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Brane Tilings and Cluster Algebras

This talk is motivated by the study of cluster algebras coming from Brane Tilings.

One way of describing such cluster algebras is those whose underlying quivers can be
embedded on a torus (or a higher genus surface in some cases). Their duals thus give a
doubly-periodic tesselation of the Euclidean plane, the universal cover of the torus.
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Such cluster algebras are of infinite mutation type, but nonetheless have a finite subset of
mutation-equivalent quivers known as toric phases, and a well-behaved subset of cluster
variables, known as toric cluster variables to go along with them.
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Brane Tilings from a Quiver Q with Potential W

Example (The dP3 Quiver): QdP3 = Q =

4

6

1
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5

2

,

W = A16A64A42A25A53A31 + A14A45A51 + A23A36A62

− A16A62A25A51 − A36A64A45A53 − A14A42A23A31.

We unfold Q onto the plane, letting the three positive (resp. negative) terms in W depict
clockwise (resp. counter-clockwise) cycles on Q̃.
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Brane Tilings from a Quiver Q with Potential W

Example (continued):

Q =
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unfolds to Q̃ =
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W = A16A64A42A25A53A31(A) + A14A45A51 (B) + A23A36A62 (C )

− A16A62A25A51 (D) − A36A64A45A53 (E ) − A14A42A23A31(F ).
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Brane Tilings from a Quiver Q with Potential W

Taking the planar dual yields a bipartite graph on a torus (Brane Tiling):
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Q̃ −→ TQ =
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Negative Term in W ←→ Counter-Clockwise cycle in Q̃ ←→ • in TQ
Positive Term in W ←→ Clockwise cycle in Q̃ ←→ ◦ in TQ
(To obtain Q̃ from TQ , we dualize edges so that white is on the right.)
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Brane Tilings from a Quiver Q with Potential W

The dP3 Example:

Q
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Motivational Goal: Study Toric Mutation Sequences of Such Quivers.
We say that a mutation is a toric mutation if it occurs at a vertex with exactly two incoming
arrows and two outgoing arrows.
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First Example of Toric Mutations: a Periodic Mutation Sequence

The dP3 quiver admits a periodic toric mutation sequence beginning as so:
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2 26
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As we mutate QdP3 by 1, 2, 3, 4, 5, 6, 1, 2, . . . , after the first two mutations, we obtain the
same quiver back up to relabelling the vertices.

We will discuss other toric mutation sequences momentarily.
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Cluster Variables and Contours on the del Pezzo 3 Lattice

We wish to understand algebraic formulas and combinatorial interpretations for toric cluster
variables, i.e. those reachable from the initial cluster via a sequence of toric mutations.
(We note that in other contexts, such toric mutations are also known as square moves.)

To this end, we cut out subgraphs of the dP3 lattice (Middle) by using six-sided contours
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indexed as (a, b, c , d , e, f ) with a, b, c , d , e, f ∈ Z (Right).
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Combinatorial Formula for Toric Cluster Variables parameterized by Z1

Example from S. Zhang (2012 REU): Periodic mutation 1, 2, 3, 4, 5, 6, 1, 2, . . . yields
partition functions for Aztec Dragons (as studied by Ciucu, Cottrell-Young, Propp, and
Wieland) under appropriate weighted enumeration of perfect matchings (a.k.a dimers).
(Starting from the initial cluster {x1, x2, x3, x4, x5, x6}.)
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Combinatorial Formula for Toric Cluster Variables parameterized by Z1

These graphs G admit dimer partition functions cm(G )
∑

M x(M) agreeing with the Laurent
expansion of cluster variables via the weighting x(M) =

∏
edge e∈M

1
xixj

(for e straddling

faces i and j) and cm(G ) = the covering monomial recording the face labels contained in G or
along its boundary (also see [Speyer] and [Goncharov-Kenyon]).
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All Possible Toric Mutation Sequences

Starting with any of these four models (a.k.a. toric phases) of the dP3 quiver, any sequence
of toric mutations yields a quiver that is graph isomorphic to one of these (up to full reversal).
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Figure 20 of [Eager-Franco] (Incidences betweeen these Models):
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Periodic Examples of Toric Mutation Sequences

The previous example of the periodic sequence 1, 2, 3, 4, 5, 6, 1, 2, . . . corresponds to mutating
pairs of antipodal vertices in order, thus alternating between Model 1 and Model 2.
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Non-Periodic Examples of Toric Mutation Sequences

