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14. Finite Elements

In this part, we introduce the powerful finite element method for finding numerical
approximations to the solutions to boundary value problems involving both ordinary and
partial differential equations can be solved by direct integration. The method relies on the
characterization of the solution as the minimizer of a suitable quadratic functional. The
innovative idea is to restrict the infinite-dimensional minimization principle characterizing
the exact solution to a suitably chosen finite-dimensional subspace of the function space.
When properly formulated, the solution to the resulting finite-dimensional minimization
problem approximates the true minimizer. The finite-dimensional minimizer is found by
solving the induced linear algebraic system, using either direct or iterative methods. We
begin with one-dimensional boundary value problems involving ordinary differential equa-
tions, and, in the final section, show how to adapt the finite element analysis to partial
differential equations, specifically the two-dimensional Laplace and Poisson equations.

14.1. Finite Elements for Ordinary Differential Equations.

The characterization of the solution to a linear boundary value problem via a quadratic
minimization principle inspires a very powerful and widely used numerical solution scheme,
known as the finite element method . In this final section, we give a brief introduction to
the finite element method in the context of one-dimensional boundary value problems
involving ordinary differential equations.

The underlying idea is strikingly simple. We are trying to find the solution to a bound-
ary value problem by minimizing a quadratic functional P[u ] on an infinite-dimensional
vector space U . The solution u? ∈ U to this minimization problem is found by solving a
differential equation subject to specified boundary conditions. However, minimizing the
functional on a finite-dimensional subspace W ⊂ U is a problem in linear algebra, and,
moreover, one that we already know how to solve! Of course, restricting the functional
P[u ] to the subspace W will not, barring luck, lead to the exact minimizer. Nevertheless,
if we choose W to be a sufficiently “large” subspace, the resulting minimizer w? ∈ W
may very well provide a reasonable approximation to the actual solution u? ∈ U . A rigor-
ous justification of this process, under appropriate hypotheses, requires a full analysis of
the finite element method, and we refer the interested reader to [45, 49]. Here we shall
concentrate on trying to understand how to apply the method in practice.
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To be a bit more explicit, consider the minimization principle

P[u ] = 1
2 ‖L[u ] ‖

2
− 〈 f , u 〉 (14.1)

for the linear system

K[u ] = f, where K = L∗ ◦L,

representing our boundary value problem. The norm in (14.1) is typically based on some
form of weighted inner product 〈〈 v , ṽ 〉〉 on the space of strains v = L[u ] ∈ V , while the
inner product term 〈 f , u 〉 is typically (although not necessarily) unweighted on the space
of displacements u ∈ U . The linear operator takes the self-adjoint form K = L∗ ◦L, and
must be positive definite — which requires ker L = {0}. Without the positivity assumption,
the boundary value problem has either no solutions, or infinitely many; in either event,
the basic finite element method will not apply.

Rather than try to minimize P[u ] on the entire function space U , we now seek to
minimize it on a suitably chosen finite-dimensional subspace W ⊂ U . We begin by selecting
a basis† ϕ1, . . . , ϕn of the subspace W . The general element of W is a (uniquely determined)
linear combination

ϕ(x) = c1 ϕ1(x) + · · · + cn ϕn(x) (14.2)

of the basis functions. Our goal, then, is to determine the coefficients c1, . . . , cn such
that ϕ(x) minimizes P[ϕ ] among all such functions. Substituting (14.2) into (14.1) and
expanding we find

P[ϕ ] =
1

2

n∑

i,j =1

mij ci cj −

n∑

i=1

bi ci = 1
2 cT M c − cT b, (14.3)

where

(a) c = ( c1, c2, . . . , cn )
T

is the vector of unknown coefficients in (14.2),

(b) M = (mij) is the symmetric n × n matrix with entries

mij = 〈〈L[ϕi ] , L[ϕj ] 〉〉, i, j = 1, . . . , n, (14.4)

(c) b = ( b1, b2, . . . , bn )
T

is the vector with entries

bi = 〈 f , ϕi 〉, i = 1, . . . , n. (14.5)

Observe that, once we specify the basis functions ϕi, the coefficients mij and bi are all
known quantities. Therefore, we have reduced our original problem to a finite-dimensional
problem of minimizing the quadratic function (14.3) over all possible vectors c ∈ R

n. The
coefficient matrix M is, in fact, positive definite, since, by the preceding computation,

cT M c =
n∑

i,j =1

mij ci cj = ‖L[c1 ϕ1(x) + · · · + cn ϕn ] ‖2 = ‖L[ϕ ] ‖
2

> 0 (14.6)

† In this case, an orthonormal basis is not of any particular help.
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as long as L[ϕ ] 6= 0. Moreover, our positivity assumption implies that L[ϕ ] = 0 if and only
if ϕ ≡ 0, and hence (14.6) is indeed positive for all c 6= 0. We can now invoke the original
finite-dimensional minimization Theorem 12.12 to conclude that the unique minimizer to
(14.3) is obtained by solving the associated linear system

M c = b. (14.7)

Solving (14.7) relies on some form of Gaussian Elimination, or, alternatively, an iterative
linear system solver, e.g., Gauss–Seidel or SOR.

This constitutes the basic abstract setting for the finite element method. The main
issue, then, is how to effectively choose the finite-dimensional subspace W . Two candidates
that might spring to mind are the space P (n) of polynomials of degree ≤ n, or the space
T (n) of trigonometric polynomials of degree ≤ n. However, for a variety of reasons, neither
is well suited to the finite element method. One criterion is that the functions in W must
satisfy the relevant boundary conditions — otherwise W would not be a subspace of U .
More importantly, in order to obtain sufficient accuracy, the linear algebraic system (14.7)
will typically be rather large, and so the coefficient matrix M should be as sparse as
possible, i.e., have lots of zero entries. Otherwise, computing the solution will be too time-
consuming to be of much practical value. Such considerations prove to be of absolutely
crucial importance when applying the method to solve boundary value problems for partial
differential equations in higher dimensions.

