The m-Quasiinvariants of S_{n}

Jason Bandlow and Gregg Musiker
January 9, 2004
Speaker: Gregg Musiker
University of California, San Diego

The symmetric group S_{n} acts on the ring of polynomials $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ by permuting indices. For example, if we let $P=x_{1}^{2} x_{5}+x_{4} x_{6}+x_{3}^{3}+x_{2} x_{3}$, then

$$
((132)(5)(46)) P=x_{3}^{2} x_{5}+x_{4} x_{6}+x_{2}^{3}+x_{1} x_{2}
$$

A polynomial P is symmetric (an invariant of S_{n}) if and only if

$$
\sigma(P)=P \text { for all } \sigma \in S_{n}
$$

For example, in S_{3} some invariants are:

$$
\begin{aligned}
e_{1} & =x_{1}+x_{2}+x_{3} \\
e_{2} & =x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
e_{3} & =x_{1} x_{2} x_{3}
\end{aligned}
$$

Any invariant of S_{n} can be written as a polynomial in $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ where

$$
e_{k}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

A classic result states that $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ is a free module of rank n ! over the ideal $\left(e_{1}, \ldots, e_{n}\right)$.

For example any polynomial in $\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]$ can be written uniquely as

$$
A_{1}+A_{2} x_{2}+A_{3} x_{3}+A_{4} x_{2} x_{3}+A_{5} x_{3}^{2}+A_{6} x_{2} x_{3}^{2}
$$

where A_{1}, \ldots, A_{6} are symmetric polynomials.

A polynomial P is m-quasiinvariant if and only if $P-(i, j)(P)$ is divisible by $\left(x_{i}-x_{j}\right)^{2 m+1}$ for all transpositions (i, j) in S_{n}.

Lemma 1 The m-quasiinvariants of S_{n}, which we will denote as $Q I_{m}$, form a sequence of nested rings.

$$
\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]=Q I_{0} \supset Q I_{1} \supset Q I_{2} \supset \cdots \supset Q I_{\infty}=\Lambda_{n}
$$

where Λ_{n} is the ring of n-variable symmetric polynomials.

The group S_{n} acts on the rings $Q I_{m}$ just as it acts on the polynomial ring.

Theorem 1 (Etingof and Ginzburg) Just like in the $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ case, we can write any element of $Q I_{m}$ as a unique sum

$$
\sum_{i=1}^{n!} A_{i}\left(e_{1}, \ldots, e_{n}\right) \cdot \eta_{i}
$$

where the A_{i} 's are polynomials and the η_{i} 's are elements of $Q I_{m}$.

These η_{i} 's are therefore a basis for $Q I_{m} /\left\langle\left(e_{1}, e_{2}, \ldots e_{n}\right)\right\rangle$, a space which has the following Hilbert Series [Felder and Veselov]:

$$
\sum_{i=1}^{n!} q^{\operatorname{degree}\left(\eta_{i}\right)}=\sum_{T \in S T(n)} q^{m\left(\binom{n}{2}-\operatorname{content}(\lambda(T))\right)+\operatorname{cocharge}(T)}
$$

In the case that $n=3$ the Hilbert Series of $Q I_{m} /\left\langle\left(e_{1}, e_{2}, e_{3}\right)\right\rangle$ is

$$
q^{0}+2 q^{3 m+1}+2 q^{3 m+2}+q^{6 m+3}
$$

Proposition $1 Q I_{m} /\left\langle\left(e_{1}, e_{2}, e_{3}\right)\right\rangle$ has basis

$$
\left\{1, B_{3 m+1},(13) B_{3 m+1}, B_{3 m+2},(13) B_{3 m+2}, \Delta_{3}^{2 m+1}\right\}
$$

where $\Delta_{3}=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)$ and the polynomials $B_{3 m+1}$ and $B_{3 m+2}$ have the form

$$
Q_{d}=\sum_{0 \leq i \leq j \leq m} C_{[i, j]} x_{1}^{d-i-j} m_{[i, j]}\left(x_{2}, x_{3}\right)
$$

for $d=3 m+1$ and $3 m+2$ respectively where $m_{[i, i]}\left(x_{2}, x_{3}\right)=x_{2}^{i} x_{3}^{i}$ and $m_{[i, j]}\left(x_{2}, x_{3}\right)=x_{2}^{i} x_{3}^{j}+x_{2}^{j} x_{3}^{i}$.

