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6. Eigenvalues and Singular Values

In this section, we collect together the basic facts about eigenvalues and eigenvectors.
From a geometrical viewpoint, the eigenvectors indicate the directions of pure stretch
and the eigenvalues the extent of stretching. Most matrices are complete, meaning that
their (complex) eigenvectors form a basis of the underlying vector space. A particularly
important class are the symmetric matrices, whose eigenvectors form an orthogonal basis
of R

n. A non-square matrix A does not have eigenvalues. In their place, one uses the
square roots of the eigenvalues of the associated square Gram matrix K = AT A, which are
called singular values of the original matrix. The numerical computation of eigenvalues
and eigenvectors is a challenging issue, and must be be deferred until later.

6.1. Eigenvalues and Eigenvectors.

We inaugurate our discussion of eigenvalues and eigenvectors with the basic definition.

Definition 6.1. Let A be an n × n matrix. A scalar λ is called an eigenvalue of A
if there is a non-zero vector v 6= 0, called an eigenvector , such that

Av = λv. (6.1)

In other words, the matrix A stretches the eigenvector v by an amount specified by
the eigenvalue λ.

Remark : The odd-looking terms “eigenvalue” and “eigenvector” are hybrid German–
English words. In the original German, they are Eigenwert and Eigenvektor , which can
be fully translated as “proper value” and “proper vector”. For some reason, the half-
translated terms have acquired a certain charm, and are now standard. The alternative
English terms characteristic value and characteristic vector can be found in some (mostly
older) texts. Oddly, the term characteristic equation, to be defined below, is still used.

The requirement that the eigenvector v be nonzero is important, since v = 0 is a
trivial solution to the eigenvalue equation (6.1) for any scalar λ. Moreover, as far as
solving linear ordinary differential equations goes, the zero vector v = 0 gives u(t) ≡ 0,
which is certainly a solution, but one that we already knew.

The eigenvalue equation (6.1) is a system of linear equations for the entries of the
eigenvector v — provided that the eigenvalue λ is specified in advance — but is “mildly”
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nonlinear as a combined system for λ and v. Gaussian Elimination per se will not solve
the problem, and we are in need of a new idea. Let us begin by rewriting the equation in
the form

(A − λ I )v = 0, (6.2)

where I is the identity matrix of the correct size†. Now, for given λ, equation (6.2) is a
homogeneous linear system for v, and always has the trivial zero solution v = 0. But we
are specifically seeking a nonzero solution! A homogeneous linear system has a nonzero
solution v 6= 0 if and only if its coefficient matrix, which in this case is A−λ I , is singular.
This observation is the key to resolving the eigenvector equation.

Theorem 6.2. A scalar λ is an eigenvalue of the n × n matrix A if and only if

the matrix A − λ I is singular, i.e., of rank < n. The corresponding eigenvectors are the

nonzero solutions to the eigenvalue equation (A − λ I )v = 0.

Proposition 6.3. A scalar λ is an eigenvalue of the matrix A if and only if λ is a

solution to the characteristic equation

det(A − λ I ) = 0. (6.3)

In practice, when finding eigenvalues and eigenvectors by hand, one first solves the
characteristic equation (6.3). Then, for each eigenvalue λ one uses standard linear algebra
methods, i.e., Gaussian Elimination, to solve the corresponding linear system (6.2) for the
eigenvector v.

Example 6.4. Consider the 2 × 2 matrix

A =

(
3 1
1 3

)
.

We compute the determinant in the characteristic equation using formula (3.8):

det(A − λ I ) = det

(
3 − λ 1

1 3 − λ

)
= (3 − λ)2 − 1 = λ2 − 6λ + 8.

Thus, the characteristic equation is a quadratic polynomial equation, and can be solved
by factorization:

λ2 − 6λ + 8 = (λ − 4) (λ − 2) = 0.

We conclude that A has two eigenvalues: λ
1

= 4 and λ
2

= 2.

For each eigenvalue, the corresponding eigenvectors are found by solving the associated
homogeneous linear system (6.2). For the first eigenvalue, the eigenvector equation is

(A − 4 I )v =

(
−1 1

1 −1

)(
x
y

)
=

(
0
0

)
, or

−x + y = 0,

x − y = 0.

† Note that it is not legal to write (6.2) in the form (A− λ)v = 0 since we do not know how to
subtract a scalar λ from a matrix A. Worse, if you type A − λ in Matlab or Mathematica,
the result will be to subtract λ from all the entries of A, which is not what we are after!
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The general solution is

x = y = a, so v =

(
a
a

)
= a

(
1
1

)
,

where a is an arbitrary scalar. Only the nonzero solutions† count as eigenvectors, and so
the eigenvectors for the eigenvalue λ

1
= 4 must have a 6= 0, i.e., they are all nonzero scalar

multiples of the basic eigenvector v
1

= ( 1, 1 )
T
.

