
MATH 5485 – Introduction to Numerical Methods I

Fall 2008

Marcel Arndt (modified by Duane Nykamp)

Lab Project: Bridge Construction

In this lab project, we investigate the static behavior of bridges built from steel trusses like the one shown
in Figure 1. When some loading is applied to the bridge, for example due to the weight of cars going over
it, the forces get distributed among all trusses. However, not all trusses will exhibit the same force, rather
some will carry more load than others, depending on the design of the bridge.

Heavily loaded trusses are more likely to fail than less loaded trusses. Hence it is of crucial importance
for bridge engineers to compute theses forces, identify possible points of failure, and reinforce the structure
where necessary to prevent catastrophes. At the same time, one wants the bridge to be as lightweight and
efficient as possible to keep material costs low. Numerical simulation allows this to be achieved without
performing extensive experiments with real bridges and therefore considerably reduces construction time
and cost.

In this lab project, you will:

• Learn about the mathematical modeling of the static behavior of truss bridges.

• Learn how to reformulate this model to make it accessible by computers.

• Learn how to implement and numerically solve the problem for a given bridge.

• Build your own bridge which provides the best load distribution and thus is safest!

This text will guide you through the whole process and provide a step-by-step instruction. Work carefully
through the text to understand all aspects of modeling and implementation. It is important to follow all
details, especially the sometimes subtle indices, otherwise you will run into trouble when it comes to the
actual computation later.

You will encounter several tasks in the project. Your job is to perform these tasks. This will finally lead
you to a complete solution of the bridge construction project. It is a good idea to work through the entire
text first before you start working on the tasks to get an impression of the big picture.

Figure 1: A truss bridge with two foundations over a river valley.
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Figure 2: A simple mechanical structure with 5 nodes and 7 trusses. Nodes 1 and 5 are fixed to the ground.

You will need to submit a term paper by Wednesday, October 22, 2008. This term paper shall
include the solutions to all tasks, including the programs you wrote and graphs of your results. Your term
paper will be graded and counts as the first midterm. Additionally, submit the input files of the bridge you
constructed by email to nykamp@math.umn.edu. There will be a competition among students: The stability
of all bridges will be ranked, and the most stable ones get extra points!

1 Description of the Bridge

The bridges we investigate here are mechanical structures which are built from steel trusses. A truss is a
thin straight rod. The trusses are joined together at their endpoints. The junction points are called the
nodes. Figure 2 shows a simple mechanical structure with 5 nodes and 7 trusses.

Before we can discuss loading and forces, we need to describe the structure mathematically. First, we
define the nodes. Assume our bridge consists of N nodes, numbered 1, 2, . . . , N . We denote the position of
the i-th node by

~xi = (xi,1 xi,2) ∈ R
2. (1)

(Note that we carry out everything in two-dimensional space here to keep things simple, hence ~xi ∈ R
2.

However, the generalization to the three-dimensional setting would be straightforward.)
A few nodes rest on a foundation or are fixed to the shoreline to keep the bridge in place and carry the

load. We denote these nodes as fixed, and the remaining ones as free. Thus we need to keep track of the
type of the node as well. Let M denote the number of free nodes. As N was the total number of nodes, we
have M ≤ N .

The structure of the bridge from Figure 1 is shown in Figure 3. Here fixed nodes are black, and free
nodes are white. For this bridge, we have N = 47 and M = 41.

Then, there are K trusses, each of which connects two nodes. For each truss, we need to specify these
two nodes. Instead of storing the coordinates again (which we already have in form of the vectors ~xi), it is
better to store the node numbers, ranging from 1 to N . Hence for k = 1, 2, . . . ,K we introduce two variables

tk,1, tk,2 ∈ {1, 2, . . . , N}, (2)

meaning that the k-th truss connects nodes tk,1 and tk,2.
These variables fully specify the structure. For example, the simple structure displayed in Figure 2 can

be described as shown in Table 1.
Next, when some loading is applied to the bridge, the nodes move a certain amount from their original

position, except for the fixed nodes which are tied to the ground. For real structures such as bridges, the
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Figure 3: Structure of the bridge from Figure 1. The black nodes are fixed, and the white nodes are free.