The really innovative contribution of the finite element method is to first (paradox-
ically) enlarge the space U of allowable functions upon which to minimize the quadratic
functional P[u ]. The governing differential equation requires its solutions to have a certain
degree of smoothness, whereas the associated minimization principle typically requires only
half as many derivatives. Thus, for second order boundary value problems, P[u ] only in-
volves first order derivatives. It can be rigorously shown that the functional has the same

minimizing solution, even if one allows (reasonable) functions that fail to have enough
derivatives to satisfy the differential equation. Thus, one can try minimizing over sub-
spaces containing fairly “rough” functions. Again, the justification of this method requires
some deeper analysis, which lies beyond the scope of this introductory treatment.

For second order boundary value problems, a popular and effective choice of the finite-
dimensional subspace is to use continuous, piecewise affine functions. Recall that a function
is affine, f(x) = ax + b, if and only if its graph is a straight line. The function is piecewise

affine if its graph consists of a finite number of straight line segments; a typical example is
plotted in Figure 14.1. Continuity requires that the individual line segments be connected
together end to end.

Given a boundary value problem on a bounded interval [a, b ], let us fix a finite col-
lection of mesh points

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

The formulas simplify if one uses equally spaced mesh points, but this is not necessary for
the method to apply. Let W denote the vector space consisting of all continuous, piece-
wise affine functions, with corners at the nodes, that satisfy the homogeneous boundary
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Figure 14.1. A Continuous Piecewise Affine Function.

conditions. To be specific, let us treat the case of Dirichlet (fixed) boundary conditions

ϕ(a) = ϕ(b) = 0. (14.8)

Thus, on each subinterval

ϕ(x) = cj + bj(x − xj), for xj ≤ x ≤ xj+1, j = 0, . . . , n − 1.

Continuity of ϕ(x) requires

cj = ϕ(x+
j ) = ϕ(x−

j ) = cj−1 + bj−1 hj−1, j = 1, . . . , n − 1, (14.9)

where hj−1 = xj−xj−1 denotes the length of the jth subinterval. The boundary conditions
(14.8) require

ϕ(a) = c0 = 0, ϕ(b) = cn−1 + hn−1 bn−1 = 0. (14.10)

The function ϕ(x) involves a total of 2n unspecified coefficients c0, . . . , cn−1, b0, . . . , bn−1.
The continuity conditions (14.9) and the second boundary condition (14.10) uniquely de-
termine the bj . The first boundary condition specifies c0, while the remaining n − 1
coefficients c1 = ϕ(x1), . . . , cn−1 = ϕ(xn−1) are arbitrary. We conclude that the finite
element subspace W has dimension n − 1, which is the number of interior mesh points.

Remark : Every function ϕ(x) in our subspace has piecewise constant first derivative
w′(x). However, the jump discontinuities in ϕ′(x) imply that its second derivative ϕ′′(x)
has a delta function impulse at each mesh point, and is therefore far from being a solution to
the differential equation. Nevertheless, the finite element minimizer ϕ?(x) will, in practice,
provide a reasonable approximation to the actual solution u?(x).

The most convenient basis for W consists of the hat functions, which are continuous,
piecewise affine functions that interpolate the same basis data as the Lagrange polynomials
(13.22), namely

ϕj(xk) =

{
1, j = k,

0, j 6= k,
for j = 1, . . . , n − 1, k = 0, . . . , n.
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Figure 14.2. A Hat Function.

The graph of a typical hat function appears in Figure 14.2. The explicit formula is easily
established:

ϕj(x) =





x − xj−1

xj − xj−1

, xj−1 ≤ x ≤ xj ,

xj+1 − x

xj+1 − xj

, xj ≤ x ≤ xj+1,

0, x ≤ xj−1 or x ≥ xj+1,

j = 1, . . . , n − 1. (14.11)

An advantage of using these basis elements is that the resulting coefficient matrix (14.4)
turns out to be tridiagonal. Therefore, the tridiagonal Gaussian Elimination algorithm in
(4.47) will rapidly produce the solution to the linear system (14.7). Since the accuracy of
the finite element solution increases with the number of mesh points, this solution scheme
allows us to easily compute very accurate numerical approximations.

Example 14.1. Consider the equilibrium equations

K[u ] = −
d

dx

(
c(x)

du

dx

)
= f(x), 0 < x < `,

for a non-uniform bar subject to homogeneous Dirichlet boundary conditions. In order to
formulate a finite element approximation scheme, we begin with the minimization principle
based on the quadratic functional

P[u ] = 1
2 ‖u′ ‖2 − 〈 f , u 〉 =

∫ `

0

[
1
2 c(x)u′(x)2 − f(x)u(x)

]
dx.

We divide the interval [0, ` ] into n equal subintervals, each of length h = `/n. The resulting
uniform mesh has

xj = j h =
j `

n
, j = 0, . . . , n.

3/15/06 237 c© 2006 Peter J. Olver



The corresponding finite element basis hat functions are explicitly given by

ϕj(x) =





(x − xj−1)/h, xj−1 ≤ x ≤ xj ,

(xj+1 − x)/h, xj ≤ x ≤ xj+1,

0, otherwise,

j = 1, . . . , n − 1. (14.12)

The associated linear system (14.7) has coefficient matrix entries

mij = 〈〈ϕ′
i , ϕ′

j 〉〉 =

∫ `

0

ϕ′
i(x)ϕ′

j(x)c(x) dx, i, j = 1, . . . , n − 1.

Since the function ϕi(x) vanishes except on the interval xi−1 < x < xi+1, while ϕj(x)
vanishes outside xj−1 < x < xj+1, the integral will vanish unless i = j or i = j ± 1.
Moreover,

ϕ′
j(x) =





1/h, xj−1 ≤ x ≤ xj ,

−1/h, xj ≤ x ≤ xj+1,

0, otherwise,

j = 1, . . . , n − 1.

Therefore, the coefficient matrix has the tridiagonal form

M =
1

h2




s0 + s1 −s1

−s1 s1 + s2 −s2

−s2 s2 + s3 −s3

. . .
. . .

. . .