Remark : In general, if v is an eigenvector of A for the eigenvalue λ, then so is any
nonzero scalar multiple of v. In practice, we only distinguish linearly independent eigen-
vectors. Thus, in this example, we shall say “v

1
= ( 1, 1 )

T
is the eigenvector corresponding

to the eigenvalue λ
1

= 4”, when we really mean that the eigenvectors for λ
1

= 4 consist of
all nonzero scalar multiples of v

1
.

Similarly, for the second eigenvalue λ
2

= 2, the eigenvector equation is

(A − 2 I )v =

(
1 1
1 1

)(
x
y

)
=

(
0
0

)
.

The solution (−a, a )
T

= a (−1, 1 )
T

is the set of scalar multiples of the eigenvector

v
2

= (−1, 1 )
T
. Therefore, the complete list of eigenvalues and eigenvectors (up to scalar

multiple) for this particular matrix is

λ
1

= 4, v
1

=

(
1
1

)
, λ

2
= 2, v

2
=

(
−1

1

)
.

Example 6.5. Consider the 3 × 3 matrix

A =




0 −1 −1
1 2 1
1 1 2


 .

Using the formula for a 3 × 3 determinant, we compute the characteristic equation

0 = det(A − λ I ) = det




−λ −1 −1
1 2 − λ 1
1 1 2 − λ




= (−λ)(2 − λ)2 + (−1) · 1 · 1 + (−1) · 1 · 1 −
− 1 · (2 − λ)(−1) − 1 · 1 · (−λ) − (2 − λ) · 1 · (−1)

= −λ3 + 4λ2 − 5λ + 2.

The resulting cubic polynomial can be factored:

−λ3 + 4λ2 − 5λ + 2 = − (λ − 1)2 (λ − 2) = 0.

† If, at this stage, you end up with a linear system with only the trivial zero solution, you’ve
done something wrong! Either you don’t have a correct eigenvalue — maybe you made a mistake
setting up and/or solving the characteristic equation — or you’ve made an error solving the
homogeneous eigenvector system.
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Most 3× 3 matrices have three different eigenvalues, but this particular one has only two:
λ

1
= 1, which is called a double eigenvalue since it is a double root of the characteristic

equation, along with a simple eigenvalue λ
2

= 2.

The eigenvector equation (6.2) for the double eigenvalue λ
1

= 1 is

(A − I )v =




−1 −1 −1
1 1 1
1 1 1






x
y
z


 =




0
0
0


 .

The general solution to this homogeneous linear system

v =




−a − b
a
b


 = a




−1
1
0


+ b




−1
0
1




depends upon two free variables: y = a and z = b. Any nonzero solution forms a valid
eigenvector for the eigenvalue λ

1
= 1, and so the general eigenvector is any non-zero linear

combination of the two “basis eigenvectors” v
1

= (−1, 1, 0 )
T
, v̂

1
= (−1, 0, 1 )

T
.

On the other hand, the eigenvector equation for the simple eigenvalue λ
2

= 2 is

(A − 2 I )v =




−2 −1 −1
1 0 1
1 1 0






x
y
z


 =




0
0
0


 .

The general solution

v =




−a
a
a


 = a




−1
1
1




consists of all scalar multiples of the eigenvector v
2

= (−1, 1, 1 )
T
.

In summary, the eigenvalues and (basis) eigenvectors for this matrix are

λ
1

= 1, v
1

=




−1
1
0


 , v̂

1
=




−1
0
1


 ,

λ
2

= 2, v
2

=




−1
1
1


 .

(6.4)

In general, given a real eigenvalue λ, the corresponding eigenspace Vλ ⊂ R
n is the

subspace spanned by all its eigenvectors. Equivalently, the eigenspace is the kernel

Vλ = ker(A − λ I ). (6.5)

In particular, λ ∈ R is an eigenvalue if and only if Vλ 6= {0} is a nontrivial subspace, and
then every nonzero element of Vλ is a corresponding eigenvector. The most economical
way to indicate each eigenspace is by writing out a basis, as in (6.4) with v

1
, v̂

1
giving a

basis for V
1
, while v

2
is a basis for V

2
.
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Example 6.6. The characteristic equation of the matrix A =




1 2 1
1 −1 1
2 0 1


 is

0 = det(A − λ I ) = −λ3 + λ2 + 5λ + 3 = − (λ + 1)2 (λ − 3).

Again, there is a double eigenvalue λ
1

= −1 and a simple eigenvalue λ
2

= 3. However, in
this case the matrix

A − λ
1
I = A + I =




2 2 1
1 0 1
2 0 2




has only a one-dimensional kernel, spanned by v
1

= ( 2,−1,−2 )
T
. Thus, even though λ

1

is a double eigenvalue, it only admits a one-dimensional eigenspace. The list of eigenvalues
and eigenvectors is, in a sense, incomplete:

λ
1

= −1, v
1

=




2
−1
−2


 , λ

2
= 3, v

2
=




2
1
2


 .