Nodes
i xi,1 xi,2 type
1 0.0 0.0 fixed
2 1.0 1.5 free
3 2.0 0.0 free
4 3.0 1.5 free
5 4.0 0.0 fixed

Trusses
k tk,1 tk,2

1 1 2
2 1 3
3 2 3
4 2 4
5 3 4
6 3 5
7 4 5

M = 3

N = 5

K = 7

Table 1: Mathematical description of the simple structure shown in Figure 2.

nodes don’t move much since steel constructions are pretty stiff, but they indeed do move a little bit. We
denote the displacement of node i by

~ui = (ui,1 ui,2) ∈ R
2, (3)

that is, node i moves from ~xi to ~xi + ~ui under loading. Since the fixed nodes cannot move, we have

~ui = 0 whenever node i is fixed. (4)

The node positions ~xi without loading are quantities given by the bridge, whereas the displacements ~ui

are the main unknowns to be computed at the end of the day. Because of (4), we only need to consider the
displacements ~ui of the free nodes i.

2 Mathematical Modeling

Now, lets come to the mathematical modeling. First, we relate the displacement ~ui of all nodes i to the
elongation ek of truss k. The original length lk of truss k is

lk := ‖~xtk,2
− ~xtk,1

‖ =
√

(xtk,2,1 − xtk,1,1)2 + (xtk,2,2 − xtk,1,2)2. (5)

Under loading, this length lk changes to

‖(~xtk,2
+ ~utk,2

) − (~xtk,1
+ ~utk,1

)‖. (6)

3



ix +ui

xi

xj

j jx +u

Figure 4: Deformation of nodes i and j from original positions ~xi and ~xj to ~xi + ~ui and ~xj + ~uj .

The elongation of truss k is therefore given by

‖(~xtk,2
+ ~utk,2

) − (~xtk,1
+ ~utk,1

)‖ − ‖~xtk,2
− ~xtk,1

‖, (7)

see Figure 4 for an illustration.
Formula (7) turns out to be too complicated for the subsequent calculations because it leads to nonlinear

equations. However for small deformations, we have approximately

‖(~xtk,2
+ ~utk,2

) − (~xtk,1
+ ~utk,1

)‖ ≈ ‖~xtk,2
− ~xtk,1

‖ + ~nk · (~utk,2
− ~utk,1

) (8)

where

~nk :=
~xtk,2

− ~xtk,1

‖~xtk,2
− ~xtk,1

‖
(9)

is the normal vector pointing from node tk,1 to node tk,2. Thus we define the (approximate) elongation of
truss k as

ek := ~nk · (~utk,2
− ~utk,1

). (10)

The elongation ek is positive if the truss k is stretched and negative if it is compressed. Equation (10) relates
the elongation to the displacement. Note that this relationship is linear.

Second, we relate the elongations to forces. This is called the constitutive relation. Here we assume that
the trusses act like Hookean springs, that is, the force fk on truss k is proportional to its relative elongation
ek/lk:

fk :=
ck

lk
ek. (11)

This is a reasonable assumption for steel trusses if the displacement is small. The constant ck > 0 is called
the elastic modulus and describes the stiffness of the truss. Large values of ck correspond to hard and thick
material where you need a strong force to effect a certain elongation, whereas small values of ck correspond
to soft and thin material where already small forces suffice to effect a large elongation. In our application,
the trusses all consist of the same material, steel, but we allow for different truss thicknesses. Therefore ck

varies with the thickness of the truss.
Third, we relate the forces to each other. According to Newton’s First Law, the bridge is in a stable

state if the sum of all forces acting on each free node i vanishes. This is called the force balance. In our
application, there are two types of forces: internal forces caused by the tension of the trusses, and external
forces caused by external loading: vehicles going over the bridge, wind forces, gravitational forces due the
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weight of the bridge itself and so on. The internal forces are the fk from above, whereas the external loading
is given by the vectors ~fext

i = (fext
i,1 fext

i,2 ) ∈ R
2 for i = 1, 2, . . . , N .

