve Γ is a connected metric graph with possibly
unbounded edges. A divisor D on Γ is a formal finite Z-linear combination
D =

∑
x∈Γ D(x) · x of points of Γ . The degree of a divisor is the sum of the

coefficients,
∑
xD(x). The divisor is effective if D(x) ≥ 0 for all x ∈ Γ ; in this

case we write D ≥ 0. We call supp(D) = {x ∈ Γ : D(x) 6= 0} the support of
the divisor D.

A (tropical) rational function f on Γ is a continuous function f : Γ → R
that is piecewise-linear on each edge with finitely many pieces and integral
slopes. The order ordx(f) of f at a point x ∈ Γ is the sum of outgoing slopes
at x. The principal divisor associated to f is

(f) :=
∑
x∈Γ

ordx(f) · x.

A point x ∈ Γ is called a zero of f if ordx(f) > 0 and a pole of f if ordx(f) <
0. We call two divisors D and D′ linearly equivalent and write D ∼ D′ if
D − D′ = (f) for some f . For any divisor D on Γ , let R(D) be the set of
all rational functions f on Γ such that the divisor D + (f) is effective, and
|D| = {D′ ≥ 0 : D′ ∼ D}, the linear system of D. Let 1 denote the set of
constant functions on Γ .

The set R(D) is naturally embedded in the set RΓ of all real-valued func-
tions on Γ , and |D| is a subset of the dth symmetric product of Γ where
d = deg(D). The map R(D)/1 → |D| given by f 7→ D + (f) is a homeomor-
phism from R(D)/1 to |D|. It was shown in [GK08,MZ06] that |D| is a cell
complex, so is R(D)/1. Our aim is to study the combinatorial and algebraic
structure of this object R(D).

In Section 2 we give definitions and state linear equivalence in terms of
weighted chip firing moves, which are continuous analogues of the chip firing
games on finite graphs. In Section 3 we show that R(D) is a finitely generated
tropical semi-module and describe a generating set. In Section 4, we study the
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cell complex structure of |D|. We show that the vertex set of |D| coincides with
the generating set of R(D) described in Section 3. We give a triangulation of
the link of each cell as the order complex of a poset of possible weighted chip
firing moves.

Any finite set F of linearly equivalent divisors induces a map φF from the
abstract curve to a tropical projective space. This map is described in Section
5. If F generates R(D), we show that the tropical convex hull of the image of
this map is homeomorphic to |D|. The image of this map φF can be naturally
modified to an embedded tropical curve, and we show in Section 6 that the
embedded curve has the same degree as the divisor that we start with if the
linear system of the divisor is base point free. In Section 7, we show that every
divisor of positive degree is ample. We also show that if the canonical divisor
is not very ample, then the tropical curve is hyperelliptic (but not vice versa).
Finally in Section 8, we show that the Picard group of a Q-tropical curve is
the direct limit of Picard groups for finite graphs obtained by subdividing the
edges.
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2 Metric graphs, rational functions, and chip-firing

A metric graph Γ is a complete connected metric space such that each point
x ∈ Γ has a neighborhood Ux isometric to a star-shaped set of valence val(x) ≥
1 endowed with the path metric. To be precise, a star-shaped set of valence v
is a set of the form

S(v, r) = {z ∈ C : z = te2πik/v for some 0 ≤ t < r and k ∈ Z}.

The points x ∈ Γ with valence different from 2 are precisely those where Γ
fails to look locally like an open interval. Accordingly, we refer to a point of
valence 2 as a smooth point.

Let V (Γ ) be any finite nonempty subset of Γ such that V (Γ ) contains all
of the points with val(x) 6= 2. Then Γ \ V (Γ ) is a finite disjoint union of open
intervals. For a metric graph Γ , we say that a choice of such V (Γ ) gives rise
to a model G(Γ ) for Γ . Each edge has a nonzero length inherited from the
metric space Γ .

Let V0(Γ ) = {x ∈ Γ : val(x) 6= 2}, where val denotes the valence of a
vertex of V (Γ ). Unless Γ is a circle, V0(Γ ) gives a model. For some of our
applications, we may choose a model whose vertex set is strictly bigger than
V0(Γ ). However unless otherwise specified, the reader may assume that G(Γ )
denotes the coarsest model and that a vertex is an element of V0(Γ ).
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A tropical curve is a metric graph in which the leaf edges may have length
∞. A leaf edge is an edge adjacent to a one-valent vertex. Note that we add a
“point at infinity” for each unbounded edge. A tropical rational function on a
tropical curve may attain values ±∞ at points at infinity.

We will use the term subgraph in a topological sense, that is, as a compact
subset of a tropical curve Γ with a finite number of connected components.
For a subgraph Γ ′ ⊂ Γ and a positive real number l, the chip firing move
CF(Γ ′, l) by a (not necessarily connected) subgraph is the tropical rational
function CF(Γ ′, l)(x) = −min(l,dist(x, Γ ′)). It is constant 0 on Γ ′, has slope
−1 in the l-neighborhood of Γ ′ directed away from Γ ′, and it is constant −l
on the rest of the graph. We will sometimes refer to an effective divisor D as a
chip configuration. For example, for D = c1 ·x1 + · · ·+cn ·xn, we say that there
are ci chips at the point xi ∈ Γ . The total number of chips is the degree of the
divisor. We say that a subgraph Γ ′ ⊂ Γ can fire if for each boundary point of
Γ ′ there are at least as many chips as the number of edges pointing out of Γ ′.
In other words, Γ ′ can fire if the divisor D + (CF(Γ ′, l)) is effective for some
positive real number l. The chip configuration D+(CF(Γ ′, l)) is then obtained
from D by moving one chip from the boundary of Γ ′ along each edge out of
Γ ′ by distance l. Here we assume that l was chosen to be small enough so that
the chips do not pass through each other or pass through a non-smooth point.

We will now show that these chip firing moves are enough to move be-
tween linearly equivalent divisors (Proposition 3 below). To this end, call a
tropical rational function f a weighted chip firing move if there are two dis-
joint (not necessarily connected) proper closed subgraphs Γ1 and Γ2 such that
the complement Γ \ (Γ1 ∪ Γ2) consists only of open line segments and such
that f is constant on Γ1 and Γ2 and linear (smooth) with integer slopes on
the complement.

A weighted chip firing move f can also be thought of as a combinatorial
transformation that acts on chip configurations. Such transformations move
chips from the boundary of Γ2 along the open line segments in the complement
Γ \ (Γ1 ∪ Γ2). (Here we assume w.l.o.g. that f(Γ2) > f(Γ1).) During this
process, a law of conservation of momentum holds so that a stack of m chips
that move together will only move a distance of l/m. The numbers l and m
can be different on each component of the complement. Note that a (simple)
chip firing move CF(Γ ′, l) with small l is a special case of a weighted chip
firing move when all the slopes are 0 or ±1.

Lemma 1 A weighted chip firing move is an (ordinary) sum of chip firing
moves (plus a constant).

Proof Let f be a weighted chip firing move and Γ1 and Γ2 be as above. Then

Γ \ (Γ1 t Γ2) = L1 t L2 t · · · t Lk

where the Li’s are open line segments between Γ1 and Γ2.
Suppose f(Γ2) − f(Γ1) = ` > 0. Consequently, the slope of f on segment

Li (viewed in the direction from Γ1 to Γ2) must be si = `/|Li| ∈ Z where |Li|
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is the length of edge Li. Let s be the least common multiple of all the si, and
we let the ki’s be the integers such that s = kisi. Then each Li has length
kiuΓ where uΓ = `

s . (In other words, by setting uΓ to be a unit length, we
obtain a rescaled version of Γ such that each rescaled Li is of integral length.)

For j = 0, . . . , s − 1 we build the subgraph Γ ′j from Γ2 by attaching a
subsegment of length bj/sicuΓ of each Li. Then f is the sum of the chip firing
moves CF(Γ ′j , uΓ ).

The following lemma makes the connection between R(D) and chip firing
games.

Lemma 2 Every tropical rational function is an (ordinary) sum of chip firing
moves (plus a constant).

Proof Let f be a tropical rational function on Γ . Let S be the finite subset
of Γ consisting of vertices of Γ and the corner locus (zeroes and poles) of f .
Let f(S) ⊂ R be the set of values of f at points in S. We will proceed by
induction on the size of f(S). If f(S) contains only one or two values, then f
is either a constant function or already a weighted chip firing move. Suppose
f(S) contains at least three values. Let c ∈ f(S) be a value that is neither
the maximum nor the minimum in f(S). Let f1, f2 be new tropical rational
functions defined as f1(x) = min(c, f(x)) and f2(x) = max(c, f(x)) for all
x ∈ Γ . Then f = f1 +f2−c. Let S1, S2 be the sets consisting of the corner loci
of f1, f2 respectively, together with the vertices of Γ . Both f1(S1) and f2(S2)
have strictly fewer elements than f(S), and the assertion follows by induction.

Note that even if we start with a tropical rational function f ∈ R(D), the
sequence of weighted chip firing moves f1, . . . , fn for which f = f1 + · · ·+ fn
may not be in R(D), i.e. the divisors D + (fi) may not be effective although
D + (f) is.

The following proposition follows easily from the two previous lemmas.

Proposition 3 Two divisors are linearly equivalent if and only if one can be
attained from the other using chip firing moves.

3 Extremals and Generators of R(D)

The tropical semiring (R,⊕,�) is the set of real numbers R with two tropical
operations:

a⊕ b = max(a, b), and a� b = a+ b.

The space R(D) is naturally a subset of the space RΓ of real-valued functions
on Γ . For f, g ∈ RΓ , and a ∈ R the tropical sum f ⊕ g and the tropical scalar
multiplication a� f are defined by taking tropical sums and tropical products
pointwise.