−sn−3 sn−3 + sn−2 −sn−2

−sn−2 sn−2 + sn−1




, (14.13)

where

sj =

∫ xj+1

xj

c(x) dx (14.14)

is the total stiffness of the jth subinterval. For example, in the homogeneous case c(x) ≡ 1,
the coefficient matrix (14.13) reduces to the very special form

M =
1

h




2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2




. (14.15)

The corresponding right hand side has entries

bj = 〈 f , ϕj 〉 =

∫ `

0

f(x)ϕj(x) dx

=
1

h

[∫ xj

xj−1

(x − xj−1)f(x) dx +

∫ xj+1

xj

(xj+1 − x)f(x) dx

]
.

(14.16)
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Figure 14.3. Finite Element Solution to (14.19).

In this manner, we have assembled the basic ingredients for determining the finite element
approximation to the solution.

In practice, we do not have to explicitly evaluate the integrals (14.14, 16), but may
replace them by a suitably close numerical approximation. When h ¿ 1 is small, then
the integrals are taken over small intervals, and we can use the trapezoid rule†, [5, 7], to
approximate them:

sj ≈
h

2

[
c(xj) + c(xj+1)

]
, bj ≈ h f(xj). (14.17)

Remark : The jth entry of the resulting finite element system M c = b is, upon dividing
by h, given by

−
cj+1 − 2cj + cj−1

h2
= −

u(xj+1) − 2u(xj) + u(xj−1)

h2
= −f(xj). (14.18)

The left hand side coincides with the standard finite difference approximation to minus the
second derivative −u′′(xj) at the mesh point xj . As a result, for this particular differential
equation, the finite element and finite difference numerical solution methods happen to
coincide.

Example 14.2. Consider the boundary value problem

−
d

dx
(x + 1)

du

dx
= 1, u(0) = 0, u(1) = 0. (14.19)

† One might be tempted use more accurate numerical integration procedures, but the im-
provement in accuracy of the final answer is not very significant, particularly if the step size h is
small.
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The explicit solution is easily found by direct integration:

u(x) = −x +
log(x + 1)

log 2
. (14.20)

It minimizes the associated quadratic functional

P[u ] =

∫ `

0

[
1
2 (x + 1)u′(x)2 − u(x)

]
dx (14.21)

over all possible functions u ∈ C1 that satisfy the given boundary conditions. The finite
element system (14.7) has coefficient matrix given by (14.13) and right hand side (14.16),
where

sj =

∫ xj+1

xj

(1 + x) dx = h (1 + xj) + 1
2 h2 = h + h2

(
j +

1

2

)
, bj =

∫ xj+1

xj

1 dx = h.

The resulting solution is plotted in Figure 14.3. The first three graphs contain, respectively,
5, 10, 20 points in the mesh, so that h = .2, .1, .05, while the last plots the exact solution
(14.20). Even when computed on rather coarse meshes, the finite element approximation
is quite respectable.

Example 14.3. Consider the Sturm–Liouville boundary value problem

−u′′ + (x + 1)u = xex, u(0) = 0, u(1) = 0. (14.22)

The solution minimizes the quadratic functional

P[u ] =

∫ 1

0

[
1
2 u′(x)2 + 1

2 (x + 1)u(x)2 − ex u(x)
]
dx, (14.23)

over all functions u(x) that satisfy the boundary conditions. We lay out a uniform mesh
of step size h = 1/n. The corresponding finite element basis hat functions as in (14.12).
The matrix entries are given by†

mij =

∫ 1

0

[
ϕ′

i(x)ϕ′
j(x) + (x + 1)ϕi(x)ϕj(x)

]
dx ≈





2

h
+

2h

3
(xi + 1), i = j,

−
1

h
+

h

6
(xi + 1), | i − j | = 1,

0, otherwise,

while

bi = 〈xex , ϕi 〉 =

∫ 1

0

xex ϕi(x) dx ≈ xi e
xi h.

† The integration is made easier by noting that the integrand is zero except on a small subin-
terval. Since the function x + 1 (but not ϕi or ϕj) does not vary significantly on this subinterval,

it can be approximated by its value 1 + xi at a mesh point. A similar simplification is used in the
ensuing integral for bi.
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Figure 14.4. Finite Element Solution to (14.22).

The resulting solution is plotted in Figure 14.4. As in the previous figure, the first three
graphs contain, respectively, 5, 10, 20 points in the mesh, while the last plots the exact
solution, which can be expressed in terms of Airy functions, cf. [36].

So far, we have only treated homogeneous boundary conditions. An inhomogeneous
boundary value problem does not immediately fit into our framework since the set of func-
tions satisfying the boundary conditions does not form a vector space. One way to get
around this problem is to replace u(x) by ũ(x) = u(x) − h(x), where h(x) is any conve-
nient function that satisfies the boundary conditions. For example, for the inhomogeneous
Dirichlet conditions

u(a) = α, u(b) = β,

we can subtract off the affine function

h(x) =
(β − α)x + αb − β a

b − a
.

Another option is to choose an appropriate combination of elements at the endpoints:

h(x) = αϕ0(x) + βϕn(x).

Linearity implies that the difference ũ(x) = u(x) − h(x) satisfies the amended differential
equation

K[ ũ ] = f̃ , where f̃ = f − K[h ],

now supplemented by homogeneous boundary conditions. The modified boundary value
problem can then be solved by the standard finite element method. Further details are
left as a project for the motivated student.

Finally, one can employ other functions beyond the piecewise affine hat functions
(14.11) to span finite element subspace. Another popular choice, which is essential for
higher order boundary value problems such as beams, is to use splines. Thus, once we
have chosen our mesh points, we can let ϕj(x) be the basis B–splines. Since ϕj(x) = 0
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for x ≤ xj−2 or x ≥ xj+2, the resulting coefficient matrix (14.4) is pentadiagonal , which
means mij = 0 whenever | i − j | > 2. Pentadiagonal matrices are not quite as pleasant
as their tridiagonal cousins, but are still rather sparse. Positive definiteness of M implies
that an iterative solution technique, e.g., SOR, can effectively and rapidly solve the linear
system, and thereby produce the finite element spline approximation to the boundary value
problem.