Example 6.7. Finally, consider the matrix A =




1 2 0
0 1 −2
2 2 −1


. The characteristic

equation is

0 = det(A − λ I ) = −λ3 + λ2 − 3λ − 5 = − (λ + 1) (λ2 − 2λ + 5).

The linear factor yields the eigenvalue −1. The quadratic factor leads to two complex
roots, 1 + 2 i and 1 − 2 i , which can be obtained via the quadratic formula. Hence A has
one real and two complex eigenvalues:

λ
1

= −1, λ
2

= 1 + 2 i , λ
3

= 1 − 2 i .

Solving the associated linear system, the real eigenvalue is found to have corresponding
eigenvector v

1
= (−1, 1, 1 )

T
.

Complex eigenvalues are as important as real eigenvalues, and we need to be able to
handle them too. To find the corresponding eigenvectors, which will also be complex, we
need to solve the usual eigenvalue equation (6.2), which is now a complex homogeneous
linear system. For example, the eigenvector(s) for λ

2
= 1 + 2 i are found by solving

[
A − (1 + 2 i ) I

]
v =




−2 i 2 0
0 −2 i −2
2 2 −2 − 2 i






x
y
z


 =




0
0
0


 .

This linear system can be solved by Gaussian Elimination (with complex pivots). A simpler
strategy is to work directly: the first equation −2 ix + 2y = 0 tells us that y = ix, while
the second equation −2 i y − 2z = 0 says z = − i y = x. If we trust our calculations so
far, we do not need to solve the final equation 2x + 2y + (−2 − 2 i )z = 0, since we know
that the coefficient matrix is singular and hence this equation must be a consequence of
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the first two. (However, it does serve as a useful check on our work.) So, the general

solution v = (x, ix, x )
T

is an arbitrary constant multiple of the complex eigenvector

v
2

= ( 1, i , 1 )
T
. The eigenvector equation for λ

3
= 1− 2 i is similarly solved for the third

eigenvector v
3

= ( 1,− i , 1 )
T
.

Summarizing, the matrix under consideration has three complex eigenvalues and three
corresponding eigenvectors, each unique up to (complex) scalar multiple:

λ
1

= −1, λ
2

= 1 + 2 i , λ
3

= 1 − 2 i ,

v
1

=




−1
1
1


 , v

2
=




1
i
1


 , v

3
=




1
− i

1


 .

Note that the third complex eigenvalue is the complex conjugate of the second, and the
eigenvectors are similarly related. This is indicative of a general fact for real matrices:

Proposition 6.8. If A is a real matrix with a complex eigenvalue λ = µ + i ν and

corresponding complex eigenvector v = x+ iy, then the complex conjugate λ = µ− i ν is

also an eigenvalue with complex conjugate eigenvector v = x − iy.

Proof : First take complex conjugates of the eigenvalue equation (6.1):

A v = Av = λv = λ v.

Using the fact that a real matrix is unaffected by conjugation, so A = A, we conclude
Av = λ v, which is the equation for the eigenvalue λ and eigenvector v. Q.E.D.

As a consequence, when dealing with real matrices, we only need to compute the
eigenvectors for one of each complex conjugate pair of eigenvalues. This observation ef-
fectively halves the amount of work in the unfortunate event that we are confronted with
complex eigenvalues.

The eigenspace associated with a complex eigenvalue λ is the subspace Vλ ⊂ C
n

spanned by the associated eigenvectors. One might also consider complex eigenvectors
associated with a real eigenvalue, but this doesn’t add anything to the picture — they
are merely complex linear combinations of the real eigenvalues. Thus, we only introduce
complex eigenvectors when dealing with genuinely complex eigenvalues.

Remark : The reader may recall that we said one should never use determinants in
practical computations. So why have we reverted to using determinants to find eigenvalues?
The truthful answer is that the practical computation of eigenvalues and eigenvectors never

resorts to the characteristic equation! The method is fraught with numerical traps and
inefficiencies when (a) computing the determinant leading to the characteristic equation,
then (b) solving the resulting polynomial equation, which is itself a nontrivial numerical
problem†, [7, 43], and, finally, (c) solving each of the resulting linear eigenvector systems.

† In fact, one effective numerical strategy for finding the roots of a polynomial is to turn the
procedure on its head, and calculate the eigenvalues of a matrix whose characteristic equation is
the polynomial in question! See [43] for details.
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Worse, if we only know an approximation λ̃ to the true eigenvalue λ, the approximate
eigenvector system (A − λ̃ )v = 0 will almost certainly have a nonsingular coefficient
matrix, and hence only admits the trivial solution v = 0 — which does not even qualify
as an eigenvector!

Nevertheless, the characteristic equation does give us important theoretical insight
into the structure of the eigenvalues of a matrix, and can be used when dealing with
small matrices, e.g., 2 × 2 and 3 × 3, presuming exact arithmetic is employed. Numerical
algorithms for computing eigenvalues and eigenvectors are based on completely different
ideas.

Proposition 6.9. A matrix A is singular if and only if 0 is an eigenvalue.