Lemma 4 The space R(D) is a tropical semi-module, i.e. it is closed under
tropical addition and tropical scalar multiplication.
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Proof It is clear that (c � f) = (f) for any c ∈ R and any tropical rational
function f , so R(D) is closed under tropical scalar multiplication. Let f, g ∈
R(D) and x ∈ Γ . If f(x) > g(x), then ordx(f ⊕ g) = ordx(f). If f(x) <
g(x), then ordx(f ⊕ g) = ordx(g). If f(x) = g(x), then for each direction
−→v , the outgoing slope of f ⊕ g in the neighborhood of x in the direction
−→v is the maximum of each outgoing slope in the direction −→v of f and g,
so ordx(f ⊕ g) ≥ ordx(f). Hence ordx(f ⊕ g) + D(x) ≥ 0 for all x ∈ Γ , so
f ⊕ g ∈ R(D).

Tropical semi-modules in Rn are also called tropically convex sets [DS04].
Since R(D + (f)) = R(D) + f , the tropical algebraic structure of R(D) does
not depend on the choice of the representative D. An element f ∈ R(D) is
called extremal if for any g1, g2 ∈ R(D), f = g1 ⊕ g2 =⇒ f = g1 or f = g2.
An element f is an extremal if and only if all its tropical scalar multiples c�f
also are extremals. Any generating set of R(D) must contain all extremals up
to tropical scalar multiplication.

Lemma 5 A tropical rational function f is an extremal of R(D) if and only
if there are not two proper subgraphs Γ1 and Γ2 covering Γ (i.e. Γ1 ∪ Γ2 = Γ )
such that each can fire on D + (f).

Proof Suppose that there are two such graphs that can fire. The corresponding
rational functions g1, g2 can be chosen so that gi is zero on Γi, and they are
non-positive. Since Γ1 ∪ Γ2 = Γ , g1 ⊕ g2 = 0, so (f + g1)⊕ (f + g2) = f and f
is not an extremal.

Now suppose f = g1 ⊕ g2 for some g1, g2 6= f in R(D). Let Γi be the loci
where f = gi. Then Γ1 ∪ Γ2 = Γ . Let εi > 0 be such that gi is smooth in the
εi-neighborhood of Γi, outside of Γi. Then each Γi can fire distance εi.

A cut set of a graph Γ is a set of points A ⊂ Γ such that Γ\A is not
connected. A smooth cut set is a cut set consisting of smooth points (2-valent
points). Note that being a smooth cut set depends only on the topology of Γ
and is not affected by the choice of model G(Γ ).

Theorem 6 Let S be the set of rational functions f ∈ R(D) such that the
support of D + (f) does not contain a smooth cut set. Then

(a) S contains all the extremals of R(D),
(b) S is finite modulo tropical scaling, and
(c) S generates R(D) as a tropical semi-module.

For the proof of (b) we need a boundedness lemma.

Lemma 7 For D ≥ 0 every slope of f ∈ R(D) is bounded by degD.

This improves the bound in [GK08, Lemma 1.8].

Proof Let f ∈ R(D) and suppose the slope of f at x ∈ Γ is m > 0. Consider
the connected component Γ containing x in the tropical curve f−1([f(x),∞]).
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Let f̄ denote the restriction of f to Γ . The order of the restricted principal
divisor at x satisfies ordx(f̄) ≥ m, and because deg(f̄) = 0, the degree of the
negative part of (f̄) is at least m. Now, D ≥ 0 and D + (f) ≥ 0 imply that
degD ≥ m.

Proof (Proof of Theorem 6) (a) Suppose f /∈ S, then D + (f) splits Γ into
two subgraphs Γ1 and Γ2. Both of these graphs can fire, and the union of their
closures is the entire Γ , so by Lemma 5, f is not an extremal.

(b) Let f ∈ S. The support of D+(f) meets the interior of each edge in at
most one point, because two points on the same edge form a smooth cut set.
Removing the set of edges meeting the support of D+(f) does not disconnect
Γ , and so the remaining edges contain a spanning tree of Γ .

There are finitely many spanning trees in a graph, and there are finitely
many possible slopes for each edge in this spanning tree because of Lemma 7.
Therefore, the number of possible values of f on vertices of Γ is finite modulo
tropical scaling. (Here, vertices are non-smooth points. If Γ is a circle, then
fix any point as a vertex.)

On each non-tree edge, knowing the values and the slopes of f at the two
end points uniquely determines f , given the fact that all the chips of D + (f)
must fall on the same point of a given edge. We conclude that S is finite
modulo tropical scaling.

(c) Let f be an arbitrary function in R(D). We need to show that f can be
written as a finite tropical sum of elements of S. Let N(f) be the number of
smooth points in supp(D+(f)). If f is not already in S, then there is a smooth
cut set A and two components Γ1 and Γ2. Let g1 and g2 be the weighted chip
firing moves that fire all chips on their boundaries as far as possible. Then
f = (f + g1)⊕ (f + g2). Repeating this decomposition terminates after a finite
number of steps because 0 ≤ N(f + gi) < N(f) for each i = 1, 2.

Proposition 8 Any finitely generated tropical sub-semimodule M of RΓ is
generated by the extremals.

Proof Let f1, f2, . . . , fn be a generating set of M ⊂ RΓ . Suppose fn is not an
extremal. Then fn = g ⊕ h for some g, h ∈ M such that fn 6= g and fn 6= h.
Since f1, . . . , fn generate M , we have

g = (a1 � f1)⊕ · · · ⊕ (an−1 � fn−1)⊕ (an � fn) and
h = (b1 � f1)⊕ · · · ⊕ (bn−1 � fn−1)⊕ (bn � fn)

for some a1, . . . , an, b1, . . . , bn ∈ R. Since g ≤ fn, h ≤ fn pointwise, and
g 6= fn, h 6= fn, we must have an < 0 and bn < 0. Then

fn = g⊕ f = (a1� f1)⊕ · · · ⊕ (an−1� fn−1)⊕ (b1� f1)⊕ · · · ⊕ (bn−1� fn−1),

so fn is in the tropical semi-module generated by f1, . . . , fn−1. We can remove
non-extremals from any finite generating set this way, so M is generated by
the extremals.
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Fig. 1 Let the tropical curve Γ be the complete graph on four vertices with edges of
equal length. Let K be the canonical divisor. The 13 divisors shown here, together with K,
correspond to the elements of S that generate R(K), from Theorem 6. The seven black dots
in the Petersen graph correspond to the extremals.

Corollary 9 The tropical semimodule R(D) is generated by the extremals.
This generating set is minimal and unique up to tropical scalar multiplication.

The set of extremals can be obtained from S by removing the elements
that do not satisfy the condition in Lemma 5.

Example 10 Let Γ be a tropical curve with the complete graph on 4 vertices
with equal edge lengths as a model. Consider the canonical divisor K, that is
the divisor with value 1 on the four vertices and zero elsewhere. The canonical
divisor is defined in general in Section 4.2. Then the set S from Theorem 6
consists of 14 elements, 7 of which are extremals. See Figure 1.

If the edge lengths of the complete graph are not all equal, then the set S
may be different from this. We will describe the local cell complex structure
of R(K) near K in the next section, in Example 20.

4 Cell complex structure of |D|

As seen in the previous section, R(D) ⊂ RΓ is finitely generated as a tropical
semi-module or a tropical polytope. However, it is not a polyhedral complex in
the ordinary sense. For example, let Γ be the line segment [0, 1], and D be the
point 1. Then R(D) is the tropical convex hull of f, g ∈ RΓ where f(x) = x and
g(x) = 0. Although R(D) is one-dimensional, it does not contain the usual line
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segment between any two points in it. Letting 1 denote the constant function
taking the value 1 at all points, we consider functions in R(D) modulo addition
of 1, i.e. translation.

Lemma 11 The set R(D)/1 does not contain any nontrivial ordinary convex
sets.

Proof Let f, g ∈ R(D) be two tropical rational functions that are not translates
of each other. Then there is a smooth point x ∈ Γ at which the slopes of f and
g differ. Let 0 < λ < 1 be such that the convex combination λf + (1−λ)g has
a non-integer slope at x. Then λf+(1−λ)g is not a tropical rational function,
so it is not in R(D).

Recall that R(D)/1, i.e. R(D) modulo tropical scaling can be identified
with the linear system |D| := {D+(f) : f ∈ R(D)} via the map f 7→ D+(f). In
what follows, elements of |D| and elements of projectivized R(D), i.e. R(D)/1,
will be used interchangeably.

A choice of model G(Γ ) induces a polytopal cell decomposition of Symd Γ ,
the dth symmetric product of Γ . Andreas Gathmann and Michael Kerber [GK08]
as well as Grigory Mikhalkin and Ilia Zharkov [MZ06] describe |D| as a cell
complex |D|G(Γ ) ⊂ Symd Γ . Let us coordinatize this construction.

We identify each open edge e ∈ E with the interval (0, `(e)) thereby giving
the edge a direction, and we identify Symk e with the open simplex {x ∈ Rk :
0 < x1 < . . . < xk < `(e)}. A cell of |D| is indexed by the following discrete
data:

– dv ∈ Z for every vertex v ∈ V ,
– a composition (i.e. an ordered partition) de = d

(1)
e + · · · + d

(re)
e for every

edge e of Γ , and
– an integer me for every edge e of Γ .

Then, a divisor D′ belongs to that cell if

– dv = D′(v) for all v ∈ V ,
– D′ is given on e by

∑
i d

(i)
e xi for 0 < x1 < . . . < xre

< `(e), and
– the slope of f at the start of edge e is me, where f is such that (f)+D = D′.

The intersection of |D| with an open cell of Symd Γ is a union of cells of |D|.
This cell complex structure depends on the choice of the model G(Γ ),

but not on the choice of representative divisor D in the linear system |D|. In
particular, choosing a finer model amounts to subdividing the cell complex
|D|, and choosing a different divisor D′ = D + (g) amounts to changing the
integer slopes at the starting points on the edges by the slopes of g, but this
does not change the cells. Whenever we talk about a cell complex structure of
|D|, we are impliciting assuming a model G(Γ ). Unless Γ is a circle, there is
a unique coarsest model with the least number of vertices.