14.2. Finite Elements for the Laplace and Poisson Equations.

Finite element methods are also effectively employed to solving boundary value prob-
lems for elliptic partial differential equations. In this section, we concentrate on applying
these ideas to the two-dimensional Poisson equation. For specificity, we concentrate on the
homogeneous Dirichlet boundary value problem.

Theorem 14.4. The function u(x, y) that minimizes the Dirichlet integral

1
2 ‖∇u ‖2 − 〈u , f 〉 =

∫ ∫

Ω

(
1
2 u2

x + 1
2 u2

y − f u
)
dx dy (14.24)

among all C1 functions that satisfy the prescribed homogeneous Dirichlet boundary con-

ditions is the solution to the boundary value problem

−∆u = f in Ω u = 0 on ∂Ω. (14.25)

In the finite element approximation, we restrict the Dirichlet functional to a suitably
chosen finite-dimensional subspace. As in the one-dimensional situation, the most conve-
nient finite-dimensional subspaces consist of functions that may lack the requisite degree
of smoothness that qualifies them as possible solutions to the partial differential equation.
Nevertheless, they do provide good approximations to the actual solution. An important
practical consideration, impacting the speed of the calculation, is to employ functions with
small support. The resulting finite element matrix will then be sparse and the solution to
the linear system can be relatively rapidly calculate, usually by application of an iterative
numerical scheme such as the Gauss–Seidel or SOR methods discussed in Section 7.4.

Finite Elements and Triangulation

For one-dimensional boundary value problems, the finite element construction rests on
the introduction of a mesh a = x0 < x1 < · · · < xn = b on the interval of definition. The
mesh nodes xk break the interval into a collection of small subintervals. In two-dimensional
problems, a mesh consists of a finite number of points xk = (xk, yk), k = 1, . . . ,m, known
as nodes, usually lying inside the domain Ω ⊂ R

2. As such, there is considerable freedom
in the choice of mesh nodes, and completely uniform spacing is often not possible. We
regard the nodes as forming the vertices of a triangulation of the domain Ω, consisting of a
finite number of small triangles, which we denote by T1, . . . , TN . The nodes are split into
two categories — interior nodes and boundary nodes, the latter lying on or close to the
boundary of the domain. A curved boundary is approximated by the polygon through the
boundary nodes formed by the sides of the triangles lying on the edge of the domain; see
Figure 14.5 for a typical example. Thus, in computer implementations of the finite element
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Figure 14.5. Triangulation of a Planar Domain.

method, the first module is a routine that will automatically triangulate a specified domain
in some reasonable manner; see below for details on what “reasonable” entails.

As in our one-dimensional finite element construction, the functions w(x, y) in the
finite-dimensional subspace W will be continuous and piecewise affine. “Piecewise affine”
means that, on each triangle, the graph of w is flat, and so has the formula†

w(x, y) = αν + βν x + γν y, for (x, y) ∈ Tν . (14.26)

Continuity of w requires that its values on a common edge between two triangles must
agree, and this will impose certain compatibility conditions on the coefficients αµ, βµ, γµ

and αν , βν , γν associated with adjacent pairs of triangles Tµ, Tν . The graph of z = w(x, y)
forms a connected polyhedral surface whose triangular faces lie above the triangles in the
domain; see Figure 14.5 for an illustration.

The next step is to choose a basis of the subspace of piecewise affine functions for the
given triangulation. As in the one-dimensional version, the most convenient basis consists
of pyramid functions ϕk(x, y) which assume the value 1 at a single node xk, and are zero
at all the other nodes; thus

ϕk(xi, yi) =

{
1, i = k,

0, i 6= k.
(14.27)

Note that ϕk will be nonzero only on those triangles which have the node xk as one of
their vertices, and hence the graph of ϕk looks like a pyramid of unit height sitting on a
flat plane, as illustrated in Figure 14.7.

† Here and subsequently, the index ν is a superscript, not a power!
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Figure 14.6. Piecewise Affine Function.

Figure 14.7. Finite Element Pyramid Function.

The pyramid functions ϕk(x, y) corresponding to the interior nodes xk automatically
satisfy the homogeneous Dirichlet boundary conditions on the boundary of the domain
— or, more correctly, on the polygonal boundary of the triangulated domain, which is
supposed to be a good approximation to the curved boundary of the original domain Ω.
Thus, the finite-dimensional finite element subspace W is the span of the interior node
pyramid functions, and so general element w ∈ W is a linear combination thereof:

w(x, y) =
n∑

k=1

ck ϕk(x, y), (14.28)

where the sum ranges over the n interior nodes of the triangulation. Owing to the original
specification (14.27) of the pyramid functions, the coefficients

ck = w(xk, yk) ≈ u(xk, yk), k = 1, . . . , n, (14.29)
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are the same as the values of the finite element approximation w(x, y) at the interior
nodes. This immediately implies linear independence of the pyramid functions, since the
only linear combination that vanishes at all nodes is the trivial one c1 = · · · = cn = 0.
Thus, the interior node pyramid functions ϕ1, . . . ϕn form a basis for finite element subspace
W , which therefore has dimension equal to n, the number of interior nodes.

Determining the explicit formulae for the finite element basis functions is not difficult.
On one of the triangles Tν that has xk as a vertex, ϕk(x, y) will be the unique affine
function (14.26) that takes the value 1 at the vertex xk and 0 at its other two vertices xl

and xm. Thus, we are in need of a formula for an affine function or element

ων
k(x, y) = αν

k + βν
k x + γν

k y, (x, y) ∈ Tν , (14.30)

that takes the prescribed values

ων
k(xi, yi) = ων

k(xj , yj) = 0, ων
k(xk, yk) = 1,

at three distinct points. These three conditions lead to the linear system

ων
k(xi, yi) = αν

k + βν
k xi + γν

k yi = 0,

ων
k(xj , yj) = αν

k + βν
k xj + γν

k yj = 0,

ων
k(xk, yk) = αν

k + βν
k xk + γν

k yk = 1.

(14.31)

The solution produces the explicit formulae

αν
k =

xi yj − xj yi

∆ν

, βν
k =

yi − yj

∆ν

, γν
k =

xj − xi

∆ν

, (14.32)

for the coefficients; the denominator

∆ν = det




1 xi yi

1 xj yj

1 xk yk


 = ±2 area Tν (14.33)

is, up to sign, twice the area of the triangle Tν .