We may also mutate at pairs of antipodal vertices in a different order, while still alternating
between Model 1 and Model 2. For example, 1, 2, 3, 4, 1, 2, 5, 6.
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Combinatorial Formula for Toric Cluster Variables parameterized by Z2

Example from M. Leoni, S. Neel, and P. Turner (2013 REU): We refer to sequences
made out of mutations at antipodal vertices of the dP3 quiver as τ -mutation sequences.

e.g. 1, 2, 3, 4, 1, 2, 5, 6 yields a cluster variable (which is not an Aztec Dragon)

(x1x
2
2 x

3
3 x

4
5 + x3

2 x
2
3 x4x

4
5 + 2x2

1 x2x
3
3 x

3
5 x6 + 4x1x
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6 )/x2
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(x1x3 + x2x4)(x4x6 + x3x5)2(x1x6 + x2x5)2

x2
1 x

2
2 x

2
3 x

2
4 x6

Resulting Laurent polynomials correspond to Aztec Castles under appropriate weighted enumeration of dimers.
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Combinatorial Formula for Toric Cluster Variables parameterized by Z2

τ -mutation sequences (i.e. toric mutation sequences stemming from mutating antipodal pairs
of vertices) can be built out of τ1 = µ1µ2, τ2 = µ3µ4, and τ3 = µ5µ6.

τ1, τ2 and τ3 satisfy the

affine Coxeter relations τ21 = τ22 = τ23 = 1 and (τ1τ2)3 = (τ2τ3)3 = (τ3τ1)3 = 1 in the sense
that such mutation sequences not only map QdP3 to QdP3 up to graph isomorphism, but also
return cluster variables to the initial cluster up to the corresponding relabelling.
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Combinatorial Formula for Toric Cluster Variables parameterized by Z2

τ -mutation sequences (i.e. toric mutation sequences stemming from mutating antipodal pairs
of vertices) can be built out of τ1 = µ1µ2, τ2 = µ3µ4, and τ3 = µ5µ6. τ1, τ2 and τ3 satisfy the

affine Coxeter relations τ21 = τ22 = τ23 = 1 and (τ1τ2)3 = (τ2τ3)3 = (τ3τ1)3 = 1

These relations are provably the only equivalences, and thus we can describe clusters reachable
by such toric mutation sequences in terms of Z2 (each cluster is a triangle in this lattice):

(0,0)(-1,0)
(-2,0)

(1,0)
(2,0)

(-1,1) (0,1) (1,1)
(2,1)(-2,1)

(-2,-1)

(-2,-2)

(-1,-1)

(-1,-2)

(0,-1)

(0,-2)

(1,-1)

(1,-2) (2,-2)

(2,-1)

τ3 τ2

τ1

τ1

τ2

τ3 τ2 τ1τ1τ2τ3

τ3
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Even More Examples of Non-Periodic Toric Mutation Sequences

More complicated mutation sequences lead us from Model 1 to Model 3 and/or Model 4 and
back. For example, consider the sequences 1, 4, 1, 5, 1 or 1, 4, 3, 2, 4, 1.

5 5 55

6
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3

4 44

1 11

6 6

4

33 3

2 226

1 4 3

Incidences from Figure 20 of [Eager-Franco]: Models 1, 2, 3, 3, 2, 1 and 1, 2, 3, 4, 3, 2, 1, resp.
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Z3 Parameterization for Toric Cluster Variables of the Model 1 dP3 Quiver

In [Lai-M 2017], we showed that the set of toric cluster variables is parameterized by Z3.

In particular, we quotient by toric mutation sequences that result in the same dP3 quiver up to
vertex relabelling σ, and the permuted initial cluster {xσ(1), xσ(2), xσ(3), xσ(4), xσ(5), xσ(6)}.
Accounting for this, we deduced there are exactly three degrees of freedom and no torsion.

Initializing the initial cluster {x1, x2, x3, x4, x5, x6} as corresponding to the triangular prism

{(0,−1, 1), (0,−1, 0), (−1, 0, 0), (−1, 0, 0), (−1, 0, 1), (0, 0, 1), (0, 0, 0)} ⊂ Z3,

we let zi ,j ,k be the toric cluster variable corresponding to (i , j , k) ∈ Z3.