Example 12 Let Γ be a circle (for example a single vertex v with a loop edge
e attached). Consider D to be the divisor 3v. As we analyze in Example 17,
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|D| contains two 2-cells in this case. The elements of both cells are divisors
D′ = x + y + z with distinct points x, y, and z on the interior of e. However
the two 2-cells differ from one another by the slope of the function f (defined
by D′ = D+ (f)) at v. The outgoing slopes of f at v are given by [−2,−1] for
one 2-cell and by [−1,−2] for the other.

This example shows that the combinatorial type of the divisor D′ – the
cell of Symd Γ containing D′ – does not determine the cell of |D| containing
D′. The different cells of |D| in one cell of Symd Γ are indexed by the slopes
of f .

Proposition 13 For D′ ∈ |D| let ID′ be the set of points in the support of
D′ that lie in the interior of edges. Then the dimension of the carrier of D′ is
one less than the number of connected components of Γ\ID′ .

Here, the carrier of D′ is the cell containing D′ in its interior. Recall that
Γ is connected, and note that being in the interior of an edge depends on the
model G(Γ ).

Proof First, suppose Γ\ID′ is connected, that is, the chips on the interior of
edges do not disconnect Γ . As in the proof of Theorem 6(b), the combinatorial
type of D′ together with the slope data which specifies the cell of |D| deter-
mines the function f with D′ = D+ (f) up to tropical scaling. Hence, D′ is a
vertex and its carrier cell has dimension zero.

Next, suppose Γ\ID′ has k connected components Γ1, Γ2, . . . , Γk, where
k ≥ 2. Let Ci := Γi ∩ Γ\Γi be the set of points in the boundary of Γi for each
i = 1, . . . , k. Points in Ci are in ID′ , so they lie in the interiors of edges. Then
Γi can fire: there is a weighted chip firing move fi moving the D′(x) chips at
x ∈ Ci a distance of ε/D′(x) away from Γi while maintaining the combinatorial
structure of D′. That is, D′ + (fi) stays in the same cell as D′. In our cell
coordinates, the fi yield k segments ξi with components ξi,x = ±ε/D′(x) for
x ∈ Ci. We claim that those segments span a (k − 1)-dimensional space and
thus the cell in question has dimension at least k− 1. So suppose

∑
λiξi = 0.

Whenever x ∈ Γi ∩ Γj (i 6= j), the corresponding cell coordinate tells us that
λi = λj . Because Γ is connected, all λi’s must be the same, and the space of
dependencies among the ξi is one-dimensional as claimed.

On the other hand, the only subgraphs that can fire D′ without changing
the combinatorial type are unions of Γi’s. Whenever D′′ = D′+(f) is a divisor
in the cell of D′ near D′, the function f is necessarily a weighted chip firing
move. So the cell has dimension at most k − 1.

Theorem 14 Let G be a model for Γ , and let SG be the set of functions
f ∈ R(D) such that the support of D+(f) does not contain an interior cut set
(i.e. a cut set consisting of points in interior of edges in the model G). Then

(a) SG contains the set S from Theorem 6,
(b) SG is finite modulo tropical scaling, and
(c) SG = {f ∈ R(D) : D + (f) is a vertex of |D|}.
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Proof The statement (a) follows from definitions since points in the interior of
edges (for any model) are smooth, and the statement (b) can be shown in the
exact same way as Theorem 6(b). By the previous proposition, any element of
SG has dimension 0. This shows (c).

This shows in particular that the cell complex |D| has finitely many ver-
tices. If the model G is the coarsest one, i.e. the vertices of G are non-smooth
points of Γ , then SG = S. If Γ is a circle, then there is no unique coarsest
model.

Proposition 15 Each closed cell in the cell complex is finitely-generated as a
tropical semi-module by its vertices. In particular, it is tropically convex.

Proof We proceed as in the proof of Theorem 6(c). Let f be a tropical rational
function in R(D). If supp(D + (f)) contains an interior cut set, then we can
fire two complementary components in each direction as far as possible. This
amounts to writing f as the tropical sum of two other functions g1, g2 in the
boundary of the same closed cell. By induction on the dimension of the carrier,
g1 and g2 can be written as a tropical linear combination of the vertices of the
closed cell containing them.

Example 16 (Line Segment) Any tree is a genus zero tropical curve. Like genus
zero algebraic curves, two divisors on a tree are linearly equivalent if and only
if they have the same degree d. The simplest tree is a line segment consisting
of an edge e between two vertices, say v1 and v2. In this case, |D| is a d-
simplex. The vertices of |D| correspond to ordered pairs [d1, d2] summing to d
associated to the chip configuration at v1 and v2.

Example 17 (Circle) A circle is the only tropical curve where the canonical
divisor K is 0. Let Γ be homeomorphic to a circle and let D be of degree 3.
Then D ∼ 3x for some point x ∈ Γ . The coarsest cell structure of R(D) is a
triangle, but it is not realized by any model on Γ because Γ does not have a
unique coarsest model. If the model contains only one vertex v and D ∼ 3v,
then R(D) is a triangle subdivided by a median; see Figure 2. In particular |D|
contains four 0-cells, five 1-cells, and two 2-cells. If the model G(Γ ) consists
of a vertex u such that D 6∼ 3u, then the cell complex structure would be
different. If the model G(Γ ) consists of 3 equally spaced vertices v1, v2, v3, and
D ∼ 3v1, then R(D) is isomorphic as a polyhedral complex to the barycentric
subdivision of a triangle.

Example 18 (Circle with higher degree divisor) Let Γ be a circle graph with
only a single vertex v and a single edge e, a loop based at v. Let D = dv;
then the linear system |D| is a cone over a cell complex, which we denote as
Pd(circle), which has an f -vector given by the following:

The number of i−cells of Pd(circle) = fi = (i+ 1)
(

d

i+ 2

)
.
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Fig. 2 The polyhedral cell complex R(3v)/1 on Γ = S1. The three black vertices are the
extremals, and they correspond to the three divisors which are linearly equivalent to 3v
and have the form 3w. We have presented S1 as the line segment [0, 1] with points 0 and 1
identified.

Consequently, the f -vector for |D| is given by{(
d
2

)
+ 1 if i = 0

(i+ 1)
(
d
i+2

)
+ i
(
d
i+1

)
if i ≥ 1.

To see how to get these f -vectors, we note that a divisor D′ ∼ dv corre-
sponds to a tropical rational function f such that dv + (f) = D′. One such f
is the zero function, this corresponds to the cone point. Each other tropical
rational function is parameterized by an increasing sequence of integer slopes
(a1, . . . , ai+2) such that a1 < 0, ai+2 > 0, and ai+2 − a1 ≤ d. The first slope
must be negative and the last slope must be positive so that the values of f
at the two ends of the loop e agree. The cells not incident to the cone point
yield the cell complex Pd(circle), and are given by sequences (a1, . . . , ai+2)
such that all ai 6= 0. To finish the computation of the f -vector for Pd(circle),
we pick an ordered pair [j, k] with j, k ≥ 1 and j + k = i + 2 to denote the
number of negative and positive ak’s, respectively. After setting a1 = −`, we
note that the number of ways to pick the remaining negative ak’s is given
by
(
`−1
j−1

)
, and the number of ways to pick a subset of positive ak’s such that

ai+2−a1 ≤ d is given by
(
d−`
k

)
. Summing over possible `, and using a standard

identity involving binomial coefficients (for instance see [BQ03, Identity 136]),
we obtain

(
d
i+2

)
such tropical rational functions for each [j, k]. Since there are

i+ 2 such [j, k]’s, we get the above number of i-cells not incident to the cone
point. For the case of d = 4, see Figure 3.

Example 19 (Circle. Cell structure of |D| as a simplex) In Examples 17 and
18, we saw that having to choose a model, even one with only one vertex,
gives |D| a cell structure of a subdivided simplex. Moreover, different choices
of models, even if they contain only one vertex each, may give combinatorially
different cell complex structures for |D|. We wish to describe |D| as a simplex.
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Fig. 3 The polyhedral cell complex R(4v)/1 on Γ = S1 is a subdivided tetrahedron, a cone
over this subdivided triangle with the cone-point corresponding to the constant function.
(The labels of most 1-cells are suppressed, but may be read off from the incident vertices or
2-cells.) The cone-point plus the three black vertices are the extremals.

First, let us look at the embedding of |D| in the symmetric product of the
tropical curve. Let Γ be the circle R/Z, and D = d · [0] be a divisor of degree
d. The embedding of |D| in Symd Γ = Symd(R/Z) is given by

{x ∈ (0, 1]d : 0 < x1 ≤ x2 ≤ . . . xd ≤ 1, x1 + x2 + · · ·+ xd ∈ Z}.

To see this, first consider a tropical rational function g on the line segment [0, 1]
with (g) = x1 +x2 + · · ·+xd−d ·0 and g(1) = 0. Then g(0) = x1 +x2 + · · ·+xd.
If g(0) ∈ Z, then adding g and a function l with constant slope g(0) on [0, 1]
gives a tropical rational function f = g + l on the circle with (f) + D =
x1 + x2 + · · · + xd. It is easy to check that any f ∈ R(D) can be obtained
this way. Although this description gives |D| a uniform coordinate system, this
does not give us a cell complex structure.

In fact, |D| can be realized as a (d− 1)-dimensional simplex, on d vertices.
There is a unique set of d points v1, v1, . . . , vd in Γ such that D ∼ dvi for
all i = 1, . . . , d. These d points are equally spaced along Γ . The extremals of
R(D) are

E = {f ∈ R(D) : (f) +D = d · vi for some i = 1, 2, . . . , d}.