Example 14.5. Consider an isoceles right triangle T with vertices

x1 = (0, 0), x2 = (1, 0), x3 = (0, 1).

Using (14.32–33) (or solving the linear systems (14.31) directly), we immediately produce
the three affine elements

ω1(x, y) = 1 − x − y, ω2(x, y) = x, ω3(x, y) = y. (14.34)

As required, each ωk equals 1 at the vertex xk and is zero at the other two vertices.

The finite element pyramid function is then obtained by piecing together the individual
affine elements, whence

ϕk(x, y) =

{
ων

k(x, y), if (x, y) ∈ Tν which has xk as a vertex,

0, otherwise.
(14.35)
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Figure 14.8. Vertex Polygons.

Figure 14.9. Square Mesh Triangulations.

Continuity of ϕk(x, y) is assured since the constituent affine elements have the same values
at common vertices. The support of the pyramid function (14.35) is the polygon

suppϕk = Pk =
[

ν

Tν (14.36)

consisting of all the triangles Tν that have the node xk as a vertex. In other words,
ϕk(x, y) = 0 whenever (x, y) 6∈ Pk. We will call Pk the kth vertex polygon. The node xk

lies on the interior of its vertex polygon Pk, while the vertices of Pk are all those that are
connected to xk by a single edge of the triangulation. In Figure 14.8 the shaded regions
indicate two of the vertex polygons for the triangulation in Figure 14.5.

Example 14.6. The simplest, and most common triangulations are based on regular
meshes. Suppose that the nodes lie on a square grid, and so are of the form xi,j =
(ih + a, j h + b) where h > 0 is the inter-node spacing, and (a, b) represents an overall
offset. If we choose the triangles to all have the same orientation, as in the first picture
in Figure 14.9, then the vertex polygons all have the same shape, consisting of 6 triangles
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of total area 3h2 — the shaded region. On the other hand, if we choose an alternating,
perhaps more æsthetically pleasing triangulation as in the second picture, then there are
two types of vertex polygons. The first, consisting of four triangles, has area 2h2, while
the second, containing 8 triangles, has twice the area, 4h2. In practice, there are good
reasons to prefer the former triangulation.

In general, in order to ensure convergence of the finite element solution to the true
minimizer, one should choose a triangulation with the following properties:

(a) The triangles are not too long and skinny. In other words, their sides should have
comparable lengths. In particular, obtuse triangles should be avoided.

(b) The areas of nearby triangles Tν should not vary too much.

(c) The areas of nearby vertex polygons Pk should also not vary too much.

For adaptive or variable meshes, one might very well have wide variations in area over the
entire grid, with small triangles in regions of rapid change in the solution, and large ones in
less interesting regions. But, overall, the sizes of the triangles and vertex polygons should
not dramatically vary as one moves across the domain.

The Finite Element Equations

We now seek to approximate the solution to the homogeneous Dirichlet boundary value
problem by restricting the Dirichlet functional to the selected finite element subspace W .
Substituting the formula (14.28) for a general element of W into the quadratic Dirichlet
functional (14.24) and expanding, we find

P[w ] = P

[
n∑

i=1

ci ϕi

]
=

∫ ∫

Ω



(

n∑

i=1

ci ∇ϕi

)2

− f(x, y)

(
n∑

i=1

ci ϕi

)
 dx dy

=
1

2

n∑

i,j =1

kij ci cj −
n∑

i=1

bi ci = 1
2 cT Kc − bT c.

Here, K = (kij) is the symmetric n × n matrix, while b = ( b1, b2, . . . , bn )
T

is the vector
that have the respective entries

kij = 〈∇ϕi ,∇ϕj 〉 =

∫ ∫

Ω

∇ϕi · ∇ϕj dx dy,

bi = 〈 f , ϕi 〉 =

∫ ∫

Ω

f ϕi dx dy.

(14.37)

Thus, to determine the finite element approximation, we need to minimize the quadratic
function

P (c) = 1
2 cT Kc − bT c (14.38)

over all possible choices of coefficients c = ( c1, c2, . . . , cn )
T

∈ R
n, i.e., over all possible

function values at the interior nodes. Restricting to the finite element subspace has reduced
us to a standard finite-dimensional quadratic minimization problem. First, the coefficient
matrix K > 0 is positive definite due to the positive definiteness of the original functional;
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the proof in Section 14.1 is easily adapted to the present situation. The minimizer is
obtained by solving the associated linear system

Kc = b. (14.39)

The solution to (14.39) can be effected by either Gaussian elimination or an iterative
technique.

To find explicit formulae for the matrix coefficients kij in (14.37), we begin by noting
that the gradient of the affine element (14.30) is equal to

∇ων
k(x, y) = aν

k =

(
βν

k

γν
k

)
=

1

∆ν

(
yi − yj

xj − xi

)
, (x, y) ∈ Tν , (14.40)

which is a constant vector inside the triangle Tν , while outside ∇ων
k = 0. Therefore,

∇ϕk(x, y) =

{
∇ων

k = aν
k, if (x, y) ∈ Tν which has xk as a vertex,

0, otherwise,
(14.41)

reduces to a piecewise constant function on the triangulation. Actually, (14.41) is not
quite correct since if (x, y) lies on the boundary of a triangle Tν , then the gradient does
not exist. However, this technicality will not cause any difficulty in evaluating the ensuing
integral.

We will approximate integrals over the domain Ω by integrals over the triangles, which
relies on our assumption that the polygonal boundary of the triangulation is a reasonably
close approximation to the true boundary ∂Ω. In particular,

kij ≈
∑

ν

∫ ∫

Tν

∇ϕi · ∇ϕj dx dy ≡
∑

ν

kν
ij . (14.42)

Now, according to (14.41), one or the other gradient in the integrand will vanish on the
entire triangle Tν unless both xi and xj are vertices. Therefore, the only terms contributing
to the sum are those triangles Tν that have both xi and xj as vertices. If i 6= j there are only
two such triangles, while if i = j every triangle in the ith vertex polygon Pi contributes.
The individual summands are easily evaluated, since the gradients are constant on the
triangles, and so, by (14.41),

kν
ij =

∫ ∫

Tν

aν
i · aν

j dx dy = aν
i · aν

j area Tν = 1
2 aν

i · aν
j |∆ν | .