The directional force exerted by truss k on node i is

−fk~nk if i = tk,1 and fk~nk if i = tk,2, (12)

taking into account the direction of the normal vector ~nk. The force balance at the free node i is thus given
by

∑

k: tk,2=i

fk~nk −
∑

k: tk,1=i

fk~nk − fext
i = 0. (13)

Note that the equations (13) are linear conditions on the fk. At a fixed node, the ground is supposed to
absorb all forces, so there is no force balance there.

3 Matrix Notation

Equations (10), (11), and (13) together give linear conditions on the unknown displacements ~ui of the free
nodes. In this section, we will figure out how to translate this linear system into matrix notation.

The unknowns we need to solve for are the 2-vectors ~ui of displacements for all free nodes i, whereas the
fixed nodes are left out due to (4). To enumerate the free nodes, we introduce variables mi which map overall
node numbers to free node numbers. This means we assign a unique free node number mi with 1 ≤ mi ≤ M
to each free node i. (Recall that M denotes the number of free nodes.) Moreover, we let mi = 0 whenever
node i is a fixed node. Thus the mapping not only enumerates the free nodes, but also keeps track of whether
a node is free or fixed. This way, we avoid introducing another variable to store the type of the node.

For example, the mapping for the structure given in Figure 2 and Table 1 can be defined as follows:

i mi

1 0
2 1
3 2
4 3
5 0

Our unknowns are the 2-vectors ~ui = (ui,1 ui,2) with mi 6= 0. We now subsume these M unknown
2-vectors to the large common vector ~u = (u1 u2 . . . u2M ) ∈ R

2M by means of

u2mi−1 = ui,1, u2mi
= ui,2 for all i = 1, 2, . . . , N with mi 6= 0.

Similarly, we subsume the external forces ~fext
i to the large common vector ~fext = (fext

1
fext
2

. . . fext
2M ) ∈ R

2M :

fext
2mi−1

= fext
i,1 , fext

2mi
= fext

i,2 for all i = 1, 2, . . . , N with mi 6= 0.

Then, we subsume all elongations ek and forces fk to large common vectors

~e = (e1 e2 e3 · · · eK) ∈ R
K and ~f = (f1 f2 f3 · · · fK) ∈ R

K . (14)

Since relationship (10) between the displacements ~ui and the elongations ek is linear, there must be a
matrix B ∈ R

K×2M such that

~e = B~u. (15)

The matrix B is called the incidence matrix.
For your project, it will be important to figure out the precise definition of the incidence matrix B and

the normal vectors ~nk. You might find it useful to do this in a pseudo-code style like
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B = zero-matrix of size K x 2M

for k = 1...K

n(k,1) = <something>

n(k,2) = <something>

add <something> to B(<index1>,<index2>)

...

end

Be aware that it is extremely important to get the indices completely right, otherwise your implementation
will produce garbage later!

The constitutive relation (11) can obviously be written as

~f = C~e (16)

with the diagonal matrix

C =











c1/l1
c2/l2

. . .

cK/lK











∈ R
K×K . (17)

Then, let us come to the force balance.

Task 1 Show that the force balance (13) can be written as

BT ~f = ~fext, (18)

that is the matrix related to the force balance is the transpose of the incidence matrix.

Finally, we put it all together. Recall that we have

B~u = ~e,

C~e = ~f,

BT ~f = ~fext,

(19)

so we obtain

A~u = ~fext where A = BT CB. (20)

This is the linear equation we need to solve!
It turns out that the matrix A ∈ R

2M×2M is regular for most structures. Hence for any external loading
~fext, there exists a unique solution ~u. However, in rare cases the matrix happens to become singular. There
are two possible reasons for this:

1. Insufficient fixed nodes. A fully connected structure needs at least two fixed nodes to stabilize against
translations and rotations (called rigid body motions).