Note: We will sometimes denote zi ,j ,k as z(i , j , k) instead.

Various moves in the Z3 lattice correspond to mutation of QdP3.

4

6

1

3

5

2
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vertex relabelling σ, and the permuted initial cluster {xσ(1), xσ(2), xσ(3), xσ(4), xσ(5), xσ(6)}.
Accounting for this, we deduced there are exactly three degrees of freedom and no torsion.

Initializing the initial cluster {x1, x2, x3, x4, x5, x6} as corresponding to the triangular prism

{(0,−1, 1), (0,−1, 0), (−1, 0, 0), (−1, 0, 0), (−1, 0, 1), (0, 0, 1), (0, 0, 0)} ⊂ Z3,

we let zi ,j ,k be the toric cluster variable corresponding to (i , j , k) ∈ Z3.

Note: We will sometimes denote zi ,j ,k as z(i , j , k) instead.

Various moves in the Z3 lattice correspond to mutation of QdP3.
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Z3 Parameterization for Toric Cluster Variables and an Algebraic Formula

In [Lai-M 2017], we showed that the set of toric cluster variables is parameterized by Z3.

In particular, we quotient by toric mutation sequences that result in the same dP3 quiver up to
vertex relabelling σ, and the permuted initial cluster {xσ(1), xσ(2), xσ(3), xσ(4), xσ(5), xσ(6)}.
Accounting for this, we deduced there are exactly three degrees of freedom and no torsion.

We obtained algebraic expressions for all such corresponding Laurent polynomials.

Let A =
x3x5 + x4x6

x1x2
, B =

x1x6 + x2x5
x3x4

, C =
x1x3 + x2x4

x5x6
,

D =
x1x3x6 + x2x3x5 + x2x4x6

x1x4x5
, and E =

x2x4x5 + x1x3x5 + x1x4x6
x2x3x6

.

zi ,j ,k = xr Ab
(i2+ij+j2+1)+i+2j

3
c Bb

(i2+ij+j2+1)+2i+j
3

c C b
i2+ij+j2+1

3
c Db

(k−1)2

4
c E b

k2

4
c

Note: xr is an initial cluster variable with r depending on (i − j) modulo 3 and k modulo 2.
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Combinatorial Formula for Toric Cluster Variables parameterized by Z3 ?

Map from Z3 to Z6:

(i , j , k)→ (a, b, c, d , e, f ) = (j + k,−i − j − k, i + k, j − k + 1,−i − j + k − 1, i − k + 1)

Magnitude determines Length and Sign determines Direction.

+/− Sign also determines white/black vertices on the contour boundary.

a

b

c

d

e

f

Examples: (1, 2, 1)→ (3,−4, 2, 2,−3, 1), (−2,−2, 3)→ (1, 1, 1,−4, 6,−4), and (1, 2, 3)→ (5,−6, 4, 0,−1,−1)
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Combinatorial Formula for Toric Cluster Variables parameterized by Z3 ?

Theorem [Lai-M 2017]: For most toric cluster variables zi ,j ,k , we let G be the subgraph cut
out by the contour (a, b, c, d , e, f ) = (j + k,−i − j − k, i + k, j − k + 1,−i − j + k − 1, i − k + 1). Then
the Laurent expansion of zi ,j ,k agrees with the partition function of weighted enumeration of
dimers on G .

Examples: (1, 2, 1)→ (3,−4, 2, 2,−3, 1), (−2,−2, 3)→ (1, 1, 1,−4, 6,−4), and (1, 2, 3)→ (5,−6, 4, 0,−1,−1)
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Possible Shapes of Aztec Castles
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Sketch of Proof in [Lai-M 2017]

Our proof of this combinatorial interpretation for most toric cluster variables in the cluster
algebra associated to the dP3 quiver relies on comparing cluster mutations of zi ,j ,k ’s to
decomposing superpositions of dimers on graphs via Kuo’s Graphical Condensation.

Kuo Graphical Condensation Review: First used by Eric H. Kuo to (re)prove the Aztec
diamond theorem by Elkies, Kuperberg, Larsen and Propp. Kuo condensation can be
considered as a combinatorial interpretation of Dodgson condensation (or the Jacobi-Desnanot
identity) on determinants of matrices.

