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The symmetric group Sn acts on the ring of polynomials

Q[x1, . . . , xn] by permuting indices. For example, if we let

P = x2
1x5 + x4x6 + x3

3 + x2x3, then

(

(132)(5)(46)

)

P = x2
3x5 + x4x6 + x3

2 + x1x2

A polynomial P is symmetric (an invariant of Sn) if and only if

σ(P ) = P for all σ ∈ Sn.

For example, in S3 some invariants are:

e1 = x1 + x2 + x3

e2 = x1x2 + x1x3 + x2x3

e3 = x1x2x3
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Any invariant of Sn can be written as a polynomial in

{e1, e2, . . . , en} where

ek =
∑

1≤i1<···<ik≤n

xi1xi2 · · ·xik

A classic result states that Q[x1, . . . , xn] is a free module of rank n!

over the ideal (e1, . . . , en).

For example any polynomial in Q[x1, x2, x3] can be written

uniquely as

A1 + A2x2 + A3x3 + A4x2x3 + A5x
2
3 + A6x2x

2
3

where A1, . . . , A6 are symmetric polynomials.
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A polynomial P is m-quasiinvariant if and only if P − (i, j)(P ) is

divisible by (xi − xj)
2m+1 for all transpositions (i, j) in Sn.

Lemma 1 The m-quasiinvariants of Sn, which we will denote as

QIm, form a sequence of nested rings.

Q[x1, . . . , xn] = QI0 ⊃ QI1 ⊃ QI2 ⊃ · · · ⊃ QI∞ = Λn

where Λn is the ring of n-variable symmetric polynomials.

The group Sn acts on the rings QIm just as it acts on the

polynomial ring.
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Theorem 1 (Etingof and Ginzburg) Just like in the

Q[x1, . . . , xn] case, we can write any element of QIm as a unique

sum

n!
∑

i=1

Ai(e1, . . . , en) · ηi

where the Ai’s are polynomials and the ηi’s are elements of QIm.

These ηi’s are therefore a basis for QIm

/〈

(e1, e2, . . . en)
〉

, a space

which has the following Hilbert Series [Felder and Veselov]:

n!
∑

i=1

qdegree(ηi) =
∑

T∈ST (n)

qm((n

2)−content(λ(T )))+cocharge(T )
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In the case that n = 3 the Hilbert Series of QIm

/〈

(e1, e2, e3)
〉

is

q0 + 2q3m+1 + 2q3m+2 + q6m+3.

Proposition 1 QIm

/〈

(e1, e2, e3)
〉

has basis

{1, B3m+1, (13)B3m+1, B3m+2, (13)B3m+2, ∆
2m+1
3 }

where ∆3 = (x1 − x2)(x1 − x3)(x2 − x3) and the polynomials B3m+1

and B3m+2 have the form

Qd =
∑

0≤i≤j≤m

C[i,j]x
d−i−j
1 m[i,j](x2, x3)

for d = 3m + 1 and 3m + 2 respectively where m[i,i](x2, x3) = xi
2x

i
3

and m[i,j](x2, x3) = xi
2x

j
3 + x

j
2x

i
3.
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How to solve for the coefficients C[i,j]

Lemma 2 Qd is m-quasiinvariant if and only if the coefficients

C[i,j] satisfy the linear equations

∑

0≤j≤i≤m

Ai,j,k,lC[i,j] = 0

for k ∈ {0, . . . , m} and l ∈ {1, 3, 5, . . . , 2m − 1}. Here we set

Ai,j,k,l =







(

i
k

)(

d−i−k
l

)

−
(

i
k

)(

2i−k
l

)

if i = j,
(

i
k

)(

d−j−k
l

)

+
(

j
k

)(

d−i−k
l

)

−
((

i
k

)

+
(

j
k

)) (

i+j−k
l

)

if i 6= j.