How to solve for the coefficients $C_{[i, j]}$
Lemma $2 Q_{d}$ is m-quasiinvariant if and only if the coefficients $C_{[i, j]}$ satisfy the linear equations

$$
\sum_{0 \leq j \leq i \leq m} A_{i, j, k, l} C_{[i, j]}=0
$$

for $k \in\{0, \ldots, m\}$ and $l \in\{1,3,5, \ldots, 2 m-1\}$. Here we set

$$
A_{i, j, k, l}= \begin{cases}\binom{i}{k}\binom{d-i-k}{l}-\binom{i}{k}\binom{2 i-k}{l} & \text { if } i=j, \\ \binom{i}{k}\binom{d-j-k}{l}+\binom{j}{k}\binom{d-i-k}{l}-\left(\binom{i}{k}+\binom{j}{k}\right)\binom{i+j-k}{l} & \text { if } i \neq j .\end{cases}
$$

Lemma 3 In the cases $d=3 m+1$ or $3 m+2$, solving these equations yields an m-quasiinvariant of degree d (unique up to scalar multiplication).

To prove this Lemma, we show that the $m(m+1) \times\binom{ m+2}{2}$ matrix of entries $A_{i, j, k, l}$ has a nullspace of dimension one.

We restrict to the $\left(\binom{m+2}{2}-1\right) \times\left(\binom{m+2}{2}-1\right)$ submatrix B_{m} of entries $A_{i, j, k, l}$ where $[i, j] \neq[m, m], 0 \leq k \leq m-1$ and $l \in\{2 m-2 k-1, \ldots, 2 m-3,2 m-1\}$ or $k=m$ and $l \in\{1,3,5, \ldots, 2 m-1\}$.

Proving that the matrix B_{m} is nonsingular will show that the rank of the full matrix is $\binom{m+2}{2}-1$ and thus the nullspace has dimension ≤ 1. We conclude that the dimension is exactly one since by proposition 1 , nonzero m-quasiinvariants of form Q_{d} exist.

Proving nonsingularity of B_{m}.

Matrix B_{m} is block diagonal with one block of size 1 , one of size 2, and so on except that there will be two blocks of size m.

We let $B^{k, m}$ be the k th block for $k \in\{1, \ldots, m\}$ and denote the last block as B^{m}.

For $B^{k, m}, 0 \leq j \leq k-1, l \in\{2 m-2 k+1,2 m-2 k-1, \ldots, 2 m-1\}$ and for $B^{m}, 0 \leq j \leq m-1$ and $l \in\{1,3, \ldots, 2 m-1\}$.

$$
B^{k, m}=\left[\binom{d-j-k-1}{l}-\binom{j}{l}\right]_{l, j}, \quad B^{m}=\left[\binom{d-j-m}{l}-\binom{j}{l}\right]_{l, j} .
$$

For example, when $m=3$ and $d=10$, matrix B_{m} is

$$
\left[\begin{array}{ccccccccc}
252 & 378 & 126 & 308 & 182 & 56 & 273 & 147 & 75 \\
0 & 126 & 56 & 252 & 133 & 42 & 378 & 174 & 75 \\
0 & 84 & 56 & 168 & 147 & 68 & 252 & 184 & 125 \\
0 & 0 & 0 & 56 & 21 & 6 & 168 & 63 & 19 \\
0 & 0 & 0 & 56 & 35 & 20 & 168 & 105 & 66 \\
0 & 0 & 0 & 8 & 6 & 4 & 21 & 15 & 11 \\
0 & 0 & 0 & 0 & 0 & 0 & 21 & 6 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 35 & 20 & 10 \\
0 & 0 & 0 & 0 & 0 & 0 & 7 & 5 & 3
\end{array}\right]
$$

We will show that each of the matrices $B^{k, m}$ is nonsingular for the case $d=3 m+1$. (A similar argument will hold for the other cases). Re-indexing gives

$$
B^{k, m}=\left|\binom{3 m+3-k-i}{2 m+1-2 j}-\binom{i-1}{2 m+1-2 j}\right|_{i, j=1}^{k}
$$

A literature search found no determinantal results for a matrix of differences of binomial coefficients where the tops were different and the bottoms the same.

We begin by considering a general form of the matrix, and factoring it. This factorization was suggested by an argument of Gessel and Viennot:

$$
\begin{gathered}
\operatorname{det}\left|\binom{a_{i}}{b_{j}}-\binom{c-a_{i}}{b_{j}}\right|_{i, j=1}^{k}= \\
\operatorname{det}\left|\frac{\binom{c}{b_{k-i+1}}}{\binom{c}{a_{k-j+1}}} \cdot\left(\binom{c-b_{k-i+1}}{c-a_{k-j+1}}-\binom{c-b_{k-i+1}}{a_{k-j+1}}\right)\right|_{i, j=1}^{k}= \\
\frac{\binom{c}{b_{1}} \ldots\binom{c}{b_{k}}}{\binom{c}{a_{1}} \ldots\binom{c}{a_{k}}} \cdot \operatorname{det}\left|\binom{c-b_{k-i+1}}{c-a_{k-j+1}}-\binom{c-b_{k-i+1}}{a_{k-j+1}}\right|_{i, j=1}^{k}
\end{gathered}
$$

Notice that now the tops of the binomial coefficients are the same and the bottoms are different. This allows us to apply a generalization of a technique of Krattenthaler.