This condensation is a special case of the octahedron recurrence discovered by Speyer. Kuo
presented several different versions of his condensation, and for ease we describe those next.

(i-1,j+1,k)

(i,j,k-1)
(i-1,j,k-1)

(i,j-1,k-1)
(i+1,j-1,k-1)

(i,j,k)

(i+1,j-1,k+1)

(i+1,j-1,k)

(i+1,j-1,k- )

(i+2 j 2 k)

(i,j,k)

(i-1,j+1,k-1)

(i-1,j,k-1)

(i-1,j,k)

(i-2,j+1,k-1)

O
(i,j,k)

(i,j-1,k-2) (i+2,j-2,k)
(i-1,j,k-1)(i+1,j-1,k-1)
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Sketch of Proof in [Lai-M 2017]

Our proof of this combinatorial interpretation for most toric cluster variables in the cluster
algebra associated to the dP3 quiver relies on comparing cluster mutations of zi ,j ,k ’s to
decomposing superpositions of dimers on graphs via Kuo’s Graphical Condensation.

Kuo Graphical Condensation Review: First used by Eric H. Kuo to (re)prove the Aztec
diamond theorem by Elkies, Kuperberg, Larsen and Propp. Kuo condensation can be
considered as a combinatorial interpretation of Dodgson condensation (or the Jacobi-Desnanot
identity) on determinants of matrices.

This condensation is a special case of the octahedron recurrence discovered by Speyer. Kuo
presented several different versions of his condensation, and for ease we describe those next.

zi ,j−1,k−2 zi ,j ,k = zi+1,j−1,k−1 zi−1,j ,k−1 + zi ,j−1,k−1 zi ,j ,k−1

zi+2,j−2,k zi ,j ,k = zi+1,j−1,k+1 zi+1,j−1,k−1 + (zi+1,j−1,k)2

zi−2,j+1,k−1 zi ,j ,k = zi−1,j+1,k zi−1,j ,k−1 + zi−1,j ,k zi−1,j+1,k−1
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Crash Course on Kuo Condensation

Let G = (V1,V2,E ) be a (weighted) planar bipartite graph and let p1, p2, p3, p4 be four
vertices appearing in cyclic order on a face of G .

Theorem (Balanced Kuo Condensation) [Theorem 5.1 in [Kuo]]
Let |V1| = |V2| with p1, p3 ∈ V1 and p2, p4 ∈ V2. Then

w(G )w(G − {p1, p2, p3, p4}) = w(G − {p1, p2})w(G − {p3, p4})
+ w(G − {p1, p4})w(G − {p2, p3}).

Theorem (Non-alternating Balanced) [Theorem 5.2 in [Kuo]]
Let |V1| = |V2| with p1, p2 ∈ V1 and p3, p4 ∈ V2. Then

w(G )w(G − {p1, p2, p3, p4}) = w(G − {p1, p4})w(G − {p2, p3})
− w(G − {p1, p3})w(G − {p2, p4}).
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Crash Course on Kuo Condensation

Let G = (V1,V2,E ) be a (weighted) planar bipartite graph and let p1, p2, p3, p4 be four
vertices appearing in cyclic order on a face of G .

Theorem (Unbalanced Kuo Condensation) [Theorem 5.3 in [Kuo]]
Let |V1| = |V2|+ 1 with p1, p2, p3 ∈ V1 and p4 ∈ V2. Then

w(G − {p2})w(G − {p1, p3, p4}) = w(G − {p1})w(G − {p2, p3, p4})
+ w(G − {p3})w(G − {p1, p2, p4}).

Theorem (Monochromatic Condensation) [Theorem 5.4 in [Kuo]] Let |V1| = |V2|+ 2
with p1, p2, p3, p4 ∈ V1. Then

w(G − {p1, p3})w(G − {p2, p4}) = w(G − {p1, p2})w(G − {p3, p4})
+ w(G − {p1, p4})w(G − {p2, p3}).
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Example of Kuo Balanced Graphical Condensation

Let G = (V1,V2,E ) be a (weighted) planar bipartite graph and let p1, p2, p3, p4 be four
vertices appearing in cyclic order on a face of G . Assume |V1| = |V2| with p1, p3 ∈ V1 and
p2, p4 ∈ V2.

w(G) ·w(G− {A,B,C,D}) = w(G−{A,B})·w(G−{C ,D})+w(G−{A,D})·w(G−{B,C})
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Example of Kuo Balanced Graphical Condensation

