Applied Linear Algebra, First Edition

by Peter J. Olver and Chehrzad Shakiban

Corrections to Third Printing (2013)

Last updated: July 1, 2018

*** Page xxii ***

Add Mary Halloran, Jeffrey Humpherys, and Sean Rostami to the acknowledgment in last paragraph.

 $\star \star \star \ {\rm Page} \ 90 \ \star \star \star \ {\rm Last \ displayed \ equation:}$

Correct last entry in third and fourth column vectors:

$$\begin{pmatrix} 0\\1\\-1 \end{pmatrix} = c_1 \begin{pmatrix} 1\\-2\\1 \end{pmatrix} + c_2 \begin{pmatrix} 2\\-3\\1 \end{pmatrix} = \begin{pmatrix} c_1 + 2c_2\\-2c_1 - 3c_2\\c_1 + c_2 \end{pmatrix}.$$

 $\star \star \star$ Page 91 $\star \star \star$ First displayed equation:

Correct third equation:

$$c_1 + 2c_2 = 0, \qquad -2c_1 - 3c_2 = 1, \qquad c_1 + c_2 = -1.$$

 $\star \star \star$ Page 204 $\star \star \star$ Displayed equation in Proof of Theorem 4.16:

Middle term should be $y_k L_k(t_k)$:

$$p(t_k) = y_1 L_1(t_k) + \cdots + y_k L_k(t_k) + \cdots + y_{n+1} L_{n+1}(t_k) = y_k,$$

- *** Page 283 *** Figure 5.13: Change $x^2 - 2\pi x$ to $2\pi x - x^2$.
- _____
- $\star \star \star$ Page 284 $\star \star \star$ Figure 5.14:

Change $x^2 - 2\pi x$ to $2\pi x - x^2$.

7/1/18

 $\star \star \star$ Page 377 $\star \star \star$ Definition 7.46 is incomplete. Here is a corrected version::

Definition 7.46. A complex vector space V is called *conjugated* if it admits an operation of *complex conjugation* taking $\mathbf{u} \in V$ to $\overline{\mathbf{u}} \in V$ with the following properties: (a) conjugating twice returns one to the original vector: $\overline{\mathbf{u}} = \mathbf{u}$; (b) compatibility with vector addition: $\overline{\mathbf{u} + \mathbf{v}} = \overline{\mathbf{u}} + \overline{\mathbf{v}}$; (c) compatibility with scalar multiplication: $\overline{\lambda \mathbf{u}} = \overline{\lambda} \overline{\mathbf{u}}$, for all $\lambda \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in V$.

 $\star \star \star$ Page 410 $\star \star \star$ line 16:

Delete ^T on formula for $S = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$.

 $\star \star \star$ Page 438 $\star \star \star$ **Definition 8.46**, first line:

Change $\mathbf{w}_1, \ldots, \mathbf{w}_j \in \mathbb{C}^m$ to $\mathbf{w}_1, \ldots, \mathbf{w}_j \in \mathbb{C}^n$.

 $\star \star \star$ Page 438 $\star \star \star$ line -2:

Change "Thus, \mathbf{w}_2 a generalized ..." to "Thus, \mathbf{w}_2 is a generalized ..."

 $\star \star \star$ Page 448 $\star \star \star$ Equation (9.8) and line 19:

Change $\dot{u} = A\mathbf{u}$ to $\dot{\mathbf{u}} = A\mathbf{u}$.

 $\star \star \star$ Page 455 $\star \star \star$ Exercise 9.1.22:

Change $\dot{u} = A\mathbf{u}$ to $\dot{\mathbf{u}} = A\mathbf{u}$.

 $\star \star \star$ Page 458 $\star \star \star$ Theorem 9.13:

Change $\dot{\boldsymbol{u}} = A \boldsymbol{u}$ to $\dot{\boldsymbol{u}} = A \boldsymbol{u}$.

- *** Page 465 *** Exercise 9.2.18: Change $\dot{u} = -\nabla H$ to $\dot{\mathbf{u}} = -\nabla H$.
- *** Page 477 *** Exercise 9.4.15: Change $\mathbf{v} = A^T \mathbf{v}$ to $\dot{\mathbf{v}} = A^T \mathbf{v}$.
- $\star \star \star$ Page 481 $\star \star \star$ Exercise 9.4.34:

Change $\dot{u} = A\mathbf{u} + e^{\lambda t}\mathbf{v}$ to $\dot{\mathbf{u}} = A\mathbf{u} + e^{\lambda t}\mathbf{v}$.

 $\star \star \star$ Page 483 $\star \star \star$ Equation (9.55):

Correct final formula:

$$e^{t A_z} = \begin{pmatrix} \cos t & -\sin t & 0\\ \sin t & \cos t & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

 $\star \star \star$ Page 488 $\star \star \star$ line after (9.70):

Change $r_i > 0$ to $r_i \ge 0$.