Proof : By definition, 0 is an eigenvalue of A if and only if there is a nonzero solution to
the eigenvector equation Av = 0v = 0. Thus, 0 is an eigenvector of A if and only if it has
a non-zero vector in its kernel, ker A 6= {0}, and hence A is necessarily singular. Q.E.D.

Basic Properties of Eigenvalues

If A is an n × n matrix, then its characteristic polynomial is

pA(λ) = det(A − λ I ) = cn λn + cn−1
λn−1 + · · · + c

1
λ + c

0
. (6.6)

The fact that pA(λ) is a polynomial of degree n is a consequence of the general determi-
nantal formula. Indeed, every term is prescribed by a permutation π of the rows of the
matrix, and equals plus or minus a product of n distinct matrix entries including one from
each row and one from each column. The term corresponding to the identity permutation
is obtained by multiplying the diagonal entries together, which, in this case, is

(a
11
−λ) (a

22
−λ) · · · (ann−λ) = (−1)nλn+(−1)n−1

(
a
11

+ a
22

+ · · · + ann

)
λn−1+ · · · .

(6.7)
All of the other terms have at most n− 2 diagonal factors aii − λ, and so are polynomials
of degree ≤ n− 2 in λ. Thus, (6.7) is the only summand containing the monomials λn and
λn−1, and so their respective coefficients are

cn = (−1)n, cn−1
= (−1)n−1(a

11
+ a

22
+ · · · + ann) = (−1)n−1 trA, (6.8)

where trA, the sum of its diagonal entries, is called the trace of the matrix A. The other
coefficients cn−2

, . . . , c
1
, c

0
in (6.6) are more complicated combinations of the entries of A.

However, setting λ = 0 implies

pA(0) = det A = c
0
,

and hence the constant term in the characteristic polynomial equals the determinant of

the matrix. In particular, if A =

(
a b
c d

)
is a 2 × 2 matrix, its characteristic polynomial

has the explicit form

pA(λ) = det(A − λ I ) = det

(
a − λ b

c d − λ

)

= λ2 − (a + d)λ + (ad − bc) = λ2 − (trA)λ + (detA).

(6.9)
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As a result of these considerations, the characteristic equation of an n × n matrix A
is a polynomial equation of degree n. According to the Fundamental Theorem of Algebra,
[17], every (complex) polynomial of degree n ≥ 1 can be completely factored, and so we
can write the characteristic polynomial in factored form:

pA(λ) = (−1)n(λ − λ
1
)(λ − λ

2
) · · · (λ − λn). (6.10)

The complex numbers λ
1
, . . . , λn, some of which may be repeated, are the roots of the

characteristic equation pA(λ) = 0, and hence the eigenvalues of the matrix A. Therefore,
we immediately conclude:

Theorem 6.10. An n×n matrix A has at least one and at most n distinct complex

eigenvalues.

Most n×n matrices — meaning those for which the characteristic polynomial factors
into n distinct factors — have exactly n complex eigenvalues. More generally, an eigenvalue
λj is said to have multiplicity m if the factor (λ − λj) appears exactly m times in the
factorization (6.10) of the characteristic polynomial. An eigenvalue is simple if it has
multiplicity 1. In particular, A has n distinct eigenvalues if and only if all its eigenvalues
are simple. In all cases, when the repeated eigenvalues are counted in accordance with
their multiplicity, every n × n matrix has a total of n, possibly repeated, eigenvalues.

An example of a matrix with just one eigenvalue, of multiplicity n, is the n×n identity
matrix I , whose only eigenvalue is λ = 1. In this case, every nonzero vector in R

n is an
eigenvector of the identity matrix, and so the eigenspace is all of R

n. At the other extreme,
the “bidiagonal” Jordan block matrix †

Ja =




a 1
a 1

a 1
. . .

. . .

a 1
a




(6.11)

also has only one eigenvalue, λ = a, again of multiplicity n. But in this case, Ja has only
one eigenvector (up to scalar multiple), which is the first standard basis vector e

1
, and so

its eigenspace is one-dimensional.

Remark : If λ is a complex eigenvalue of multiplicity k for the real matrix A, then its
complex conjugate λ also has multiplicity k. This is because complex conjugate roots of a
real polynomial necessarily appear with identical multiplicities.

If we explicitly multiply out the factored product (6.10) and equate the result to the
characteristic polynomial (6.6), we find that its coefficients c

0
, c

1
, . . . cn−1

can be written

† All non-displayed entries are zero.
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as certain polynomials of the roots, known as the elementary symmetric polynomials. The
first and last are of particular importance:

c
0

= λ
1
λ

2
· · · λn, cn−1

= (−1)n−1 (λ
1

+ λ
2

+ · · · + λn). (6.12)

Comparison with our previous formulae for the coefficients c
0

and cn−1
leads to the fol-

lowing useful result.