Let G = (V1,V2,E ) be a (weighted) planar bipartite graph and let p1, p2, p3, p4 be four
vertices appearing in cyclic order on a face of G . Assume |V1| = |V2| with p1, p3 ∈ V1 and
p2, p4 ∈ V2.

w(G )·w(G−{A,B,C ,D}) = w(G− {A,B}) ·w(G− {C,D})+w(G−{A,D})·w(G−{B,C})
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Cross-section when k is positive
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Self-intersecting Contours

(+,−,+,−,+,−)

a
a

b

c

d e

f

b

c

d
e

f

For (i , j , k) associated to a self-intersecting contour, our Algebraic formula still works:

zi ,j ,k = xr Ab
(i2+ij+j2+1)+i+2j

3
c Bb

(i2+ij+j2+1)+2i+j
3

c C b
i2+ij+j2+1

3
c Db

(k−1)2

4
c E b

k2

4
c

However, when the contour (a, b, c , d , e, f ) alternates in sign, what is a combinatorial formula?

Speculation: Instead of dimer partition functions, what if we use double dimers instead?

1 2 3

4

567

8
=

1 2 3

4

567

8
+
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Jenne Condensation

Theorem 1.0.2 in [Jenne]: Let G be a bipartite graph with |V1| = |V2| with p1, p3 ∈ V1 and
p2, p4 ∈ V2 as before.

Furthermore, choose a subset of nodes N on the boundary of graph
G , and divide N into three circularly continguous sets R, G, and B. (We also assume that the
sizes |R|, |G | and |B| satisfy the triangle inequality.) Then

ZDD
σ (G ,N)ZDD

σ5 (G ,N − {p1, p2, p3, p4}) = ZDD
σ1 (G ,N − {p1, p2})ZDD

σ2 (G ,N − {p3, p4})
+ ZDD

σ3 (G ,N − {p1, p4})ZDD
σ4 (G ,N − {p2, p3})

where ZDD
σi

counts (*) the number of double dimer configurations (with nodes) M on
(G ,N) such that 1) every vertex in G −N is incident to exactly two edges (or a doubled-edge)
of M , 2) every node in N is incident to exactly one edge of M, and 3) each path from N to
N included in M has endpoints of different colors.

Note (*) : When calculating ZDD
σi

, each contribution from M is multiplied by 2# cycles in M.
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Jenne Condensation

Example:

ZDD
σ (N)ZDD

σ1258
(N− 1, 2, 5, 8) = ZDD

σ12
(N− 1, 2)ZDD

σ58
(N− 5, 8) + ZDD

σ18
(N− 1, 8)ZDD

σ25
(N− 2, 5)

1 2 3

4

567

8

3

4

67

3

4

567

8

1 2 3

4

67

2 3

4

567

1 3

4

67

8

Remark: Because of the fact that N (and N − S for each subset S) is divided into three
circularly continguous sets, there is a unique non-monochromatic non-crossing pairing σi .

Remark: By attaching a leaf vertex to (and subsituting for) a node, it is possible to turn any
of these factors ZDD

σ (G ,N − S) into ZDD
σ (G − S ,N − S) instead; i.e. we can turn a 1− valent

node into a non-node by either 1) making it 2-valent or 2) making it 0-valent (deleting it).
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Jenne Condensation Example

Consider the case of (i , j , k) = (−1,−1, 3).

We wish to demonstrate that the corresponding
cluster variable has a double dimer interpretation with graph and colored nodes as follows:

(−1,−1, 3)→ (2,−1, 2,−3, 4,−3)

To prove this, we note that a certain octahedron
in the Z3 lattice should correspond to a cluster
mutation (see below).

Here, z(−1,−2, 1), as well as the four cluster
variables on the right-hand-side correspond to
ordinary dimers.

z(−1,−1, 3) · z(−1,−2, 1) = z(0,−2, 2) · z(−2,−1, 2) + z(−1,−1, 2) · z(−1,−2, 2)

It thus suffices to illustrate this recurrence as an example of Jenne Condensation.
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Jenne Condensation Example

We label four of the nodes as A, B, C , and F as indicated. (Here B plays a special role that
we will discuss shortly.) We begin by illustatrating the deletion of vertices {A,F}.