Let Tν have vertices xi,xj ,xk. Then, by (14.40, 41, 33),

kν
ij =

1

2

(yj − yk)(yk − yi) + (xk − xj)(xi − xk)

(∆ν)2
|∆ν | = −

(xi − xk) · (xj − xk)

2 |∆ν |
, i 6= j,

kν
ii =

1

2

(yj − yk)2 + (xk − xj)
2

(∆ν)2
|∆ν | =

‖xj − xk ‖
2

2 |∆ν |
. (14.43)

In this manner, each triangle Tν specifies a collection of 6 different coefficients, kν
ij = kν

ji,
indexed by its vertices, and known as the elemental stiffnesses of Tν . Interestingly, the
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Figure 14.10. Right and Equilateral Triangles.

elemental stiffnesses depend only on the angles of the triangle and not on its size. Thus,
similar triangles have the same elemental stiffnesses. Indeed, if we denote the angle in Tν

at the vertex xk by θν
k , then

kν
ii = 1

2

(
cot θν

k + cot θν
j

)
, while kν

ij = kν
ji = − 1

2 cot θν
k , i 6= j, (14.44)

depend only upon the cotangents of the angles.

Example 14.7. The right triangle with vertices x1 = (0, 0), x2 = (1, 0), x3 = (0, 1)
has elemental stiffnesses

k11 = 1, k22 = k33 = 1
2 , k12 = k21 = k13 = k31 = − 1

2 , k23 = k32 = 0. (14.45)

The same holds for any other isoceles right triangle, as long as we chose the first vertex
to be at the right angle. Similarly, an equilateral triangle has all 60◦ angles, and so its
elemental stiffnesses are

k11 = k22 = k33 = 1√
3
≈ .577350,

k12 = k21 = k13 = k31 = k23 = k32 = − 1
2
√

3
≈ −.288675.

(14.46)

Assembling the Elements

The elemental stiffnesses of each triangle will contribute, through the summation
(14.42), to the finite element coefficient matrix K. We begin by constructing a larger
matrix K∗, which we call the full finite element matrix , of size m×m where m is the total
number of nodes in our triangulation, including both interior and boundary nodes. The
rows and columns of K∗ are labeled by the nodes xi. Let Kν = (kν

ij) be the corresponding
m×m matrix containing the elemental stiffnesses kν

ij of Tν in the rows and columns indexed
by its vertices, and all other entries equal to 0. Thus, Kν will have (at most) 9 nonzero
entries. The resulting m × m matrices are all summed together over all the triangles,

K∗ =
N∑

ν =1

Kν , (14.47)

to produce the full finite element matrix, in accordance with (14.42).

The full finite element matrix K∗ is too large, since its rows and columns include all
the nodes, whereas the finite element matrix K appearing in (14.39) only refers to the n
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Figure 14.11. The Oval Plate.
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Figure 14.12. A Coarse Triangulation of the Oval Plate.

interior nodes. The reduced n× n finite element matrix K is simply obtained from K∗ by
deleting all rows and columns indexed by boundary nodes, retaining only the elements kij

when both xi and xj are interior nodes. For the homogeneous boundary value problem,
this is all we require. As we shall see, inhomogeneous boundary conditions are most easily
handled by retaining (part of) the full matrix K∗.

The easiest way to digest the construction is by working through a particular example.

Example 14.8. A metal plate has the shape of an oval running track, consisting
of a rectangle, with side lengths 1m by 2m, and two semicircular disks glued onto its
shorter ends, as sketched in Figure 14.11. The plate is subject to a heat source while its
edges are held at a fixed temperature. The problem is to find the equilibrium temperature
distribution within the plate. Mathematically, we must solve the Poisson equation with
Dirichlet boundary conditions, for the equilibrium temperature u(x, y).

Let us describe how to set up the finite element approximation to such a boundary
value problem. We begin with a very coarse triangulation of the plate, which will not give
particularly accurate results, but does serve to illustrate how to go about assembling the
finite element matrix. We divide the rectangular part of the plate into 8 right triangles,
while each semicircular end will be approximated by three equilateral triangles. The tri-
angles are numbered from 1 to 14 as indicated in Figure 14.12. There are 13 nodes in all,
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numbered as in the second figure. Only nodes 1, 2, 3 are interior, while the boundary nodes
are labeled 4 through 13, going counterclockwise around the boundary starting at the top.
The full finite element matrix K∗ will have size 13×13, its rows and columns labeled by all
the nodes, while the reduced matrix K appearing in the finite element equations (14.39)
consists of the upper left 3× 3 submatrix of K∗ corresponding to the three interior nodes.

Each triangle Tν will contribute the summand Kν whose values are its elemental
stiffnesses, as indexed by its vertices. For example, the first triangle T1 is equilateral, and
so has elemental stiffnesses (14.46). Its vertices are labeled 1, 5, and 6, and therefore we
place the stiffnesses (14.46) in the rows and columns numbered 1, 5, 6 to form the summand

K1 =




.577350 0 0 0 −.288675 −.288675 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .

−.288675 0 0 0 .577350 −.288675 0 0 . . .
−.288675 0 0 0 −.288675 .577350 0 0 . . .

0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .




,

where all the undisplayed entries in the full 13× 13 matrix are 0. The next triangle T2 has
the same equilateral elemental stiffness matrix (14.46), but now its vertices are 1, 6, 7, and
so it will contribute

K2 =




.577350 0 0 0 0 −.288675 −.288675 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .

−.288675 0 0 0 0 .577350 −.2886750 0 . . .
−.288675 0 0 0 0 −.288675 .5773500 0 . . .

0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .




.

Similarly for K3, with vertices 1, 7, 8. On the other hand, triangle T4 is an isoceles right
triangle, and so has elemental stiffnesses (14.45). Its vertices are labeled 1, 4, and 5, with
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Figure 14.13. A Square Mesh for the Oval Plate.

vertex 5 at the right angle. Therefore, its contribution is

K4 =




.5 0 0 0 −.5 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 .5 −.5 0 0 0 . . .