2. Malformed nodes. Avoid free nodes with two or less trusses. For nodes with three trusses only, make
sure no two of them are parallel, see Figure 5.

If you encounter a singular matrix A, check whether your structure fulfills these conditions.
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Figure 5: Malformed Nodes. Node 1 is malformed since it has only three trusses (1–2, 1–3, and 1–4), two of which
are parallel (1–2 and 1–3). Node 5 is well-formed.

4 Implementation

Let us recall what variables are given by the specification of the bridge (input data) and what variables need
to be computed (output data). The input data is:

• Numbers M , N , and K

• Node positions ~xi ∈ R
2 for i = 1, 2, . . . , N and their types (free or fixed)

• Truss connectivity tk,1 and tk,2 for k = 1, 2, . . . ,K

• Elastic moduli ck for k = 1, 2, . . . ,K

• External loading fext
i for i = 1, 2, . . . , N

The output data is:

• Node displacements ~ui ∈ R
2 for i = 1, 2, . . . , N

• Truss elongations ek for k = 1, 2, . . . ,K

• Truss forces fk for k = 1, 2, . . . ,K

First, let us discuss the input data. The input data will be read from files. Observe that the list of input
data consists of data numbered from 1 to N , associated with the nodes, and data numbered from 1 to K,
associated with the trusses, except for the scalar numbers M , N , and K. Thus it makes sense to store all
node-based data together in one file, and all truss-based data together in another file.

For easy human readability, we choose a plain text format. For the node-based data, we agree on the
following format. For each node (free or fixed), there is one line in the file, ordered by node numbers. Each
line consists of (in this order):

xi,1

xi,2

0 if node is free or 1 if node is fixed

fext
i,1

fext
i,2

The entries are separated by at least one blank. The file is named as (name of bridge).nodes.
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The trusses are stored in a similar way. Each line in the file (name of bridge).trusses consists of the
entries

tk,1

tk,2

ck

Note that we do not need to specify the numbers M , N , and K explicitly. N is implicitly given by the
number of lines in the nodes file, M by the number of lines in the nodes file whose third entry is 0, and K
by the number of lines in the trusses file.

For example, the simple structure from Figure 2 and Table 1 is stored as:
File simple.nodes:

0.0 0.0 1 0.0 0.0

1.0 1.5 0 0.0 0.0

2.0 0.0 0 0.0 -2.0

3.0 1.5 0 0.0 0.0

4.0 0.0 1 0.0 0.0

File simple.trusses:

1 2 1

1 3 1

2 3 1

2 4 1

3 4 1

3 5 1

4 5 1

(Do not deviate from the format defined here, since otherwise it would become difficult for the grader to
compare the different solutions later.)

Task 2 Write a MatLab function readbridge with the name of the bridge as input argument. The function
shall read the bridge data from the two files and compute the mapping mi. It shall return the following
variables:

x (matrix of size N × 2)

map (vector of size N)

fext (matrix of size N × 2)

t (vector of size K × 2)

c (vector of size K)

M, N, K (scalars)

Note: The built-in MatLab function textscan is useful here.

Now we have all necessary input data, so we can come to the actual computation.

Task 3 Write a MatLab program bridge which first calls readbridge to get the input data. Then compute

the normal vectors ~ni and the matrix B. Assemble the matrix A from (20) and the right hand side ~fext.
Solve the linear system for ~u using one of your own solvers developed as homework. Make sure your solver
stops with an error message if the matrix A happens to be singular. Compute the elongations ~e and the forces
~f from (15) and (16), respectively.
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After having determined the unknowns, we need to interpret the results. Instead of printing large tables
of numbers, it is more useful to extract certain quantities. Here the following quantities are of interest:

1. Maximal force: maxk |fk|

2. Maximal elongation: maxk |ek|

3. Maximal relative elongation: maxk |ek|/lk

Task 4 Extend your program from Task 3 to determine these quantities.