F

B*

C

A

z(−1,−1, 3) · z(−1,−2, 1) = z(0,−2, 2) · z(−2,−1, 2) + z(−1,−1, 2) · z(−1,−2, 2)
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Jenne Condensation Example

If we delete vertices A and F , we obtain z(0,−2, 2) as desired. (0,−2, 2)→ (0, 0, 2,−3, 3,−1)

F

A

z(−1,−1, 3) · z(−1,−2, 1) = z(0,−2, 2) · z(−2,−1, 2) + z(−1,−1, 2) · z(−1,−2, 2)
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Jenne Condensation Example

If we instead delete vertices C and F , we get z(−1,−1, 2). (−1,−1, 2)→ (1, 0, 1,−2, 3,−2)

F
C

z(−1,−1, 3) · z(−1,−2, 1) = z(0,−2, 2) · z(−2,−1, 2) + z(−1,−1, 2) · z(−1,−2, 2)
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Jenne Condensation Example

We next “delete” nodes B and C , but observe that while vertex C is deleted from the graph,
we turn off node B (making it valence two) instead.

We then obtain z(−2,−1, 2) as desired.
(−2,−1, 2)→ (1, 1, 0,−2, 4,−3)

B*(2-valent)

C

z(−1,−1, 3) · z(−1,−2, 1) = z(0,−2, 2) · z(−2,−1, 2) + z(−1,−1, 2) · z(−1,−2, 2)
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Jenne Condensation Example

The case of “deleting” nodes A and B is analogous: vertex A is still deleted from the graph,
but we turn off node B (making it valence two). We then obtain z(−1,−2, 2) as desired.
(−1,−2, 2)→ (0, 1, 1,−3, 4,−2)

 B*A (2-valent)

z(−1,−1, 3) · z(−1,−2, 1) = z(0,−2, 2) · z(−2,−1, 2) + z(−1,−1, 2) · z(−1,−2, 2)
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Jenne Condensation Example

Finally, “deleting” nodes A, B, C , and F sees the deletion of vertices A,C , and F , while we
turn off node B (making it valence two). We obtain the cluster variable z(−1,−2, 1).
(−1,−2, 1)→ (−1, 2, 0,−2, 3,−1)

F

B*

C

A (2-valent)

z(−1,−1, 3) · z(−1,−2, 1) = z(0,−2, 2) · z(−2,−1, 2) + z(−1,−1, 2) · z(−1,−2, 2)
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Jenne Condensation Example

Summary:

F

B*

C

A (2-valent)

z(−1,−1, 3) · z(−1,−2, 1) = z(0,−2, 2) · z(−2,−1, 2) + z(−1,−1, 2) · z(−1,−2, 2)

54 (G ) · 16 (G − ABCF ) = 12 (G − AF ) · 48 (G − BC ) + 6 (G − CF ) · 48 (G − AB)
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Jenne Condensation Example

Summary:

F

A B*(2-valent)

C
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Jenne Condensation Example

Summary:

F
C

 B*A (2-valent)

z(−1,−1, 3) · z(−1,−2, 1) = z(0,−2, 2) · z(−2,−1, 2) + z(−1,−1, 2) · z(−1,−2, 2)

54 (G ) · 16 (G − ABCF ) = 12 (G − AF ) · 48 (G − BC ) + 6 (G − CF ) · 48 (G − AB)
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Jenne Condensation Example 2

C

E

F

A

D

z(−1,−2, 4) · z(0,−2, 2) = z(−1, 2, 3) · z(0,−2, 3) + z(−1,−1, 3) · z(0,−3, 3)

11664 · 12 = 432 · 108 + 54 · 1728
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Jenne Condensation Example 2
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Jenne Condensation Example 2
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Jenne Condensation Example 2

z(−1,−2, 4) · z(0,−2, 2) = z(−1, 2, 3) · z(0,−2, 3) + z(−1,−1, 3) · z(0,−3, 3)

11664 · 12 = 432 · 108 + 54 · 1728

G. Musiker (University of Minnesota) Double Dimers of dP3 November 17, 2020 47 / 58



Sketch of Proof for Self-intersecting Contours

Based on conversations with David Speyer, it was conjectured that cluster variables
corresponding to the lattice points corresponding to self-intersecting contours (which form a
light cone or hour-glass as k varies) would correspond to mixed dimers.