Proposition 6.11. The sum of the eigenvalues of a matrix equals its trace:

λ
1

+ λ
2

+ · · · + λn = tr A = a
11

+ a
22

+ · · · + ann. (6.13)

The product of the eigenvalues equals its determinant:

λ
1
λ

2
· · · λn = det A. (6.14)

Remark : For repeated eigenvalues, one must add or multiply them in the formulae
(6.13–14) according to their multiplicity.

Example 6.12. The matrix A =




1 2 1
1 −1 1
2 0 1


 considered in Example 6.6 has trace

and determinant

tr A = 1, detA = 3,

which fix, respectively, the coefficient of λ2 and the constant term in its characteristic
equation. This matrix has two distinct eigenvalues: −1, which is a double eigenvalue, and
3, which is simple. For this particular matrix, formulae (6.13–14) become

1 = trA = (−1) + (−1) + 3, 3 = detA = (−1)(−1) 3.

Note that the double eigenvalue contributes twice to the sum and to the product.

6.2. Completeness.

Most of the vector space bases that play a distinguished role in applications are as-
sembled from the eigenvectors of a particular matrix. In this section, we show that the
eigenvectors of any “complete” matrix automatically form a basis for R

n or, in the complex
case, C

n. In the following subsection, we use the eigenvector basis to rewrite the linear
transformation determined by the matrix in a simple diagonal form. The most important
cases — symmetric and positive definite matrices — will be treated in the following section.

The first task is to show that eigenvectors corresponding to distinct eigenvalues are
automatically linearly independent.

Lemma 6.13. If λ
1
, . . . , λk are distinct eigenvalues of the same matrix A, then the

corresponding eigenvectors v
1
, . . . ,vk are linearly independent.
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Proof : The result is proved by induction on the number of eigenvalues. The case
k = 1 is immediate since an eigenvector cannot be zero. Assume that we know the result
is valid for k − 1 eigenvalues. Suppose we have a vanishing linear combination:

c
1
v

1
+ · · · + ck−1

vk−1
+ ck vk = 0. (6.15)

Let us multiply this equation by the matrix A:

A
(
c
1
v

1
+ · · · + ck−1

vk−1
+ ck vk

)
= c

1
Av

1
+ · · · + ck−1

Avk−1
+ ck Avk

= c
1
λ

1
v

1
+ · · · + ck−1

λk−1
vk−1

+ ck λk vk = 0.

On the other hand, if we multiply the original equation (6.15) by λk, we also have

c
1
λk v

1
+ · · · + ck−1

λk vk−1
+ ck λk vk = 0.

Subtracting this from the previous equation, the final terms cancel and we are left with
the equation

c
1
(λ

1
− λk)v

1
+ · · · + ck−1

(λk−1
− λk)vk−1

= 0.

This is a vanishing linear combination of the first k − 1 eigenvectors, and so, by our
induction hypothesis, can only happen if all the coefficients are zero:

c
1
(λ

1
− λk) = 0, . . . ck−1

(λk−1
− λk) = 0.

The eigenvalues were assumed to be distinct, so λj 6= λk when j 6= k. Consequently,
c
1

= · · · = ck−1
= 0. Substituting these values back into (6.15), we find ck vk = 0, and

so ck = 0 also, since the eigenvector vk 6= 0. Thus we have proved that (6.15) holds if
and only if c

1
= · · · = ck = 0, which implies the linear independence of the eigenvectors

v
1
, . . . ,vk. This completes the induction step. Q.E.D.

The most important consequence of this result is when a matrix has the maximum
allotment of eigenvalues.

Theorem 6.14. If the n×n real matrix A has n distinct real eigenvalues λ
1
, . . . , λn,

then the corresponding real eigenvectors v
1
, . . . ,vn form a basis of R

n. If A (which may

now be either a real or a complex matrix) has n distinct complex eigenvalues, then the

corresponding eigenvectors v
1
, . . . ,vn form a basis of C

n.

For instance, the 2 × 2 matrix in Example 6.4 has two distinct real eigenvalues, and
its two independent eigenvectors form a basis of R

2. The 3 × 3 matrix in Example 6.7
has three distinct complex eigenvalues, and its eigenvectors form a basis for C

3. If a
matrix has multiple eigenvalues, then there may or may not be an eigenvector basis of R

n

(or C
n). The matrix in Example 6.5 admits an eigenvector basis, whereas the matrix in

Example 6.6 does not. In general, it can be proved that the dimension of the eigenspace
is less than or equal to the eigenvalue’s multiplicity. In particular, every simple eigenvalue
has a one-dimensional eigenspace, and hence, up to scalar multiple, only one associated
eigenvector.

Definition 6.15. An eigenvalue λ of a matrix A is called complete if the correspond-
ing eigenspace Vλ = ker(A − λ I ) has the same dimension as its multiplicity. The matrix
A is complete if all its eigenvalues are.
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Note that a simple eigenvalue is automatically complete, since its eigenspace is the
one-dimensional subspace spanned by the corresponding eigenvector. Thus, only multiple
eigenvalues can cause a matrix to be incomplete.