Consider the (d− 1)-dimensional simplex on vertices V = {dv1, dv2, . . . , dvd},
that is, the simplicial complex containing a (k − 1)-dimensional cell for any
k subset of V . We would like to stratify |D| into these cells. For any divisor
D′ ∈ |D|, elements in the same cell asD′ are obtained fromD′ by weighted chip
firing moves that do not change the cyclically-ordered composition d = a1 +
a2 + · · ·+ak associated to divisor a1x1 +a2x2 + · · ·+akxk where x1, x2, . . . , xk
are distinct and cyclically ordered along the circle (with a fixed orientation).
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Fig. 4 A non-simplicial cell in the canonical linear system |K| where Γ is the complete
graph on four vertices with edges of equal length.

The complement of the support of D′ = a1x1 + a2x2 + · · · + akxk consists of
k segments. For each of these segments, there is a unique extremal in R(D′)
that is maximal and constant on it. These k extremals of R(D′), which are
naturally identified with extremals of R(D), are precisely the vertices of the
cell of D′ and their convex hull is the cell of D′.

Example 20 (K4 continued) As in Example 10, consider the graph K4 with
equal edge lengths and the canonical divisor K. The coarsest cell structure of
|K| consists of 14 vertices and topologically is the cone over the Petersen graph
shown in Figure 1. The cone point is the canonical divisor K. The “cones” over
the 3 subdivided edges of the Petersen graph are quadrangles. The maximal
cells of |K| consist of 12 triangles and 3 quadrangles. In particular, |K| is not
simplicial. The quadrangle obtained from “coning” over the bottom edge of
the Petersen graph is shown in Figure 4.

4.1 Local structure of a cell complex

If B is a cell complex and x is a point in B, then the link(x,B) denotes the cell
complex obtained by intersecting B with a sufficiently small sphere centered
at x. We will define a triangulation of link(D, |D|) which is finer than the
cell structure. Note that |D| and |D′| are isomorphic as cell complexes, so
link(D, |D|) ∼= link(D, |D′|) for any D′ ∼ D.
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Let D′ ∈ link(D, |D|) and f be a rational function such that D′ = D+(f).
Let h0 > h1 > · · · > hn be the values taken on by f on the set of points that
are either vertices of Γ or where f is not smooth. Notice that h0 and hn are
maximum and minimum values of f , respectively. Since D+(f) ∈ link(D, |D|),
we may assume that h0 − hn is sufficiently small. Let G = (Γ0 ⊂ Γ1 ⊂ · · · ⊂
Γn = Γ ) be a chain of subgraphs of Γ where Γi = {x ∈ Γ : f(x) ≥ hi}.

Let G′ = (Γ ′1 ⊂ Γ ′2 ⊂ · · · ⊂ Γ ′n = Γ ) be the chain of compactified graphs,
where Γ ′i is the union of edges of Γi that are between two vertices of Γ . Each
cell can be subdivided by specifying more combinatorial data: the chain G′

obtained this way and the slopes at the non-smooth points. We call this the
fine subdivision.

For an effective divisor D, we can naturally associate the firing poset PD
as follows. An element of PD is a weighted chip firing move without the infor-
mation about the length, i.e. it is a closed subgraph Γ ′ ⊂ Γ together with an
integer ce for each out-going direction e of Γ ′ such that for each point x ∈ Γ ′
we have

∑
ce ≤ D(x) where the sum on the left is taken over the all outgoing

directions e from x and D(x) denotes the coefficient of x in D. We say that
(Γ ′, c′) ≤ (Γ ′′, c′′) if Γ ′ ⊂ Γ ′′ and c′e ≥ c′′e for each common outgoing direction
e of Γ ′ and Γ ′′.

Theorem 21 The fine subdivision of the link of a divisor D in its linear
system |D| is a geometric realization of the order complex of the firing poset
PD.

Proof By the discussion above, a cell in a fine subdivision link(D, |D|) corre-
sponds to a unique chain in the firing poset. For any chain in the firing poset,
we can construct an element in link(D, |D|) by performing the weighted chip
firing moves in the order given by the chain, starting from the smallest element.
The element constructed this way defines a cell in the fine subdivision.

Note that the link of an element in |D| does not depend on the precise
location of the chips, but on the combinatorial data of the location. In other
words, changing the edge lengths, without changing which edges the chips are
on, does not affect the combinatorial structure of the link.

This Theorem, along with Proposition 13 allows us to explicitly describe
the 1-cells incident to a 0-cell D′ of |D|. For this, we need to define a specific
subset of the weighted chip-firing moves. In particular, we call a weighted chip-
firing move f (which is constant on Γ1 and Γ2) to be doubly-connected if Γ1

and Γ2 are both connected subgraphs.

Proposition 22 Given D′ ∈ |D|, and a model G such that supp(D′) ⊂ V (G)
(so that D′ is a 0-cell in |D|), the 1-cells incident to D′ correspond to the set of
doubly-connected weighted chip-firing moves that are legal on chip configuration
D′ (up to combinatorial type).

Proof Let f be a weighted chip-firing move which is legal at D′ that is constant
on Γ1 and Γ2 such that f(Γ2) = f(Γ1) − ε for small ε > 0. Then D′′, defined
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as D′ + (f) has a chip on each of the line segments Li connecting Γ1 and Γ2.
Then the dimension of the corresponding cell of D′′ is one if and only if Γ1

and Γ2 are both connected.

4.2 Bergman subcomplex of |K|

Now we analyze the linear systems of an important family of divisors. The
canonical divisor K on Γ is

K :=
∑
x∈Γ

(val(x)− 2) · x.

Notice that since vertices of valence two do not contribute to the divisor K,
the definition of K does not depend on the choice of model.

Let M be a matroid on a ground set E. The Bergman fan of M is the set
of w ∈ RE such that w attains its maximum at least twice on each circuit
C of M . The only matroids considered here are cographic matroids of graphs.
For a graph G with edge set E, the cographic matroid is the matroid on
the ground set E whose dependent sets are cuts of G, i.e. the sets of edges
whose complement is disconnected. The Bergman complex is the cell complex
obtained by intersecting the Bergman fan with a sphere centered at the origin.
The following result will be useful to us later.

Theorem 23 [AK06]

1. The Bergman complex (with its fine subdivision) is a geometric realization
of the order complex of the lattice of flats of M .

2. The Bergman fan is pure of codimension rank(M).

Note that adding or removing parallel elements does not change the sim-
plicial complex structure of the Bergman complex because the lattice of flats
remains unchanged up to isomorphism. In particular, if G1 and G2 are two
graphs, forming two models of the same tropical curve, then the corresponding
cographic matroids have isomorphic Bergman complexes.

Lemma 24 A subset of edges of a graph forms a flat of the cographic matroid
if and only if its complement is a union of circuits of the graph.

Proof The rank of a set A of edges is one more than the size of A minus the
number of connected components of the complement of A. Hence A forms a
flat if and only if there is no other edge outside of A such that removing the
edge increases the number of connected components of the complement. This
happens if and only if no connected component of the complement contain
a one element cut set, i.e. the connected components are unions of circuits.
Loops are considered circuits.

Suppose Γ has genus at least one but KΓ is not effective. Let Γ ′ be the
subgraph of Γ obtained by removing all the leaf edges recursively. Then the
canonical divisor K ′ of Γ ′ is effective, and we can apply the following argu-
ments for K ′ in Γ ′ or Γ .
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Theorem 25 The fine subdivision of link(K, |K|) contains the fine subdivi-
sion of the Bergman complex B(M∗(Γ )) as a subcomplex.

Proof The complement of a flat is a union of cocircuits, so the lattice of flats is
isomorphic to the lattice of unions of cocircuits, ordered by reverse-inclusion.
The cocircuits of the cographic matroid are the circuits of the graph. For the
canonical divisor K, the proper union of circuits can always fire. Hence the
proper part of the poset of union of circuits is a subposet of the firing poset,
and so is the proper part of the lattice of flats.

The Bergman complex may be a proper subcomplex of the link because
there may be subgraphs that can fire on the canonical divisor but that are
not union of circuits, e.g. two triangles connected by an edge in the graph of
a triangular prism. Moreover, if Γ is not trivalent, there may be vertices that
can fire more than one chip on each edge, so the firing poset may be strictly
larger and so can the dimension of the order complex.

Example 26 (K4 continued)
Let Γ be a tropical curve with the complete graph on four vertices as a

model, with arbitrary edge lengths. Consider the canonical divisor K. In this
case, the firing poset coincides with the lattice of unions of circuits, which is
anti-isomorphic to the lattice of flats. Hence the link of the canonical divisor is
isomorphic to the Bergman complex of the cographic matroid on the complete
graph. Since the complete graph on four vertices is self-dual, its co-Bergman
complex is the space of trees on five taxa, which is the Petersen graph [AK06].
See Figure 5.

In the case when all edge lengths are equal, the quadrangles of |K| described
in Example 20 are subdivided in this fine subdivision of the link(K, |K|). Note
that the link of the canonical divisor stays the same when we vary the edge
lengths, while the generators and cell structure of R(K) in Figure 1 may
change.

5 The induced map and projective embedding of a tropical curve

A finite set F = (f1, . . . , fr) ⊂ R(D) induces a map φF : Γ → TPr−1, defined
as φF (x) = (f1(x), . . . , fr(x)) for each x ∈ Γ ,. This is a map into TPr−1 rather
than Rr as we consider F to be defined up to translation by 1.

Theorem 27 Let 〈F〉 ⊂ R(D) be the tropical sub-semimodule of R(D) gen-
erated by F . Then 〈F〉/1 is homeomorphic to the tropical convex hull of the
image of φF . In particular, if F generates R(D), then |D| is homeomorphic
to the tropical convex hull of φF (Γ ).

The tropical convex hull of a set is the tropical semi-module generated by
the set.
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Fig. 5 Link of the canonical divisor in the canonical class, where Γ is the complete graph
on four vertices, with arbitrary edge lengths. Order complex of the firing poset. The firing
subgraphs in Γ are shown by solid lines. See Example 26. Compare with Figure 2 in [AK06].