January 9, 2004 Slide 7



The m-Quasiinvariants of Sn Jason Bandlow and Gregg Musiker

Lemma 3 In the cases d = 3m + 1 or 3m + 2, solving these

equations yields an m-quasiinvariant of degree d (unique up to

scalar multiplication).

To prove this Lemma, we show that the m(m + 1) ×
(

m+2
2

)

matrix

of entries Ai,j,k,l has a nullspace of dimension one.

We restrict to the
((

m+2
2

)

− 1
)

×
((

m+2
2

)

− 1
)

submatrix Bm of

entries Ai,j,k,l where [i, j] 6= [m, m], 0 ≤ k ≤ m − 1 and

l ∈ {2m − 2k − 1, . . . , 2m − 3, 2m − 1} or k = m and

l ∈ {1, 3, 5, . . . , 2m − 1}.
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Proving that the matrix Bm is nonsingular will show that the rank

of the full matrix is
(

m+2
2

)

− 1 and thus the nullspace has

dimension ≤ 1. We conclude that the dimension is exactly one

since by proposition 1, nonzero m-quasiinvariants of form Qd exist.

Proving nonsingularity of Bm.

Matrix Bm is block diagonal with one block of size 1, one of size 2,

and so on except that there will be two blocks of size m.

We let Bk,m be the kth block for k ∈ {1, . . . , m} and denote the

last block as Bm.
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For Bk,m, 0 ≤ j ≤ k− 1, l ∈ {2m− 2k + 1, 2m− 2k− 1, . . . , 2m− 1}

and for Bm, 0 ≤ j ≤ m − 1 and l ∈ {1, 3, . . . , 2m − 1}.

Bk,m =

[(

d − j − k − 1

l

)

−

(

j

l

)]

l,j

, Bm =

[(

d − j − m

l

)

−

(

j

l

)]

l,j

.

For example, when m = 3 and d = 10, matrix Bm is









































252 378 126 308 182 56 273 147 75

0 126 56 252 133 42 378 174 75

0 84 56 168 147 68 252 184 125

0 0 0 56 21 6 168 63 19

0 0 0 56 35 20 168 105 66

0 0 0 8 6 4 21 15 11

0 0 0 0 0 0 21 6 1

0 0 0 0 0 0 35 20 10

0 0 0 0 0 0 7 5 3









































.
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We will show that each of the matrices Bk,m is nonsingular for the

case d = 3m + 1. (A similar argument will hold for the other cases).

Re-indexing gives

Bk,m =

∣

∣

∣

∣

∣

(

3m + 3 − k − i

2m + 1 − 2j

)

−

(

i − 1

2m + 1 − 2j

)

∣

∣

∣

∣

∣

k

i,j=1

.

A literature search found no determinantal results for a matrix of

differences of binomial coefficients where the tops were different

and the bottoms the same.
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We begin by considering a general form of the matrix, and

factoring it. This factorization was suggested by an argument of

Gessel and Viennot:

det

∣

∣

∣

∣

∣

(

ai

bj

)

−

(

c − ai

bj

)

∣

∣

∣

∣

∣

k

i,j=1

=

det

∣

∣

∣

∣

∣

(

c
bk−i+1

)

(

c
ak−j+1

) ·

((

c − bk−i+1

c − ak−j+1

)

−

(

c − bk−i+1

ak−j+1

))

∣

∣

∣

∣

∣

k

i,j=1

=

(

c
b1

)

. . .
(

c
bk

)

(

c
a1

)

. . .
(

c
ak

) · det

∣

∣

∣

∣

∣

(

c − bk−i+1

c − ak−j+1

)

−

(

c − bk−i+1

ak−j+1

)

∣

∣

∣

∣

∣

k

i,j=1

Notice that now the tops of the binomial coefficients are the same

and the bottoms are different. This allows us to apply a

generalization of a technique of Krattenthaler.
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Lemma 4 For any integers a, b, c, d, e, the determinant

det

∣

∣

∣

∣

∣

(

a + bi

c + dj

)

−

(

a + bi

e − dj

)

∣

∣

∣

∣

∣

n

i,j=1

is the number of families of non-intersecting lattice paths with

NORTH and WEST steps only from the points

{(c + d, c + d), (c + 2d, c + 2d), . . . (c + nd, c + nd)} to the

points {(0, a + b), (0, a + 2b), . . . , (0, a + nb)} which avoid the

line y = −x + (c + e).