−.5 0 0 −.5 1.0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .




.

Continuing in this manner, we assemble 14 contributions K1, . . . ,K14, each with (at most)
9 nonzero entries. The full finite element matrix is the sum

K
∗ = K1 + K2 + · · · + K14

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

3.732 −1 0 0 −.7887 −.5774 −.5774
−1 4 −1 −1 0 0 0
0 −1 3.732 0 0 0 0
0 −1 0 2 −.5 0 0

−.7887 0 0 −.5 1.577 −.2887 0
−.5774 0 0 0 −.2887 1.155 −.2887
−.5774 0 0 0 0 −.2887 1.155
−.7887 0 0 0 0 0 −.2887

0 −1 0 0 0 0 0
0 0 −.7887 0 0 0 0
0 0 −.5774 0 0 0 0
0 0 −.5774 0 0 0 0
0 0 −.7887 −.5 0 0 0

(14.48)
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−.7887 0 0 0 0 0
0 −1 0 0 0 0
0 0 −.7887 −.5774 −.5774 −.7887
0 0 0 0 0 −.5
0 0 0 0 0 0
0 0 0 0 0 0

−.2887 0 0 0 0 0
1.577 −.5 0 0 0 0
−.5 2 −.5 0 0 0
0 −.5 1.577 −.2887 0 0
0 0 −.2887 1.155 −.2887 0
0 0 0 −.2887 1.155 −.2887
0 0 0 0 −.2887 1.577

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Since only nodes 1, 2, 3 are interior nodes, the reduced finite element matrix only uses the
upper left 3 × 3 block of K∗, so

K =




3.732 −1 0
−1 4 −1

0 −1 3.732


. (14.49)

It is not difficult to directly construct K, bypassing K∗ entirely.

For a finer triangulation, the construction is similar, but the matrices become much
larger. The procedure can, of course, be automated. Fortunately, if we choose a very
regular triangulation, then we do not need to be nearly as meticulous in assembling the
stiffness matrices, since many of the entries are the same. The simplest case is when we
use a uniform square mesh, and so triangulate the domain into isoceles right triangles.
This is accomplished by laying out a relatively dense square grid over the domain Ω ⊂ R

2.
The interior nodes are the grid points that fall inside the oval domain, while the boundary
nodes are all those grid points lying adjacent to one or more of the interior nodes, and
are near but not necessarily precisely on the boundary ∂Ω. Figure 14.13 shows the nodes
in a square grid with intermesh spacing h = .2. While a bit crude in its approximation
of the boundary of the domain, this procedure does have the advantage of making the
construction of the associated finite element matrix relatively painless.

For such a mesh, all the triangles are isoceles right triangles, with elemental stiffnesses
(14.45). Summing the corresponding matrices Kν over all the triangles, as in (14.47), the
rows and columns of K∗ corresponding to the interior nodes are seen to all have the
same form. Namely, if i labels an interior node, then the corresponding diagonal entry is
kii = 4, while the off-diagonal entries kij = kji, i 6= j, are equal to either −1 when node i
is adjacent to node j on the grid, and is equal to 0 in all other cases. Node j is allowed to
be a boundary node. (Interestingly, the result does not depend on how one orients the pair
of triangles making up each square of the grid, which only plays a role in the computation
of the right hand side of the finite element equation.) Observe that the same computation
applies even to our coarse triangulation. The interior node 2 belongs to all right isoceles
triangles, and the corresponding entries in (14.48) are k22 = 4, and k2j = −1 for the four
adjacent nodes j = 1, 3, 4, 9.

Remark : Interestingly, the coefficient matrix arising from the finite element method
on a square (or even rectangular) grid is the same as the coefficient matrix arising from a
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finite difference solution to the Laplace or Poisson equation. The finite element approach
has the advantage of applying to much more general triangulations.

In general, while the finite element matrix K for a two-dimensional boundary value
problem is not as nice as the tridiagonal matrices we obtained in our one-dimensional
problems, it is still very sparse and, on regular grids, highly structured. This makes
solution of the resulting linear system particularly amenable to an iterative matrix solver
such as Gauss–Seidel, Jacobi, or, for even faster convergence, successive over-relaxation
(SOR).

The Coefficient Vector and the Boundary Conditions

So far, we have been concentrating on assembling the finite element coefficient matrix
K. We also need to compute the forcing vector b = ( b1, b2, . . . , bn )

T
appearing on the right

hand side of the fundamental linear equation (14.39). According to (14.37), the entries bi

are found by integrating the product of the forcing function and the finite element basis
function. As before, we will approximate the integral over the domain Ω by an integral
over the triangles, and so

bi =

∫ ∫

Ω

f ϕi dx dy ≈
∑

ν

∫ ∫

Tν

f ων
i dx dy ≡

∑

ν

bν
i . (14.50)

Typically, the exact computation of the various triangular integrals is not convenient,
and so we resort to a numerical approximation. Since we are assuming that the individual
triangles are small, we can adopt a very crude numerical integration scheme. If the function
f(x, y) does not vary much over the triangle Tν — which will certainly be the case if Tν is
sufficiently small — we may approximate f(x, y) ≈ cν

i for (x, y) ∈ Tν by a constant. The
integral (14.50) is then approximated by

bν
i =

∫ ∫

Tν

f ων
i dx dy ≈ cν

i

∫ ∫

Tν

ων
i (x, y) dx dy = 1

3 cν
i area Tν = 1

6 cν
i |∆ν |. (14.51)

The formula for the integral of the affine element ων
i (x, y) follows from solid geometry.

Indeed, it equals the volume under its graph, a tetrahedron of height 1 and base Tν , as
illustrated in Figure 14.14.