Proof The intuition behind this theorem is the result from [DS04] that the
tropical convex hull of the rows of a matrix is isomorphic to the tropical
convex hull of the columns. Here, the matrix MF in question has entry fi(x)
in row i and column x. As in [DS04], we define a convex set

PF = {(y, z) ∈ (Rr × RΓ )/(1,−1) : yi + z(x) ≥ fi(x)}.

Let BF be the union of bounded faces of PF , i.e. BF contains points in the
boundary of PF that do not lie in the relative interior of an unbounded face
of PF in (Rr × RΓ )/(1,−1). We will show that BF projects bijectively onto
〈F〉/1 ⊂ RΓ /1 on the one hand, and to tconv φF (Γ ) ⊂ TPr−1 on the other,
establishing a homeomorphism.

As in [DS04], we associate a type to (y, z) ∈ PF as follows:

type(y, z) := {(i, x) ∈ [r]× Γ : yi + z(x) = fi(x)}.

In other words, a type is a collection of defining hyperplanes that contains
(y, z), so elements in the relative interior of the same face have the same type.
The recession cone of PF is {(y, z) ∈ (Rr × RΓ )/(1,−1) : yi + z(x) ≥ 0},
which is the quotient of the positive orthant in (Rr × RΓ ) by (1,−1). Hence,
a point (y, z) ∈ PF lies in BF if and only if we cannot add arbitrary positive
multiples of any coordinate direction to it while staying in the same face of
PF , which means keeping the same type. This holds if and only if

(1) The projection of type(y, z) onto [r] is surjective, and
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(2) The projection of type(y, z) onto Γ is surjective.
For (y, z) ∈ PF , these two conditions are equivalent respectively to

(1′) yi = max{fi(x)− z(x) : x ∈ Γ} for all i ∈ [r], i.e. y = MF �−z, and
(2′) z(x) = max{fi(x)− yi : i ∈ [r]} for all x ∈ Γ , i.e. z = −y �MF .

where MF is the [r]× Γ matrix with entry fi(x) in row i and column x, and
� is tropical matrix multiplication. These two conditions respectively imply
that the projections of BF onto RΓ /1 and Rr/1 are one-to-one.

On the other hand, let z ∈ 〈F〉, then z = (u1�f1)⊕· · ·⊕(ur�fr) = u�MF
for some u ∈ Rr such that z ≥ ui � fi for each i = 1, 2, . . . , r. Let y ∈ Rr
such that yi = min{c : z ≥ −c� fi} for i = 1, 2, . . . , r; then z = −y �MF , so
(y, z) satisfies (2′). Moreover, by construction, −yi � fi(x) = z(x) for some x,
so (y, z) satisfies (1). Thus (y, z) ∈ BF , and the set BF projects surjectively
onto 〈F〉/1 ⊂ RΓ /1. Similarly, the image under the projection onto Rr/1 is
the tropical convex hull of image(φF ), and the homeomorphism follows.

Remark 28 All of the bounded faces of the convex set PF are in fact vertices.
If the union of bounded faces BF contained a non-trivial line segment, then
its projection 〈F〉/1 would as well, contradicting Lemma 11.

Example 29 (Circle, degree 3 divisor) Let Γ be a circle of circumference 3,
identified with R/3Z and let D be the degree 3 divisor [0] + [1] + [2]. Let
f0, f1, f2 ∈ R(D) be the extremals corresponding to divisors 3 · [0], 3 · [1], and
3 · [2] respectively, and suppose fi([i]) = −1 for each i = 0, 1, 2. Then the image
of Γ under φF , for F = (f0, f1, f2) is a union of three line segments between
the points

φF ([0]) = (−1, 0, 0), φF ([1]) = (0,−1, 0), φF ([2]) = (0, 0,−1) in TP3.

In this case, the (max-) tropical convex hull of the image of φF coincides with
the usual convex hull and is a triangle. However, it is not the tropical convex
hull of any proper subset of image(φF ). In particular, |D| is not a tropical
polytope, i.e. it is not the tropical convex hull of a finite set of points.

Example 30 (Dumbbell graph, canonical divisor) Let Γ be the tropical curve
obtained from two cycles connecting them with an edge, as in [GK08, Example
1.11]. Let K be the canonical divisor on it. Then the functions F = f1, f2, f3
corresponding on the three divisors in Figure 6 generate R(K). The image of
Γ under φF and its tropical convex hull is also shown in the figure, where
TP2 is identified with {(0, x, y) : x, y ∈ R} and the coordinates x and y are
graphed.

We know from [DS04] that tropically convex sets are contractible.

Corollary 31 The sets |D| and R(D) are contractible.

Tropical linear spaces are tropically convex [Spe08], so any tropical linear
space containing the image φF (Γ ) must also contain its tropical convex hull.

Corollary 32 Any tropical linear space in TPr−1 containing φF (Γ ) has di-
mension at least dim(〈F〉).
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Fig. 6 Example 30. The functions corresponding to the three divisors on the left are used
to map the tropical curve Γ to TP2. The image φF (Γ ) is the middle figure, and its tropical
convex hull is the figure on the right. For example, the image of the leftmost point of Γ in
TP2 is (0,−2, 0), and the image of the rightmost point of Γ is (0, 0,−2) if the loops have
length 2 and the middle edge has lengh 1 in Γ .

6 Embedded and Parameterized Tropical Curves

An embedded tropical curve C is a one-dimensional polyhedral complex in
TPn−1 = Rn/1 with rational slopes, together with a multiplicity me ∈ Z>0

for each edge e such that the following balancing condition holds: For any
point x ∈ C, we have

∑
meve = 0 in TPn−1 where the sum is taken over

all edges e containing x and ve ∈ TPn−1 is the primitive integral vector in
direction e pointing away from x. A vector v ∈ TPn−1 is called primitive if it
has an integral representative in Zn and generates the semigroup (Zn∩(R+v+
R[1]))/Z[1].

Suppose the embedded tropical curve C has k unbounded rays in primitive
directions v1, . . . , vk ∈ TPn−1, with multiplicities m1, . . . ,mk respectively. For
each vi, choose the unique representative in Zn such that all the coordinates are
non-positive, and the maximum coordinate is zero. Because of the balancing
condition, the sum

∑k
i=1mivi = −d · 1 for a positive integer d. This integer d

is called the degree of the embedded tropical curve C.
A parameterized tropical curve is a tuple (Γ, h) where Γ is an abstract

tropical curve and h : Γ → TPn−1 is a continuous function such that

1. the map h is piecewise-linear with integer slopes: for each point x ∈ Γ and
edge e adjacent to x, a neighborhood of x along e can be identified with a
real interval [0, l) (and x with 0) while preserving lengths, so that in this
neighborhood h has the form h : [0, l) 3 t 7→ h(x) + tme,x ve,x ∈ TPn−1

where ve,x is a primitive integer vector and me,x is a non-negative integer;
moreover, h is linear except at finitely many places.

2. the balancing condition holds: For any finite point x ∈ Γ ,
∑
me,xve,x = 0

in TPn−1 where the sum is taken over all out-going directions e at x in Γ .

A point x ∈ h(Γ ) is called smooth if the fiber h−1(x) is finite and consists
of points at which h is smooth. The smooth points are dense in h(Γ ). Let e
be an edge of h(Γ ) and let x be a smooth point on it. Let the multiplicity of e
in h(Γ ) be

∑
y∈h−1(x)my where h is of the form t 7→ tmy v + x locally along

either of the two outgoing directions from y that do not get contracted, and v is
primitive. With this definition of multiplicity, the image h(Γ ) is an embedded
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tropical curve as defined earlier. The degree of a parameterized tropical curve
(Γ, h) is the degree of the embedded tropical curve h(Γ ). The statement that
(Γ, h) is a parameterized tropical curve is stronger than the statement that
h(Γ ) is an embedded tropical curve.

Let Γ be an abstract tropical curve and D be a divisor such that R(D)
is not empty and not equal to 1. Choose a nonempty finite set of sections
F = {f1, . . . , fn} ⊂ R(D); then we get a map φF : Γ → TPn−1. In general,
the tuple (Γ, φF ) is not a parameterized tropical curve because it does not
satisfy the balancing condition.

For x ∈ Γ , let u(x) =
∑
me,xve,x ∈ TPn−1 where the sum is as in the

balancing condition for parameterized tropical curves stated above. Choose
a representative of u(x) in Zn such that all the coordinates u(x)i are non-
negative and the minimum coordinate is 0. A point x satisfies the balancing
condition if and only if u(x) = 0.

For the next results we need the following definition, inherited from classical
algebraic geometry. We say that a set of divisors D = {Di}i∈I has no base
points if for every x ∈ Γ , there is a D′ ∈ D with D′(x) = 0. For a fixed
divisor D, we may say that a set of functions F ⊂ R(D) has no base points if
D(F) := {D + (f) : f ∈ F}, has none.

Lemma 33 If F = {f1, . . . , fn} has no base points, then the ith coordinate
u(x)i of u(x) is the coefficient of x in the divisor D + (fi).

Proof Since each fi is in R(D), we have (D + (fi))(x) ≥ 0. Since F has no
base points, for every x, (D + (fi))(x) = 0 for some fi ∈ F . By construction
of φF , the ith coordinate of the vector me,xve,x is the outgoing slope of fi at
x along e. Hence u(x)i = (fi)(x), and

u(x)i − u(x)j = (fi)(x)− (fj)(x) = (D + (fi))(x)− (D + (fj))(x).

This proves the assertion.

Corollary 34 If F = {f1, . . . , fn} has no base points, then the tuple (Γ, φF )
satisfies the balancing condition as a parameterized tropical curve if and only
if for each i = 1, . . . , n, the support of the divisor D+(fi) contains only points
at infinity.