To show this, we first show that the number of paths from

(c + jd, c + jd) to (0, a + ib) which avoid the

line y = −x + (c + e) is
(

a+bi
c+dj

)

−
(

a+bi
e−dj

)

.
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(Width)(Height)

A

(

((a+ib)−(c+jd))+(c+jd)
c+jd

)

=
(

a+bi
c+dj

)

(0, a + b)

(0, a + ib)

(c + jd, c + jd)

(c + d, c + d)

Figure 1: Counting paths from (c + jd, c + jd) to (0, a + ib).
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(Height)(Width)

B

A

(c + e − (a + ib), c + e)

(c + jd, c + jd)

=
(

a+bi
e−dj

)

(

(c+jd−(c+e−a−ib))+(c+e−(c+jd))
c+e−c−jd

)

y = −x + (c + e)

(0, a + ib)

Figure 2: ‘Bad’ paths from (c + jd, c + jd) to (0, a + ib).
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This shown, the classical involution of Gessel and Viennot shows

that when the entries of a matrix count paths, the determinant

counts families of non-intersecting paths. Applying this involution

to our determinant gives

det

∣

∣

∣

∣

∣

(

3m + 3 − k − i

2m + 1 − 2j

)

−

(

i − 1

2m + 1 − 2j

)

∣

∣

∣

∣

∣

k

i,j=1

=

(

3m+2−k
2m−1

)(

3m+2−k
2m−3

)

· · ·
(

3m+2−k
2m−2k+1

)

(

3m+2−k
3m+2−k

)(

3m+2−k
3m+1−k

)

· · ·
(

3m+2−k
3m−2k+3

) · |F|

where F is the set of families of non-intersecting paths from

{(0, 0), (1, 1), . . . , (k − 1, k − 1)} to

{(0, m − k + 3), (0, m − k + 5), . . . , (0, m + k + 1)} which stay below

the line y = −x + 3m + 2 − k.

This is easily seen to be positive while m ≥ k.
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Thus for d = 3m + 1 or 3m + 2, if we fix C[0,0] = 1 and solve the

equations
∑

0≤j≤i≤m

Ai,j,k,lC[i,j] = 0

for appropriate k and l we will construct a unique element of QIm

of the form Qd.

Qd =
∑

0≤i≤j≤m

C[i,j]x
d−i−j
1 m[i,j](x2, x3)
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Therefore we have an explicit basis

{1, B3m+1, (13)B3m+1, B3m+2, (13)B3m+2, ∆
2m+1
3 }

for QIm

/〈

(e1, e2, e3)
〉

.

For m = 1,

B4 = x4
1 − 2x3

1(x2 + x3) + 6x2
1x2x3

B5 = x5
1 −

5

3
x4

1(x2 + x3) +
10

3
x3

1x2x3.

For m = 2,

B7 = x
7

1 −
7

2
x
6

1(x2 + x3) + 14x
5

1x2x3 +
7

2
x
5

1(x
2

2 + x
2

3) −
35

2
x
4

1(x
2

2x3 + x2x
2

3) + 35x
3

1x
2

2x
2

3

B8 = x
8

1 −
16

5
x
7

1(x2 + x3) +
56

5
x
6

1x2x3 +
14

5
x
6

1(x
2

2 + x
2

3) −
56

5
x
5

1(x
2

2x3 + x2x
2

3) + 14x
4

1x
2

2x
2

3.
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