Remark : The multiplicity of an eigenvalue λi is sometimes referred to as its algebraic

multiplicity . The dimension of the eigenspace Vλ is its geometric multiplicity , and so
completeness requires that the two multiplicities are equal. The word “complete” is not
completely standard; other common terms for such matrices are perfect , semi-simple and,
as discussed shortly, diagonalizable.

Theorem 6.16. An n × n real or complex matrix A is complete if and only if its

eigenvectors span C
n. In particular, any n × n matrix that has n distinct eigenvalues is

complete.

Or, stated another way, a matrix is complete if and only if its eigenvectors can be used
to form a basis of C

n. Most matrices are complete. Incomplete n×n matrices, which have
fewer than n linearly independent complex eigenvectors, are considerably less pleasant to
deal with.

6.3. Eigenvalues of Symmetric Matrices.

Fortunately, the matrices that arise in most applications are complete and, in fact,
possess some additional structure that ameliorates the calculation of their eigenvalues and
eigenvectors. The most important class are the symmetric, including positive definite,
matrices. In fact, not only are the eigenvalues of a symmetric matrix necessarily real, the
eigenvectors always form an orthogonal basis of the underlying Euclidean space. In fact,
this is by far the most common way for orthogonal bases to appear — as the eigenvector
bases of symmetric matrices. Let us state this important result, but defer its proof until
the end of the section.

Theorem 6.17. Let A = AT be a real symmetric n × n matrix. Then

(a) All the eigenvalues of A are real.

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

(c) There is an orthonormal basis of R
n consisting of n eigenvectors of A.

In particular, all symmetric matrices are complete.

Example 6.18. The 2 × 2 matrix A =

(
3 1
1 3

)
considered in Example 6.4 is sym-

metric, and so has real eigenvalues λ
1

= 4 and λ
2

= 2. You can easily check that the

corresponding eigenvectors v
1

= ( 1, 1 )
T

and v
2

= (−1, 1 )
T

are orthogonal: v
1
· v

2
= 0,

and hence form an orthogonal basis of R
2. The orthonormal eigenvector basis promised

by Theorem 6.17 is obtained by dividing each eigenvector by its Euclidean norm:

u
1

=

(
1√
2

1√
2

)
, u

2
=

(
− 1√

2

1√
2

)
.
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Example 6.19. Consider the symmetric matrix A =




5 −4 2
−4 5 2

2 2 −1


. A straight-

forward computation produces its eigenvalues and eigenvectors:

λ
1

= 9, λ
2

= 3, λ
3

= −3,

v
1

=




1
−1

0


 , v

2
=




1
1
1


 , v

3
=




1
1

−2


 .

As the reader can check, the eigenvectors form an orthogonal basis of R
3. An orthonormal

basis is provided by the unit eigenvectors

u
1

=




1√
2

− 1√
2

0


 , u

2
=




1√
3

1√
3

1√
3


 , u

3
=




1√
6

1√
6

− 2√
6


 .

In particular, the eigenvalues of a symmetric matrix can be used to test its positive
definiteness.

Theorem 6.20. A symmetric matrix K = KT is positive definite if and only if all

of its eigenvalues are strictly positive.

Example 6.21. Consider the symmetric matrix K =




8 0 1
0 8 1
1 1 7


. Its characteristic

equation is

det(K − λ I) = −λ3 + 23λ2 − 174λ + 432 = −(λ − 9)(λ − 8)(λ − 6),

and so its eigenvalues are 9, 8, and 6. Since they are all positive, K is a positive definite
matrix. The associated eigenvectors are

λ
1

= 9, v
1

=




1
1
1


 , λ

2
= 8, v

2
=




−1
1
0


 , λ

3
= 6, v

3
=




−1
−1

2


 .

Note that the eigenvectors form an orthogonal basis of R
3, as guaranteed by Theorem 6.17.

As usual, we can construct an corresponding orthonormal eigenvector basis

u
1

=




1√
3

1√
3

1√
3


 , u

2
=




− 1√
2

1√
2

0


 , u

3
=




− 1√
6

− 1√
6

2√
6


 ,

by dividing each eigenvector by its norm.
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Figure 6.1. Gerschgorin Disks and Eigenvalues.

6.4. The Gerschgorin Circle Theorem.

In general, precisely computing the eigenvalues is not easy, and, in most cases, must be
done through a numerical eigenvalue routine. In applications, though, we may not require
their exact numerical values, but only approximate locations. The Gerschgorin Circle

Theorem, due to the early twentieth century Russian mathematician Semen Gerschgorin,
serves to restrict the eigenvalues to a certain well-defined region in the complex plane.

Definition 6.22. Let A be an n × n matrix, either real or complex. For each
1 ≤ i ≤ n, define the Gerschgorin disk

Di = { | z − aii | ≤ ri | z ∈ C } , where ri =
n∑

j=1

j 6=i

| aij |. (6.16)

The Gerschgorin domain DA =
n

[

i=1

Di ⊂ C is the union of the Gerschgorin disks.