Now we describe a natural way to modify (Γ, φF ) to obtain a parameterized
tropical curve (Γ̃ , φ̃F ). Let Γ̃ be a tropical curve obtained from Γ by attaching
a leaf edge with infinite length at every finite point x ∈ Γ at which the
balancing condition is not satisfied. By Lemma 33, these points are precisely
the union of supports of fi’s. Let f̃i be a tropical rational function Γ̃ such
that f̃i|Γ = fi and the support of divisor D + (f̃i) contains only points at
infinity. Let F̃ = (f̃1, . . . , f̃r). By Corollary 34, (Γ̃ , φF̃ ) satisfies the balancing
condition and is a parameterized tropical curve. The points at infinity are
considered balanced and we do not attach new leaf edges to them. Note that
this modification depends not only on the image φF (Γ ) but on Γ and F
themselves. In particular, modification may not yield the “minimal” embedded
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Fig. 7 Example 37. Modified dumbbell graph with its canonical morphism to TP2. Compare
with Figure 6.

tropical curve containing φF (Γ ). See Example 40. However, it respects the
structure of Γ and D.

Theorem 35 The degree of the embedded tropical curve φF̃ (Γ̃ ) equals deg(D),
for any base-point-free F ⊂ R(D).

Proof First consider the case when the image φF (Γ ) is bounded in TPn−1.
Then all the unbounded rays of φF̃ (Γ̃ ) are images of the new leaf edges in Γ̃ .
The new leaf edges are attached to the points x ∈ Γ where u(x) 6= 0. Such a
point x contributes −u(x) to the computation of the degree of the embedded
tropical curve φF̃ (Γ̃ ). By Lemma 33, the sum of such −u(x) over all x ∈ Γ is
equal to −deg(D) · 1. So φF̃ (Γ̃ ) has degree deg(D) by definition.

Now suppose the image φF (Γ ) is not bounded. Without loss of generality,
we may assume that the support of D contains no points at infinity. Consider a
new abstract tropical curve Γ0 obtained from Γ by truncating the unbounded
leaf edges so that every fi is linear on Γ\Γ0 and supp(D) does not intersect
Γ\Γ0. Then F0 = {f1|Γ0 , . . . , fn|Γ0} is a basepoint free subset of RΓ0(D).
Moreover, φF̃ (Γ̃ ) = φF̃0

(Γ̃0) and we are back to the bounded case.

Example 36 (Tropical lines) Suppose Γ is a tree and deg(D) = 1. Let the leaf
vertices be v1, v2, . . . , vn. Let fi ∈ R(D) be the function such thatD+(fi) = vi.
Then F = {f1, . . . , fn} gives an embedding φF : Γ ↪→ TPn−1, and modification
produces a tropical line. The image φF (vi) of the leaf vertex vi lies on the
unbounded ray in φF̃ (Γ̃ ) pointing in direction −ei.

Example 37 (Dumbbell graph, canonical embedding) Consider the dumbbell
graph and its canonical divisor class from Example 30. The modified tropical
curve and its embedding as a degree 2 curve in TP2 is depicted in Figure 7.

Example 38 (Circle, degree 3 divisor) Consider the circle graph with a degree
3 divisor D as in Example 29. The linear system R(D) has three extremals as
depicted on the left of Figure 8. The modified tropical curve is embedded as
a degree 3 tropical curve.
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Fig. 8 Examples 29, 38. Modified circle graph with a degree 3 embedding TP2. The three
divisors on the left corresponding to three extremals of R(D).

Example 39 (Embedding a complete graph as the graph of a simplex) Let
Γ be the tropical curve obtained from the complete graph on m vertices
v1, v2, . . . , vm with all edge lengths 1, and consider the canonical divisor K
on Γ . Let fi ∈ R(K) be the function such that K + (fi) = m · vi. For ex-
ample, let fi = −1 at vi and fi = 0 on the edges not adjacent to vi, and
linearly interpolate. Although F = {f1, f2, . . . , fm} does not generate R(K),
the map φF : Γ → TPm−1 is an embedding. We have φF (vi) = −ei, and all
fi are linear on the interior of all edges, so the image φF (Γ ) consists of the
edges of the simplex with vertices {−e1,−e2, · · · ,−em}. Modification attaches
an unbounded ray in direction −ei with multiplicity m at the point φF (vi)
for each i ∈ {1, 2, . . . ,m}. The tropical convex hull of φF is a 2-dimensional
polyhedral complex and lies in a 2-dimensional tropical linear space in TPm−1

corresponding to the uniform matroid. For m = 4, see [RGST, Figure 5a].

Example 40 (Γ = K4, D = K, φF not injective)
Let Γ be as in the previous example. Let ui ∈ Γ be the midpoints between

vi and v4, for i = 1, 2, 3. See Figure 9. Let f1, f2, f3 ∈ R(K) be the functions
such that K + (f1) = 2u1 + v2 + v3, K + (f2) = 2u2 + v1 + v3, and K + (f3) =
2u3 + v1 + v2. Then F = {f1, f2, f3} is basepoint free, but φF is not injective.
All of v1, v2, v3, v4 and the edges between v1, v2, v3 are mapped to the same
point under φF . Their image is the point in the middle in the figure. The
image φF (Γ ) consists of the three solid line segments in the figure. For a point
in the interior of a solid line segment, the fiber has cardinality 2. So each of
three line segments has multiplicity 2.

The tuple (Γ, φF ) is not yet a parameterized tropical curve because it does
not satisfy the balancing condition at the points u1, u2, u3, v1, v2, v3 ∈ Γ , which
are in the supports of K+ (fi). The point v4 satisfies the balancing condition.
Modification produces a parameterized tropical curve with six unbounded rays
as shown in Figure 9. Each of these has multiplicity 2. From this, we see that
the tropical curve has degree 4.

The embedded tropical curve φF̃ (Γ̃ ) we obtained this way from the modi-
fication is not a “minimal” embedded tropical curve containing φF (Γ ). If we
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Fig. 9 Example 40. K4 with a non-injective map φF to TP2. The dotted rays in the image
result from modification.

attached the unbounded rays only to u1, u2, u3, we would obtain a smaller
embedded tropical curve of degree two containing φF (Γ ).

7 Canonical embeddings

In this section we repeat the first steps in the classical theory of ample divisors
and canonical embeddings in the tropical setting (compare [Har83, IV.3]). It
turns out that for a few classical equivalences, only one implication survives
tropical conditions.

Let Γ be a tropical curve and g its genus. The rank r(D) of a divisor D is
the maximum integer r such that |D−E| 6= ∅ for all degree-r divisors E. The
Riemann-Roch Theorem [GK08,MZ06] (based on work of [BN07]) , which is
the same for classical and tropical geometry, says the following:

r(D)− r(K −D) = degD + 1− g. (RR)

We say that D ≥ 0 is very ample if R(D) separates points, that is, if for
every x 6= x′ ∈ Γ there are f, f ′ ∈ R(D) with f(x) − f(x′) 6= f ′(x) − f ′(x′).
We call D ample if some positive multiple kD is very ample.

Lemma 41 A divisor D is very ample if and only if φF is injective for any
set F that generates R(D).

Proof The “if” direction is clear. To see the “only if” direction, suppose there
exist x, x′ ∈ Γ such that fi(x)− fi(x′) = fj(x)− fj(x′) for all pairs fi, fj ∈ F ;
then the same is true for any pair of tropical linear combinations of the fi,
and thus for all pairs f, f ′ ∈ R(D).

Lemma 42 A divisor D is very ample if and only if for all x 6= x′ ∈ Γ there
is a D′ ∈ |D| whose support contains a smooth cut set separating x and x′.

Proof Suppose D is very ample with witnesses f, f ′ ∈ R(D) for x, x′. Up to
relabeling c := f(x)−f ′(x)−(f(x′)−f ′(x′)) > 0. Then for a generic ε ∈ (0, c),
the support of the divisor D′ := D + (f ⊕ ε� f ′) contains the smooth cut set
{x : f(x)− f ′(x) = ε}.
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Conversely, if the support of D′ = D + (f) ∈ |D| separates x from x′, we
can use a cut function g with g(x) = f(x) < g(x′) to construct f ′ := f � g.

Lemma 43 If r(D) ≥ 1 then |D| has no base points.

Proof Let x ∈ Γ . Choose x′ on an edge incident to x. By assumption, there is
a D′ ∈ |D| with D′(x′) > 0. If D′(x) > 0 then we can use x′ to pull D′ away
from x, to get D′′ ∈ |D| with D′′(x) = 0. Thus, x is not a base point.

The converse is false. Consider, for example, a curve Γ of positive genus
with a bridge edge e (i.e. an edge whose removal disconnects Γ ). Then for
x ∈ e, |x| has no base points, yet r(x) = 0.

Lemma 44 If D is very ample, then r(D) ≥ 1. In particular, very ample
divisors have no base points.

Proof Let x ∈ Γ . Choose a sequence xn ∈ Γ \ {x} converging to x. There are
divisors Dn ∈ |D| so that Dn contains a smooth cut set separating xn and x.
Because |D| ⊂ SymdegD Γ is compact, there is a converging subsequence. Its
limit D′ ∈ |D| has D′(x) > 0.

Theorem 45 If degD ≥ 2g + 1, then D is very ample.

Corollary 46 Every divisor of positive degree is ample.

Proof (Proof of Theorem 45) As degK = 2g − 2, deg(K − D) ≤ −1, and
r(K −D) = −1. By RR we have r(D) ≥ g + 1.

Now, let x 6= x′ ∈ Γ , and let C = {y1, . . . , yr} be a minimal smooth cut set
separating x and x′. Then Γ \ C has two connected components, U,U ′, and
the corresponding cut divisors agree: DU = DU ′ = y1 + . . .+ yr. Furthermore,
the genus of Γ can be computed as g = g(U) + g(U ′) + r − 1. In particular,
r(D) ≥ g + 1 ≥ r, and |D − y1 − . . .− yr| 6= ∅.

Let f ∈ R(D − y1 − . . . − yr), and set D0 := D + (f). By construction,
D0 ≥ DU , and we can use cut functions to separate x from x′.