It is reasonable to assume that a truss will fail if its relative elongation exceeds a certain value. Thus the
relative elongation is especially useful to identify possible points of failure of the bridge. However, we do not
only want to discover that our bridge might fail under some given loading. We rather want to know which
truss is endangered so we can reinforce it by increasing its thickness or by adding more trusses nearby to
better balance the load. To this end, we visualize our solution. The graph shall show:

1. The nodes at their deformed positions ~xi + ~ui.

2. The trusses with color coding of the relative elongation: Blue means minimal elongation, green to
yellow medium elongation, and red to brown maximal elongation.

Task 5 Write a MatLab function plotbridge which plots the bridge as stated above and add it to your main
program from Task 3.

Now you are ready to actually compute a bridge by yourself!

Task 6 Download the data for the bridge shown in Figure 1 from

http://www.math.umn.edu/~nykamp/m5485/bridge.nodes

http://www.math.umn.edu/~nykamp/m5485/bridge.trusses

Run your program to compute the above mentioned quantities and create the corresponding graphs for the
following loading regimes:

1. fext
11,2 = −0.1, all other fext

i,j = 0 (vertical point load)

2. fext
23,2 = −0.1, all other fext

i,j = 0 (vertical point load)

3. fext
i,2 = −0.01 for i = 9, 11, 17, 19, 20, 22, 23, 33, 34, 40, 42, 43, 45, 46, all other fext

i,j = 0
(uniform vertical load on the whole road surface)

4. fext
42,1 = 0.1, all other fext

i,j = 0 (horizontal point load, e.g. caused by wind)

Describe and interpret your results.

Figure 6 shows how the bridge from Figure 1 looks like under the loading fext
20,2 = −0.1.

5 Bridge Optimization

After having computed a given bridge, we now climb up to the next step. The ultimate interest of bridge
engineers is not to evaluate a given bridge, but to design a new one which is as stable and efficient as possible.
Of course there are conditions to be met: The bridge must fit with the geometry of the river valley, and
there is only a limited amount of material.

Task 7 Build your own bridge according to the rules described below and submit the two input files (in the
format discussed above) by email to nykamp@math.umn.edu.
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Figure 6: Bridge with loading fext
20,2 = −0.1.

You may build your own bridge from scratch, or you may start with the bridge given here and improve
it. For example, one can read off from Figure 6 that the truss between nodes 1 and 2 is highly endangered:
The brown color indicates the highest relative elongation, see the color bar. So it makes sense to improve the
structure at this point by increasing the elastic modulus of the truss 1–2 or adding more nodes and trusses
close to it.

Your bridge must comply with the following rules:

1. At most 100 nodes, i.e. N ≤ 100.

2. The amount of material for the trusses is limited to
∑K

k=1
cklk ≤ 100000.

3. There must be nodes at (0 1800) and (7200 1800). Along the straight line between these two nodes,
there must be additional nodes with distance 600 or less. These nodes shall all be connected by trusses
to form the road surface.

4. The only possible points for fixed nodes are: (compare Figure 3)

• (0 y) with 1350 ≤ y ≤ 1800 (left shoreline)

• (7200 y) with 1350 ≤ y ≤ 1800 (right shoreline)

• (1800 0) (left foundation in the river)

• (5400 0) (right foundation in the river)

5. No intersecting trusses.

There will be a competition among students: The stability of all bridges will be ranked, and the most
stable ones get extra points! Stability is measured as follows. The following loads are applied to the bridge:

1. Vertical point load ~fext
i = (0 −0.1), individually for each node i on the road surface.

2. Horizontal point load ~fext
i = (0.1 0), individually for each node i on the road surface.

For each loading regime, the maximum relative elongation is determined. Then the maximum of these
values is taken over all loading regimes. The bridge with the smallest maximum value is best. Don’t forget
to submit this number for your bridge.

Good luck and have fun!
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