Thus, the ith Gerschgorin disk Di is centered at the ith diagonal entry aii, and has
radius ri equal to the sum of the absolute values of the off-diagonal entries that are in the
ith row of A. We can now state the Gerschgorin Circle Theorem.

Theorem 6.23. All real and complex eigenvalues of the matrix A lie in its Ger-

schgorin domain DA.

Example 6.24. The matrix A =




2 −1 0
1 4 −1

−1 −1 −3


 has Gerschgorin disks

D
1

= { | z − 2 | ≤ 1 } , D
2

= { | z − 4 | ≤ 2 } , D
3

= { | z + 3 | ≤ 2 } ,

which are plotted in Figure 6.1. The eigenvalues of A are

λ
1

= 3, λ
2

=
√

10 = 3.1623 . . . , λ
3

= −
√

10 = −3.1623 . . . .

Observe that λ
1

belongs to both D
1

and D
2
, while λ

2
lies in D

2
, and λ

3
is in D

3
. We thus

confirm that all three eigenvalues are in the Gerschgorin domain DA = D
1
∪ D

2
∪ D

3
.
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Proof of Theorem 6.23 : Let v be an eigenvector of A with eigenvalue λ. Let u =
v/‖v ‖∞ be the corresponding unit eigenvector with respect to the ∞ norm, so

‖u ‖∞ = max
{
|u

1
|, . . . , |un |

}
= 1.

Let ui be an entry of u that achieves the maximum: |ui | = 1. Writing out the ith

component of the eigenvalue equation Au = λu, we find

n∑

j =1

aij uj = λui, which we rewrite as
n∑

j=1

j 6=i

aij uj = (λ − aii)ui.

Therefore, since all |uj | ≤ 1 while |ui | = 1,

|λ − aii | = |λ − aii | |ui | =

∣∣∣∣∣∣

∑

j 6=i

aij uj

∣∣∣∣∣∣
≤
∑

j 6=i

| aij | |uj | ≤
∑

j 6=i

| aij | = ri.

This immediately implies that λ ∈ Di ⊂ DA belongs to the ith Gerschgorin disk. Q.E.D.

One application is a simple direct test that guarantees invertibility of a matrix without
requiring Gaussian Elimination or computing determinants. According to Proposition 6.9,
a matrix A is nonsingular if and only if it does not admit zero as an eigenvalue. Thus,
if its Gerschgorin domain does not contain 0, it cannot be an eigenvalue, and hence A is
necessarily invertible. The condition 0 6∈ DA requires that the matrix have large diagonal
entries, as quantified by the following definition.

Definition 6.25. A square matrix A is called strictly diagonally dominant if

| aii | >

n∑

j=1

j 6=i

| aij |, for all i = 1, . . . , n. (6.17)

In other words, strict diagonal dominance requires each diagonal entry to be larger,
in absolute value, than the sum of the absolute values of all the other entries in its row.

For example, the matrix




3 −1 1
1 −4 2

−2 −1 5


 is strictly diagonally dominant since

| 3 | > | −1 | + | 1 |, | −4 | > | 1 | + | 2 |, | 5 | > | −2 | + | −1 |.
Diagonally dominant matrices appear frequently in numerical solution methods for both
ordinary and partial differential equations. As we shall see, they are the most common
class of matrices to which iterative solution methods can be successfully applied.

Theorem 6.26. A strictly diagonally dominant matrix is nonsingular.

Proof : The diagonal dominance inequalities (6.17) imply that the radius of the ith

Gerschgorin disk is strictly less than the modulus of its center: ri < | aii |. Thus, the disk
cannot contain 0; indeed, if z ∈ Di, then, by the triangle inequality,

ri > | z − aii | ≥ | aii | − | z | > ri − | z |, and hence | z | > 0.
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Thus, 0 6∈ DA does not lie in the Gerschgorin domain and so cannot be an eigen-
value. Q.E.D.

Warning : The converse to this result is obviously not true; there are plenty of non-
singular matrices that are not diagonally dominant.

6.5. Singular Values.

We have already indicated the central role played by the eigenvalues and eigenvectors
of a square matrix in both theory and applications. Much more evidence to this effect will
appear in the ensuing chapters. Alas, rectangular matrices do not have eigenvalues (why?),
and so, at first glance, do not appear to possess any quantities of comparable significance.
But you no doubt recall that our earlier treatment of least squares minimization problems,
as well as the equilibrium equations for structures and circuits, made essential use of the
symmetric, positive semi-definite square Gram matrix K = AT A — which can be naturally
formed even when A is not square. Perhaps the eigenvalues of K might play a comparably
important role for general matrices. Since they are not easily related to the eigenvalues of
A — which, in the non-square case, don’t even exist — we shall endow them with a new
name.