A tropical curve is hyperelliptic if there is a linear system |D| with degD =
2 and r(D) = 1. In particular, it is not a tree.

Example 47 The curve with 2 vertices joined by g + 1 edges is hyperelliptic.
The following genus 3 curve is hyperelliptic.

Proposition 48 If degD = 2, then φD(Γ ) is a tree. If in addition r(D) = 1,
then the fiber φ−1

D (x) = {y ∈ Γ : φD(y) = x} has size 1 or 2 for all x in the
image.
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Proof A degree 2 tropical curve in TPn−1 cannot have cycles. For n = 3, this
follows from the facts that the polytope 2∆2 = 2 · conv(e1, e2, e3) in R3 does
not have any interior lattice points and that any degree 2 plane tropical curve
is dual to a regular subdivision of a subset of 2∆2 ∩ Z3. For higher n, this
follows by induction and looking at projections. By Theorem 35, the image
φD(Γ ) can be modified to an embedded tropical curve of degree 2, so it must
be a tree.

Now suppose r(D) = 1 and x ∈ Γ . We have φ−1
D (φD(x)) = {x} if Γ\x

is disconnected, i.e. x lies on a bridge. Suppose x lies in a cycle in Γ . Since
r(D) = 1 and deg(D) = 2, there is a divisor x+ x′ ∈ |D|. The point x′ ∈ Γ is
the unique element of |D−x| because x lies in a cycle. Moreover x′ lies in every
cycle that contains x; otherwise we would have |D| = {x+ x′}, contradicting
r(D) = 1. Hence every cycle contains either both or none of {x, x′}. Let
Z be a connected component of Γ\{x, x′}. Then valZ(x) = valZ(x′) = 1;
otherwise there would be a cycle that contains only x or x′. So there is a
function f ∈ R(x + x′) such that f(x) = f(x′) = 0 but f(q) < 0 for any q in
the relative interior Z◦. Together with the constant function 1 ∈ R(x, x′), f
separates {x, x′} from Z◦. The maps φD and φx+x′ differ only by a translation,
so φ−1

D (φD(x)) ⊂ {x, x′}.

Theorem 49 If K is not very ample, then Γ is hyperelliptic.

Proof Contracting a bridge edge does not affect either property. So it is safe
to assume that Γ has no leaf nodes.

Suppose K is not very ample, and let x, y be two points that cannot be
separated by R(K). We claim that r(x + y) = 1. The complement Γ \ {x, y}
splits into connected components (X◦i )i=1,...,r, (Y ◦j )j=1,...,s, and (Z◦k)k=1,...,t,
whose closures satisfy Xi ∩ {x, y} = {x}, Yj ∩ {x, y} = {y}, and Zk ∩ {x, y} =
{x, y}.

x

Zk YjXi

y

Because r(K) = g − 1, the linear systems |K − (g − 1)x| and |K − (g − 1)y|
are non-empty. Thus we must have∑

k

valZk
(x) ≥ g, and

∑
k

valZk
(y) ≥ g.

Otherwise we can separate x and y, contradicting our assumption. Because Z◦k
is connected, the genus g(Zk) of Zk satisfies

g(Zk) ≥ valZk
(x) + valZk

(y)− 2 .
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On the other hand,

g =
∑
i

g(Xi) +
∑
j

g(Yj) +
∑
k

g(Zk) + t− 1 .

These relations imply g − 1 ≤ t ≤ g + 1. Moreover, at most one of the
g(Xi), g(Yj), g(Zk) can be positive as we will see below. There are (up to
symmetry) three cases.
• t = g + 1: We must have r = s = 0, and all g(Zk) = 0. Then r(x+y) = 1.

x y

• t = g: There are two subcases.
◦ r = 1, s = 0: (or r = 0, s = 1.) In this case, |K| separates x and y as

illustrated in the figure.

x y

◦ r = s = 0: this is the only subtle case. One Zk has genus 1. Its cycle
has distance ξ from x and distance η from y. At least one of the distances
must be non-zero because Z◦k is connected.

x y

ξ η

If ξ 6= η, then |K| separates x and y.

x y

ξ η

However, if ξ = η, then r(x+ y) = 1.
• t = g − 1: In this case, all inequalities in our chain have to be sharp. In

particular, r = s = 0. There is either one Zk of genus 2 or two Zk’s of genus
1. Either way, |K| separates x and y.
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x y x y

x y

We have proved more than what the theorem states. In fact, we can choose a
divisor x+ y with r(x+ y) = 1 and (g − 1)(x+ y) ∼ K.

Sadly, the converse is false – even if we take the stronger statement above
into account. For example, a flower with ≥ 3 petals satisfies the stronger
condition, yet the canonical divisor is very ample.

The proof of Theorem 49 also yields the following. Here, a tropical curve
is generic if maximal valency is three after contracting bridge edges, and the
edge lengths are generic.

Theorem 50 The canonical divisor of curves of genus g ≤ 2 is not very
ample. In particular, such curves are hyperelliptic. Generic curves of genus
g ≥ 3 are not hyperelliptic. In particular, their canonical divisor is very ample.

Problem 51 Give a characterization of curves with K not very ample.

8 Tropical Picard Group and Continuous Chip-Firing

Following the classical definition of the Picard group in algebraic geometry,
we define the tropical Picard group of a tropical curve as a quotient group.
In particular, we take the group of degree zero Γ -divisors modulo the group
of principal divisors, i.e. those of the form (f) where f is a tropical rational
function. Before describing these groups further, we consider a finite graph
analogue.

Given a finite undirected graph G = (V,E) with V = {v0, v1, . . . , vn−1},
we define the Laplacian matrix of G to be

L(G) = D(G)−A(G)

where A(G) is the adjacency matrix of G (Aij = the number of edges between
vi and vj) and D(G) is the diagonal matrix

D(G) = diag(val(v0), val(v1), . . . , val(vn−1)).
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We let L0(G) denote the reduced Laplacian matrix obtained by deleting the
row and column corresponding to vertex v0.

With the above notation, we define the critical group K(G, v0) (following
[Big99] or [Dha90]) to be the cokernel

K(G, v0) = Zn−1/(L0(G) Zn−1).

Choosing a different v0 gives an isomorphic critical group. For our calcula-
tions, we will use a set of explicit coset representatives of K(G, v0), known as
superstable chip configurations, following [HLMPPW, Section 4].

A divisor D is a chip configuration on graph G with sink v0 if the degree
of D is zero and D(v) ≥ 0 for v 6= v0. We can also think of D as a vector
[D(v0), . . . , D(vn−1)]T ∈ Zn. Given a chip configuration D, we say that vertex
v ∈ V (G) \ {v0} is ready to fire if D(v) ≥ val(v). The chip firing move given
by the vertex v is the map Zn → Zn given by D 7→ D − Lv where Lv is the
column of the Laplacian matrix L(G) corresponding to the vertex v. In other
words, a chip firing move on a chip configuration moves a chip from v to each
of its neighbors.

A divisor D is stable if for all v ∈ V (G) \ {v0}, 0 ≤ D(v) < val(v), i.e. no
vertex in V (G) \ {v0} is ready to fire. The distinguished vertex v0 is ready to
fire in D if and only if D is stable, and a sequence [vα1 , vα2 , . . . , vα`

] is legal if
vαi+1 is ready to fire in each D(i), the chip configuration resulting from firing
the sequence [vα1 , vα2 , . . . , vαi ] on D. A cluster A ⊂ V (G)\{v0} can fire if the
result of all vertices v ∈ A firing simultaneously results in a chip configuration
with all coefficients nonnegative. (Note that it is possible for a cluster A to fire
even if no ordering of the elements of A gives rise to a legal firing sequence.)
Finally, a configuration is superstable if no cluster can fire.

We now use these explicit descriptions of elements of critical groupsK(G, v0)
to describe the tropical Picard group. We get an explicit group structure on the
set of superstable chip configurations by defining the sum of D1 and D2 to be
D1 +D2, the unique superstable configuration linearly equivalent to D1 +D2.

Inspired by the terminology of [GK08], a Q-tropical curve is a metric graph
Γ having a model G, for which each of the edges have a rational length. An
ordinary finite graph can be thought of as a Q-tropical curve where all edge
lengths are 1. Given a general metric graph (or tropical curve) Γ , we let ΓQ
denote the set of points of Γ whose distance from every vertex is rational. We
let DivQ(Γ ) denote the set of divisors on ΓQ, also referring to these as the
Q-divisor on Γ . Further, Div0

Q(Γ ) will define the set of degree 0 Q-divisors.
If Γ is a Q-tropical curve, we let PrinQ(Γ ) denote the principal Q-divisors,

i.e. the subset of Q-divisors which are of the form (f) for f a tropical rational
function. We define the Q-tropical Picard group of a Q-tropical curve to be
the quotient group Div0

Q(Γ )/PrinQ(Γ ), which we denote as PicQ(Γ ).

Theorem 52 The Q-tropical Picard group of a Q-tropical curve Γ is the direct
limit of the critical groups corresponding to the subdivisions of Γ .

A more general version of this Theorem was independently proven by Baker
and Faber [BF09, Theorem 2.9 and 2.10]. Given a Q-tropical curve Γ we
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uniformly scale all edges to get Γ ′ such that all edge lengths are integers. We
define G0 to be the finite graph obtained by taking the coarsest finite graph
structure on Γ ′, with vertices given by points of valence one or at least three.
In the case of the cycle graph, all points are of valence two, so up to symmetry
we define G0 to be the graph with one vertex and one edge which is a loop at
that vertex. This is the unique example of Γ with no points of valence one or
at least 3.

Without loss of generality, pick v0 to be any vertex of G0. Let Gk to be
the model obtained by choosing more points as vertices such that all edges
of Gk have length 1/k. Since any vertex of G0 is a vertex of Gk, it follows
that v0 is also a vertex of Gk for all k ≥ 1. Let K(Gk, v0) denote the critical
group on the subdivided graph Gk, using superstable configurations as coset
representatives.