Lemma 4 For any integers a, b, c, d, e, the determinant

$$
\operatorname{det}\left|\binom{a+b i}{c+d j}-\binom{a+b i}{e-d j}\right|_{i, j=1}^{n}
$$

is the number of families of non-intersecting lattice paths with NORTH and WEST steps only from the points
$\{(c+d, c+d),(c+2 d, c+2 d), \ldots(c+n d, c+n d)\}$ to the points $\{(0, a+b),(0, a+2 b), \ldots,(0, a+n b)\}$ which avoid the line $y=-x+(c+e)$.

To show this, we first show that the number of paths from $(c+j d, c+j d)$ to $(0, a+i b)$ which avoid the line $y=-x+(c+e)$ is $\binom{a+b i}{c+d j}-\binom{a+b i}{e-d j}$.

Figure 1: Counting paths from $(c+j d, c+j d)$ to $(0, a+i b)$.

Figure 2: 'Bad' paths from $(c+j d, c+j d)$ to $(0, a+i b)$.

This shown, the classical involution of Gessel and Viennot shows that when the entries of a matrix count paths, the determinant counts families of non-intersecting paths. Applying this involution to our determinant gives

$$
\begin{aligned}
\operatorname{det} & \left|\binom{3 m+3-k-i}{2 m+1-2 j}-\binom{i-1}{2 m+1-2 j}\right|_{i, j=1}^{k}= \\
& \frac{\binom{3 m+2-k}{2 m-1}\binom{3 m+2-k}{2 m-3} \cdots\binom{3 m+2-k}{2 m-2 k+1}}{\binom{3 m+2-k}{3 m+2-k}\binom{3 m+2-k}{3 m+1-k} \cdots\binom{3 m+2-k}{3 m-2 k+3}} \cdot|\mathcal{F}|
\end{aligned}
$$

where \mathcal{F} is the set of families of non-intersecting paths from $\{(0,0),(1,1), \ldots,(k-1, k-1)\}$ to $\{(0, m-k+3),(0, m-k+5), \ldots,(0, m+k+1)\}$ which stay below the line $y=-x+3 m+2-k$.

This is easily seen to be positive while $m \geq k$.

Thus for $d=3 m+1$ or $3 m+2$, if we fix $C_{[0,0]}=1$ and solve the equations

$$
\sum_{0 \leq j \leq i \leq m} A_{i, j, k, l} C_{[i, j]}=0
$$

for appropriate k and l we will construct a unique element of $Q I_{m}$ of the form Q_{d}.

$$
Q_{d}=\sum_{0 \leq i \leq j \leq m} C_{[i, j]} x_{1}^{d-i-j} m_{[i, j]}\left(x_{2}, x_{3}\right)
$$

Therefore we have an explicit basis

$$
\left\{1, B_{3 m+1},(13) B_{3 m+1}, B_{3 m+2},(13) B_{3 m+2}, \Delta_{3}^{2 m+1}\right\}
$$

for $Q I_{m} /\left\langle\left(e_{1}, e_{2}, e_{3}\right)\right\rangle$.

For $m=1$,

$$
\begin{aligned}
& B_{4}=x_{1}^{4}-2 x_{1}^{3}\left(x_{2}+x_{3}\right)+6 x_{1}^{2} x_{2} x_{3} \\
& B_{5}=x_{1}^{5}-\frac{5}{3} x_{1}^{4}\left(x_{2}+x_{3}\right)+\frac{10}{3} x_{1}^{3} x_{2} x_{3} .
\end{aligned}
$$

For $m=2$,
$B_{7}=x_{1}^{7}-\frac{7}{2} x_{1}^{6}\left(x_{2}+x_{3}\right)+14 x_{1}^{5} x_{2} x_{3}+\frac{7}{2} x_{1}^{5}\left(x_{2}^{2}+x_{3}^{2}\right)-\frac{35}{2} x_{1}^{4}\left(x_{2}^{2} x_{3}+x_{2} x_{3}^{2}\right)+35 x_{1}^{3} x_{2}^{2} x_{3}^{2}$
$B_{8}=x_{1}^{8}-\frac{16}{5} x_{1}^{7}\left(x_{2}+x_{3}\right)+\frac{56}{5} x_{1}^{6} x_{2} x_{3}+\frac{14}{5} x_{1}^{6}\left(x_{2}^{2}+x_{3}^{2}\right)-\frac{56}{5} x_{1}^{5}\left(x_{2}^{2} x_{3}+x_{2} x_{3}^{2}\right)+14 x_{1}^{4} x_{2}^{2} x_{3}^{2}$.