7/1/18

 $\star \star \star$ Page 501 $\star \star \star$ Lines 2–4 after (9.96):

Switch "first" and "second":

... — the second, vibrating with frequency ω , represents the internal or natural vibrations of the system, while the first, with frequency η , represents the response ...

 $\star \star \star$ Page 523 $\star \star \star$ Exercise 10.1.41:

Change $x_0, x_1, ...$ to $u^{(0)}, u^{(1)}, ...$

 $\star \star \star$ Page 526 $\star \star \star$ Line 4:

Change
$$-\frac{2}{3}$$
 to $\frac{2}{3}$: $\mathbf{u}^{(k)} \approx c_1 \left(\frac{2}{3}\right)^k \mathbf{v}_1$

 $\star \star \star$ Page 526 $\star \star \star$ Line 5:

Change $\lambda_1 = -\frac{2}{3}$ to $\lambda_1 = \frac{2}{3}$:

 $\star \star \star$ Page 526 $\star \star \star$ Line 8:

Change "... the first ten iterates are" to "... iterates $\mathbf{u}^{(11)}, \ldots, \mathbf{u}^{(20)}$ are"

 $\star \star \star$ Page 564 $\star \star \star$ Lines 15–17:

Change

the parameter t_{1} so that the corresponding residual vector

$$\mathbf{r}_1 = \mathbf{f} - K\mathbf{u}_1 = \mathbf{r}_0 - t_1 K\mathbf{v}_1 \tag{10.91}$$

is as close to $\mathbf{0}$ (in the Euclidean norm) as possible. This occurs when \mathbf{r}_1 is orthogonal to \mathbf{r}_0 (why?), and so we require

$$0 = \mathbf{r}_0^T \mathbf{r}_1 = \| \mathbf{r}_0 \|^2 - t_1 \mathbf{r}_0^T K \mathbf{v}_1 = \| \mathbf{r}_0 \|^2 - t_1 \langle\!\langle \mathbf{r}_0 , \mathbf{v}_1 \rangle\!\rangle = \| \mathbf{r}_0 \|^2 - t_1 \langle\!\langle \mathbf{v}_1 , \mathbf{v}_1 \rangle\!\rangle.$$
(10.92)

to

the parameter t_1 that minimizes

$$p(\mathbf{u}_1) = p(t_1\mathbf{v}_1) = \frac{1}{2}t_1^2\mathbf{v}_1^T K\mathbf{v}_1 - t_1\mathbf{v}_1^T \mathbf{f} = \frac{1}{2}t_1^2 \langle\!\langle \mathbf{v}_1, \mathbf{v}_1 \rangle\!\rangle - t_1 \|\mathbf{r}_1\|^2.$$
(10.91)

 $\star \star \star$ Page 564 $\star \star \star$ Line 7 from bottom:

Correct second and third terms in displayed formula:

$$0 = \langle\!\langle \mathbf{v}_2, \mathbf{v}_1 \rangle\!\rangle = \langle\!\langle \mathbf{r}_1 + s_1 \mathbf{v}_1, \mathbf{v}_1 \rangle\!\rangle = \langle\!\langle \mathbf{r}_1, \mathbf{v}_1 \rangle\!\rangle + s_1 \langle\!\langle \mathbf{v}_1, \mathbf{v}_1 \rangle\!\rangle,$$

 $\star \star \star$ Page 565 $\star \star \star$ Line 7:

Delete "as small as possible, which is accomplished by requiring it to"

 $\star \star \star$ Page 565 $\star \star \star$ Line -16:

Delete "as small as possible, by requiring it be"

7/1/18

 $\star\star\star$ Page 572 $\star\star\star$ change final sentence::

For each eigenvalue, the computation of the corresponding eigenvector can be most efficiently accomplished by applying the shifted inverse power method of Exercise 10.6.7 with parameter μ chosen near the computed eigenvalue.

 $\star \star \star$ Page 607 $\star \star \star$ Equation (11.59):

The middle expression is missing a c in the denominator:

$$G(x,y) = \frac{(1-y)x - \rho(x-y)}{c} = \begin{cases} x(1-y)/c, & x \le y, \\ y(1-x)/c, & x \ge y, \end{cases}$$
(11.59)

 $\star \star \star$ Page 660 $\star \star \star$ Solution 2.5.5 (b):

$$\mathbf{x}^{\star} = (1, -1, 0)^{T}, \quad \mathbf{z} = z \left(-\frac{2}{7}, -\frac{1}{7}, 1\right)^{T};$$

 $\star \star \star$ Page 683 $\star \star \star$ Solution 8.5.1 (a):

$$\sqrt{3 \pm \sqrt{5}}$$

 $\star \star \star$ Page 685 $\star \star \star$ Solution 9.1.28 (g):

Change
$$\dot{\boldsymbol{u}} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \boldsymbol{u}$$
 to $\dot{\boldsymbol{u}} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \boldsymbol{u}$.

 $\star \star \star$ Page 691 $\star \star \star$ Solution 10.3.24 (e):

Change $-2.69805 \pm .806289$ to $-2.69805 \pm .806289$ i.