When k1 divides k2, we note that all vertices of Gk1 are in Gk2 , and thus
we can define ψk1,k2 to be the map

ψk1,k2 : K(Gk1 , v0)→ K(Gk2 , v0)

sending the superstable configurationD =
∑
v∈Gk1

D(v)·v toD′ =
∑
v∈Gk2

D(v)·
v. Note here that the image D′ has a coefficient of zero attached to any vertex
v ∈ Gk2 which is not in Gk1 .

Since the valence of a vertex v ∈ Gk1 ∩ Gk2 is the same in both of these
graphs, it follows that D is a stable configuration with respect to Gk1 if and
only if ψk1,k2(D) is stable with respect to Gk2 . We now wish to show that the
superstability of D with respect to Gk1 implies the superstability of ψk1,k2(D)
with respect to Gk2 . To see this equivalence, we note the following.

Lemma 53 If D is superstable with respect to graph Gk1 and vertex v0, then
ψk1,k2(D) is superstable with respect to graph Gk2 and vertex v0. Furthermore,
if D1 +D2 = D3 in K(Gk1 , v0), then ψk1,k2(D1) + ψk1,k2(D2) = ψk1,k2(D3).

Proof If D is superstable with respect to Gk1 , then it follows that any cluster of
vertices of Gk1 outside v0 cannot fire. In particular, for all subsets S ⊂ V (Gk1),
it follows that there exists at least one v ∈ S such that, outdegS(v) > D(v).

The configuration ψk1,k2(D) has the same support as D by construction.
However, to check superstability of ψk1,k2(D), we must consider all clusters of
vertices in Gk2 \ {v0}. Consider any subset S ⊂ V (Gk1) \ {v0}, such a subset
is also a subset of V (Gk2)\{v0}. For any v ∈ V (Gk1), the outdegree of v, with
respect to S is the same in Gk2 as it was in Gk1 so such subsets S cannot fire
in V (Gk2). Any subset S ∈ V (Gk2) formed by adjoining all vertices along a
subdivided edge similarly cannot fire. Finally, any subset S which contains a
new degree 2 vertex v′ in V (Gk2) \ V (Gk1) but not the two neighbors of v′

cannot fire since outdegS(v′) > 0 = D(v′) for such subsets.
Lastly, if D1 +D2 = D3, then ψk1,k2(D1 +D2) = ψk1,k2(D1) +ψk1,k2(D2).

We also have ψk1,k2(D1 +D2) = ψk1,k2(D1 +D2) since for any D3, ψk1,k2(D3)
is superstable and is linearly equivalent to ψk1,k2(D3) so ψk1,k2(D3) must equal
ψk1,k2(D3).
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Proof (Proof of Theorem 52) From Lemma 53, we see that the transition
maps preserve superstability and are compatible with addition. Furthermore,
the transition maps are injective and satisfy ψk1,k3 = ψk2,k3 ◦ψk1,k2 when k1|k2

and k2|k3. We use these transition maps to define the direct limit

K(Γ, v0) := lim
−→
k≥1

{K(Gk, v0)} =
∞⋃
k=1

K(Gk, v0)
/
∼

where D ∈ K(Gk1 , v0) and D′ ∈ K(Gk2 , v0) are equivalent if and only if
ψk1,k3(D) = ψk2,k3(D′) in K(Gk3 , v0) for k3 = lcm(k1, k2). Since the ψki,kj

’s
are injective group homomorphisms, for all k ≥ 1, K(Γ, v0) contains a sub-
group isomorphic to K(Gk, v0).

Thus the direct limit group is well-defined and it is straightforward to
verify that its definition agrees with that of the Q-tropical Picard group. In
particular, we can think of this direct limit as the critical group on the infinite
graph with countably infinitely many vertices, one vertex for each (rational)
point of ΓQ. Since the divisors in the image of the Laplacian matrix are exactly
those divisors which are of the form (f), it follows that the tropical Picard
group of a Q-tropical curve Γ is the direct limit of the critical groups as
claimed.

One advantage of this description of the Q-tropical Picard group on Γ
as a direct limit of finite critical groups is that we can simulate (weighted-)
chip-firing moves on Γ by looking at the limit of firing sequences on the finite
subdivisions.

For all vertices v ∈ Gk1 , we define H0(v) = {v}, let N(H) denote the
neighbors of graph H, and inductively define Hi(v) as

Hi(v) = Hi−1(v) ∪N(Hi−1(v)).

In other words, letting m = k2
k1

, Hm(v) is the unique induced subgraph
of Gk2 which is a tree with root v and leaves given by the neighbors of v in
the unsubdivided graph Gk1 , and {v0} = H0(v) ⊂ H1(v) ⊂ H2(v) ⊂ · · · ⊂
Hm−1(v) is a chain of subgraphs; see Figure 10.

Using this notation, we get a method for emulating firing sequences of
vertices in V (Gk1 \ {v0}).

Lemma 54 Assume for all 0 ≤ i ≤ m− 1 that we fire subset Hi(v) by firing
vertex v first and then radiating outwards towards the leaves. If D(k1) is a chip
configuration on Gk1 such that vertex v is ready, then the firing of vertex v in
graph Gk1 can be emulated on chip configuration D(k2) in graph Gk2 by firing
the sequence

[H0(v), H1(v), H2(v), . . . ,Hm−2(v), Hm−1(v)].
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H1(v)

H2(v)

H0(v) = {v}

Fig. 10 The nested subgraphs H0(v) = {v} ⊂ H1(v) ⊂ H2(v) ⊂ · · · ⊂ Hm−1(v).

Proof We assume m = k2/k1 ≥ 2 since the statement is trivial otherwise. If
vertex v can fire in the graph Gk1 , it follows that the coefficients D∗(k1)(v) =
D∗(k2)(v) ≥ val(v) where this valence is the same in both graphs Gk1 and Gk2 .
Thus v = H0(v) can fire in Gk2 . Afterwards, vertex v may no longer be able to
fire but we fire all vertices of H1(v) simultaneously. Only the leaves of H1(v),
i.e. the neighbors of v, are on the boundary of the subgraph H1(v) and since
v just fired, they each have one chip on them and one outgoing edge. Thus
H1(v) may fire. By analogous logic we can then fire H2(v), H3(v), . . . ,Hm−1(v)
in turn, which results in a configuration identical to the one we obtain by firing
vertex v in graph Gk1 . See Figure 11.

Example 55 (Circle)
The Picard group of a circle Γ = S1 with length ` is the circle group R/` Z ∼=
S1. In particular, if we look at the finite model G = ({v}, {e}), where e is a
loop edge, and then subdivide e into k equal segments, we obtain Gk = Ck,
the k-cycle graph. It is direct to verify that Pic(Gk) ∼= Z/kZ with superstable
representatives given by divisors of the form (w) or 0, where w is any vertex
of Pic(Gk). The group law then exactly matches the group law on S1 so we
get the appropriate direct limit.

Example 56 (Genus 2 Banana Graph) Let Γ be the metric graph with two
vertices (v1 and v2) connected by three parallel edges. We can use finite models
of this graph to gain intuition for the structure of Γ ’s tropical Picard group. Let
Gk be the finite graph on 3k+2 vertices defined as the union of the three path
graphs [v1, x1, x2, . . . , xk, v2], [v1, y1, y2, . . . , yk, v2], and [v1, z1, z2, . . . , zk, v2],
see Figure 12. By direct verification we see that Pic(Gk) ∼= Z/(k + 1)Z ×
Z/(3k + 3)Z using the generators D1 = x1 − v1 and D2 = y2 + z1 − 2v1. (If
k = 1, we use D2 = v2 + z1 − 2v1 instead.)

In particular, multiples of D1 have the forms (for 1 ≤ m ≤ k)

xm − v1, v2 − v1, xm + v2 − 2v1, 2v2 − 2v1, or yk+1−m + zk+1−m − 2v1,
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Fig. 11 Simulating chip-firing at v using a sequence of firing nested subgraphs on subdivided
graph.

x2
xk

y1 y2

z2 zk

v2v1

x1

z1

yk

Fig. 12 Subdivided genus 2 Banana graph.
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in order. Multiples of D2 look like

y2m + zm − 2v1, v2 + z k+1
2
− 2v1, or xk+1−2m + z k+1

2 −m
− 2v1,

in order, if k is odd, and the case where k is even is analogous. Taking the
direct limit, we thus see that PicQ(Γ ) ∼= Q/Z × Q/Z generated by divisor
classes D1 and D2 where sample representatives are of the forms

D1 = xα − v1 and D2 = y2β + zβ − 2v1.

Here xα denotes the point on the top edge distance α from vertex v1. The
points yα and zα are defined analogously. We can also see that extending from
rational points of Γ to real points can be accomplished in this case simply by
letting distances α and β be real.

9 Conclusions and Open Questions

In this paper, we presented a number of properties of |D| including verification
that it is finitely generated as a tropical semi-module. We also provided some
tools for explicitly understanding |D| as a polyhedral cell complex such as
a formula for the dimension of the face containing a given point, as well as
applications such as using |D| to embed an abstract tropical curve into tropical
projective space.

There are many ways to continue this research for the future. It is quite
tantalizing to investigate how the Baker-Norine rank of a divisor compares with
the geometry and combinatorics of the associated linear system as a polyhedral
cell complex. Also, is there any relation between r(D) and the minimal number
of generators of R(D)? Can we easily identify out of our finite generating set S
which 0-cells correspond to extremals? How does the structure of |D| change
as we continuously move one point in the support of D or if we change the
edge lengths of our metric graph while keeping the combinatorial type of the
graph fixed?

In the case of finite graphs, i.e. divisors whose support lies within the set
of vertices of the graph, can we combinatorially describe the associated linear
systems? For example, is there a stabilization or an associated Ehrhart theory
that one can use to count the sizes of such linear systems?

Lastly, what other results from classical algebraic geometry carry over to
the theory of metric graphs (or tropical curves) and vice-versa?
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