How to choose the constant cν
i ? In practice, the simplest choice is to let cν

i = f(xi, yi)
be the value of the function at the ith vertex. With this choice, the sum in (14.50) becomes

bi ≈
∑

ν

1
3 f(xi, yi) area Tν = 1

3 f(xi, yi) area Pi, (14.52)

where Pi is the vertex polygon (14.36) corresponding to the node xi. In particular, for the
square mesh with the uniform choice of triangles, as in Example 14.6,

area Pi = 3h2 for all i, and so bi ≈ f(xi, yi) h2 (14.53)

is well approximated by just h2 times the value of the forcing function at the node. This
is the underlying reason to choose the uniform triangulation for the square mesh; the
alternating version would give unequal values for the bi over adjacent nodes, and this
would introduce unnecessary errors into the final approximation.
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Figure 14.14. Finite Element Tetrahedron.

Example 14.9. For the coarsely triangulated oval plate, the reduced stiffness matrix
is (14.49). The Poisson equation

−∆u = 4

models a constant external heat source of magnitude 4◦ over the entire plate. If we keep
the edges of the plate fixed at 0◦, then we need to solve the finite element equation Kc = b,
where K is the coefficient matrix (14.49), while

b = 4
3

(
2 + 3

√
3

4 , 2, 2 + 3
√

3
4

)T

= ( 4.39872, 2.66667, 4.39872 )
T

.

The entries of b are, by (14.52), equal to 4 = f(xi, yi) times one third the area of the
corresponding vertex polygon, which for node 2 is the square consisting of 4 right triangles,
each of area 1

2 , whereas for nodes 1 and 3 it consists of 4 right triangles of area 1
2 plus

three equilateral triangles, each of area
√

3
4 ; see Figure 14.12.

The solution to the final linear system is easily found:

c = ( 1.56724, 1.45028, 1.56724 )
T

.

Its entries are the values of the finite element approximation at the three interior nodes.
The finite element solution is plotted in the first illustration in Figure 14.15. A more
accurate solution, based on a square grid triangulation of size h = .1 is plotted in the
second figure.

Inhomogeneous Boundary Conditions

So far, we have restricted our attention to problems with homogeneous Dirichlet
boundary conditions. The solution to the inhomogeneous Dirichlet problem

−∆u = f in Ω, u = h on ∂Ω,

is also obtained by minimizing the Dirichlet functional (14.24). However, now the min-
imization takes place over the affine subspace consisting of all functions that satisfy the
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Figure 14.15. Finite Element Solutions to Poisson’s Equation for an Oval Plate.

inhomogeneous boundary conditions. It is not difficult to fit this problem into the finite
element scheme.

The elements corresponding to the interior nodes of our triangulation remain as before,
but now we need to include additional elements to ensure that our approximation satisfies
the boundary conditions. Note that if xk is a boundary node, then the corresponding
boundary element ϕk(x, y) satisfies the interpolation condition (14.27), and so has the
same piecewise affine form (14.35). The corresponding finite element approximation

w(x, y) =
m∑

i=1

ci ϕi(x, y), (14.54)

has the same form as before, (14.28), but now the sum is over all nodes, both interior
and boundary. As before, the coefficients ci = w(xi, yi) ≈ u(xi, yi) are the values of the
finite element approximation at the nodes. Therefore, in order to satisfy the boundary
conditions, we require

cj = h(xj , yj) whenever xj = (xj , yj) is a boundary node. (14.55)

Remark : If the boundary node xj does not lie precisely on the boundary ∂Ω, we need
to approximate the value h(xj , yj) appropriately, e.g., by using the value of h(x, y) at the
nearest boundary point (x, y) ∈ ∂Ω.

The derivation of the finite element equations proceeds as before, but now there are
additional terms arising from the nonzero boundary values. Leaving the intervening details
to the reader, the final outcome can be written as follows. Let K∗ denote the full m × m
finite element matrix constructed as above. The reduced coefficient matrix K is obtained
by retaining the rows and columns corresponding to only interior nodes, and so will have
size n × n , where n is the number of interior nodes. The boundary coefficient matrix K̃
is the n× (m− n) matrix consisting of the entries of the interior rows that do not appear
in K, i.e., those lying in the columns indexed by the boundary nodes. For instance, in the
the coarse triangulation of the oval plate, the full finite element matrix is given in (14.48),
and the upper 3 × 3 subblock is the reduced matrix (14.49). The remaining entries of the

3/15/06 256 c© 2006 Peter J. Olver



Figure 14.16. Solution to the Dirichlet Problem for the Oval Plate.

first three rows form the boundary coefficient matrix

K̃ =




0 −.7887 −.5774 −.5774 −.7887 0 0 0 0 0
−1 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −.7887 −.5774 −.5774 −.7887


.

(14.56)
We similarly split the coefficients ci of the finite element function (14.54) into two groups.
We let c ∈ R

n denote the as yet unknown coefficients ci corresponding to the values of the
approximation at the interior nodes xi, while h ∈ R

m−n will be the vector of boundary
values (14.55). The solution to the finite element approximation (14.54) is obtained by
solving the associated linear system

Kc + K̃ h = b, or Kc = f = b − K̃ h. (14.57)

Example 14.10. For the oval plate discussed in Example 14.8, suppose the right
hand semicircular edge is held at 10◦, the left hand semicircular edge at −10◦, while the two
straight edges have a linearly varying temperature distribution ranging from −10◦ at the
left to 10◦ at the right, as illustrated in Figure 14.16. Our task is to compute its equilibrium
temperature, assuming no internal heat source. Thus, for the coarse triangulation we have
the boundary nodes values

h = (h4, . . . , h13 )
T

= ( 0,−1,−1,−1,−1, 0, 1, 1, 1, 1, 0 )
T

.

Using the previously computed formulae (14.49, 56) for the interior coefficient matrix K

and boundary coefficient matrix K̃, we approximate the solution to the Laplace equation
by solving (14.57). We are assuming that there is no external forcing function, f(x, y) ≡

0, and so the right hand side is b = 0, and so we must solve Kc = f = − K̃ h =
( 2.18564, 3.6, 7.64974 )

T
. The finite element function corresponding to the solution c =

( 1.06795, 1.8, 2.53205 )
T

is plotted in the first illustration in Figure 14.16. Even on such
a coarse mesh, the approximation is not too bad, as evidenced by the second illustration,
which plots the finite element solution for a square mesh with spacing h = .2 between
nodes.
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