Definition 6.27. The singular values σ
1
, . . . , σr of an m×n matrix A are the positive

square roots, σi =
√

λi > 0, of the nonzero eigenvalues of the associated Gram matrix
K = AT A. The corresponding eigenvectors of K are known as the singular vectors of A.

Since K is necessarily positive semi-definite, its eigenvalues are always non-negative,
λi ≥ 0, which justifies the positivity of the singular values of A — independently of whether
A itself has positive, negative, or even complex eigenvalues — or is rectangular and has
no eigenvalues at all. The standard convention is to label the singular values in decreasing
order, so that σ

1
≥ σ

2
≥ · · · ≥ σr > 0. Thus, σ

1
will always denote the largest or

dominant singular value. If K = AT A has repeated eigenvalues, the singular values of A
are repeated with the same multiplicities. As we will see, the number r of singular values
is always equal to the rank of the matrix.

Warning : Many texts include the zero eigenvalues of K as singular values of A. We
find this to be somewhat less convenient, but you should be aware of the differences in the
two conventions.

Example 6.28. Let A =

(
3 5
4 0

)
. The associated Gram matrix K = AT A =

(
25 15
15 25

)
has eigenvalues λ

1
= 40, λ

2
= 10, and corresponding eigenvectors v

1
=

(
1
1

)
,

v
2

=

(
1

−1

)
. Thus, the singular values of A are σ

1
=

√
40 ≈ 6.3246 and σ

2
=

√
10 ≈

3.1623, with v
1
,v

2
being the singular vectors. Note that the singular values are not the

same as its eigenvalues, which are λ
1

= 1

2
(3 +

√
89) ≈ 6.2170 and λ

2
= 1

2
(3 −

√
89) ≈

−3.2170 — nor are the singular vectors eigenvectors of A.

3/15/06 100 c© 2006 Peter J. Olver



Only in the special case of symmetric matrices is there a direct connection between
the singular values and the eigenvalues.

Proposition 6.29. If A = AT is a symmetric matrix, its singular values are the

absolute values of its nonzero eigenvalues: σi = |λi | > 0; its singular vectors coincide with

the associated non-null eigenvectors.

Proof : When A is symmetric, K = AT A = A2. So, if Av = λv, then Kv = A2v =
λ2v. Thus, every eigenvector v of A is also an eigenvector of K with eigenvalue λ2.
Therefore, the eigenvector basis of A is also an eigenvector basis for K, and hence also
forms a complete system of singular vectors for A. Q.E.D.

Condition Number, Rank, and Principal Component Analysis

The singular values not only provide a pretty geometric interpretation of the action
of the matrix, they also play a key role in modern computational algorithms. The relative
magnitudes of the singular values can be used to distinguish well-behaved linear systems
from ill-conditioned systems which are much trickier to solve accurately. Since the number
of singular values equals the matrix’s rank, an n×n matrix with fewer than n singular values
is singular. For the same reason, a square matrix with one or more very small singular
values should be considered to be close to singular. The potential difficulty of accurately
solving a linear algebraic system with coefficient matrix A is traditionally quantified as
follows.

Definition 6.30. The condition number of a nonsingular n × n matrix is the ratio
between its largest and smallest singular value: κ(A) = σ

1
/σn.

If A is singular, it is said to have condition number ∞. A matrix with a very large
condition number is said to be ill-conditioned ; in practice, this occurs when the condition
number is larger than the reciprocal of the machine’s precision, e.g., 107 for typical single
precision arithmetic. As the name implies, it is much harder to solve a linear system
Ax = b when its coefficient matrix is ill-conditioned.

Determining the rank of a large matrix can be a numerical challenge. Small numer-
ical errors in the entries can have an unpredictable effect. For example, the matrix A =


1 1 −1
2 2 −2
3 3 −3


 has rank r = 1, but a tiny change, e.g., Ã =




1.00001 1. −1.
2. 2.00001 −2.
3. 3. −3.00001


,

will produce a nonsingular matrix with rank r = 3. The latter matrix, however, is very
close to singular, and this is highlighted by its singular values, which are σ

1
≈ 6.48075

while σ
2
≈ σ

3
≈ .000001. The fact that the second and third singular values are very small

indicates that Ã is very close to a matrix of rank 1 and should be viewed as a numerical
(or experimental) perturbation of such a matrix. Thus, an effective practical method for
computing the rank of a matrix is to first assign a threshold, e.g., 10−5, for singular values,
and then treat any small singular value lying below the threshold as if it were zero.

This idea underlies the method of Principal Component Analysis that is assuming
an increasingly visible role in modern statistics, data mining, imaging, speech recognition,
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semantics, and a variety of other fields, [29]. The singular vectors associated with the larger
singular values indicate the principal components of the matrix, while small singular values
indicate relatively unimportant directions. In applications, the columns of the matrix A
represent the data vectors, which are normalized to have mean 0. The corresponding
Gram matrix K = AT A can be identified as the associated covariance matrix , [12]. Its
eigenvectors are the principal components that serve to indicate directions of correlation
and clustering in the data.
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