However, our work instead proves a combinatorial interpretation as double dimers with
nodes on the boundary. (Example of (−2,−1, 6)→ (5,−3, 4,−6, 8,−7) shown.)
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Sketch of Proof for Self-intersecting Contours

Lemma [Jenne-Lai-M 2020+]: For fixed k , the toric cluster variables zi ,j ,k for (i , j , k) on
the rim of the hexagonal region have weighted enumeration formulas simultaneously in terms
of dimers and double dimers with nodes on the boundary. (We show an explicit bijection.)

To obtain the double dimer interpretations (with nodes) for the remaining self-intersecting
contours in the center of this hexagonal region, we use the dimer interpretations of [Lai-M
2017] as a base case, and then proceed by induction via Jenne condensation.
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Double Dimer Interpretations with Nodes

Theorem In Progress [Jenne-Lai-M 2020+]: For the case of the dP3 Quiver (of Model I),
we complete the assignment of combinatorial interpretations to all toric cluster variables.

In
particular, for those parametrized by lattice points (i , j , k) associated to self-intersecting
contours, we express Laurent expansions of such cluster variables as weighted enumeration of
double dimers with nodes on the boundary.

Example of (−2,−1, 6)→ (5,−3, 4,−6, 8,−7) shown.
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Double Dimer Configurations More Precisely

Theorem In Progress [Jenne-Lai-M 2020+]: For a fixed value of k ≥ 1, we split up the
hexagon of lattice points corresponding to self-intersecting contours into three rhombi; cut-out
by the lines (y = −1 and y = −x − 1), (y = −x and x = 0), as well as (x = −1 and y = 0).

For the SW rhombic region, the blue and green nodes satisfy a regular pattern of being all
boundary vertices of degree 2 along edges d and e, respectively. The red nodes are placed by a
more complicated (semi)-regular pattern along edges c and f .
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Double Dimer Configurations More Precisely

For a fixed value of k ≥ 1, and (i , j , k) in the SW rhombic region, i.e. j ≤ −1 and i + j ≤ −1,
we place red nodes in the folllowing (semi)-regular pattern along edges c and f : For i < 0, the
leftmost −i red nodes of side f are as usual, followed by (k + i + j) extra red nodes. For i ≥ 0,
the rightmost (i + 1) red nodes of side c are as usual, and then (j + k − 1) extra red nodes.

(−2,−3, 7)→ (4,−2, 5,−9, 11,−8) and (1,−3, 6)→ (3,−4, 7,−8, 7,−4) illustrated, resp.
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Double Dimer Configurations More Precisely

For the NE and NW rhombic regions, we rotate the graphs 120◦ or 240◦ degrees and rotate
our node coloring rules accordingly. The cases of k ≤ 0 are similarly reflections of the above.
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Further Work in Progess

Conjecture: There exist (weighted) bijections that map our double dimer configurations,
which have nodes only on the boundary, to mixed dimer configurations where there is a
internal region where every vertex has valence two, and the remaining region has vertices of
valence one.
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Further Work in Progess

Conjecture: For the cases of the dP3 Quivers (of Model II, III, and IV), a similar double
dimer with node interpretation works for toric cluster variables associated to self-intersecting
contours.
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Further Work in Progess

Conjecture: For the cases of the dP3 Quivers (of Model II, III, and IV), a similar double
dimer with node interpretation works for toric cluster variables associated to self-intersecting
contours. (Model IV Example from [Lai-M 2020]; A5 of [Kenyon-Pemantle 2012])
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Further Work in Progess

In particular, we have successfully recast some examples of mixed dimer interpretations
described in Section 8 of [Lai-M 2020] as double dimer (with boundary nodes) interpretations
instead. (Model IV Example from [Lai-M 2020]; B4 of [Kenyon-Pemantle 2012])
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Conjecture: Other cluster algebras arising from Newton polygons with six sides also have
toric cluster variables with combinatorial interpretations in terms of double dimers with
boundary nodes.
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Conjecture: Other cluster algebras arising from Newton polygons with six sides also have
toric cluster variables with combinatorial interpretations in terms of double dimers with
boundary nodes.

G. Musiker (University of Minnesota) Double Dimers of dP3 November 17, 2020 57 / 58



Thanks for Listening http://www-users.math.umn.edu/∼musiker/OCAS20.pdf
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