Applied Linear Algebra, First Edition
 by Peter J. Olver and Chehrzad Shakiban

Corrections to Third Printing (2013)

Last updated: July 1, 2018
$\star \star \star$ Page xxii $\star \star \star$
Add Mary Halloran, Jeffrey Humpherys, and Sean Rostami to the acknowledgment in last paragraph.
$\star \star \star$ Page $90 \quad \star \star \star$ Last displayed equation:
Correct last entry in third and fourth column vectors:

$$
\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right)=c_{1}\left(\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{c}
c_{1}+2 c_{2} \\
-2 c_{1}-3 c_{2} \\
c_{1}+c_{2}
\end{array}\right)
$$

$\star \star \star$ Page $91 \quad \star \star \star$ First displayed equation:
Correct third equation:

$$
c_{1}+2 c_{2}=0, \quad-2 c_{1}-3 c_{2}=1, \quad c_{1}+c_{2}=-1
$$

$\star \star \star$ Page 204 $\star \star \star$ Displayed equation in Proof of Theorem 4.16:
Middle term should be $y_{k} L_{k}\left(t_{k}\right)$:

$$
p\left(t_{k}\right)=y_{1} L_{1}\left(t_{k}\right)+\cdots+y_{k} L_{k}\left(t_{k}\right)+\cdots+y_{n+1} L_{n+1}\left(t_{k}\right)=y_{k}
$$

$\star \star \star$ Page 283 $\star \star \star$ Figure 5.13:
Change $x^{2}-2 \pi x$ to $2 \pi x-x^{2}$.
$\star \star \star$ Page $284 \quad \star \star \star$ Figure 5.14:
Change $x^{2}-2 \pi x$ to $2 \pi x-x^{2}$.
$\star \star \star$ Page $377 \star \star \star$ Definition 7.46 is incomplete. Here is a corrected version::
Definition 7.46. A complex vector space V is called conjugated if it admits an operation of complex conjugation taking $\mathbf{u} \in V$ to $\overline{\mathbf{u}} \in V$ with the following properties: (a) conjugating twice returns one to the original vector: $\overline{\overline{\mathbf{u}}}=\mathbf{u}$; (b) compatibility with vector addition: $\overline{\mathbf{u}+\mathbf{v}}=\overline{\mathbf{u}}+\overline{\mathbf{v}} ;(c)$ compatibility with scalar multiplication: $\overline{\lambda \mathbf{u}}=\bar{\lambda} \overline{\mathbf{u}}$, for all $\lambda \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in V$.
*** Page 410 *** line 16:
Delete ${ }^{T}$ on formula for $S=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)$.
$\star \star \star$ Page $438 \star \star \star$ Definition 8.46, first line:
Change $\mathbf{w}_{1}, \ldots, \mathbf{w}_{j} \in \mathbb{C}^{m}$ to $\mathbf{w}_{1}, \ldots, \mathbf{w}_{j} \in \mathbb{C}^{n}$.
$\star \star \star$ Page $438 \quad \star \star \star$ line -2 :
Change "Thus, \mathbf{w}_{2} a generalized \ldots " to "Thus, \mathbf{w}_{2} is a generalized ..."
$\star \star \star$ Page $448 \star \star \star$ Equation (9.8) and line 19:
Change $\dot{u}=A \mathbf{u}$ to $\dot{\mathbf{u}}=A \mathbf{u}$.
$\star \star \star$ Page 455 $\star \star \star$ Exercise 9.1.22:
Change $\dot{u}=A \mathbf{u}$ to $\dot{\mathbf{u}}=A \mathbf{u}$.
$\star \star \star$ Page 458 *** Theorem 9.13:
Change $\dot{u}=A \mathbf{u}$ to $\dot{\mathbf{u}}=A \mathbf{u}$.
$\star \star \star$ Page 465 $\star \star \star$ Exercise 9.2.18:
Change $\dot{u}=-\nabla H$ to $\dot{\mathbf{u}}=-\nabla H$.
$\star \star \star$ Page $477 \star \star \star$ Exercise 9.4.15:
Change $\mathbf{v}=A^{T} \mathbf{v}$ to $\dot{\mathbf{v}}=A^{T} \mathbf{v}$.
$\star \star \star$ Page 481 $\star \star \star$ Exercise 9.4.34:
Change $\dot{u}=A \mathbf{u}+e^{\lambda t} \mathbf{v}$ to $\dot{\mathbf{u}}=A \mathbf{u}+e^{\lambda t} \mathbf{v}$.
$\star \star \star$ Page $483 \star \star \star$ Equation (9.55):
Correct final formula:

$$
e^{t A_{z}}=\left(\begin{array}{ccc}
\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$\star \star \star$ Page $488 \quad \star \star \star$ line after (9.70):
Change $r_{i}>0$ to $r_{i} \geq 0$.

* $\star \star$ Page 501 $\star \star \star$ Lines $2-4$ after (9.96):

Switch "first" and "second":
\ldots - the second, vibrating with frequency ω, represents the internal or natural vibrations of the system, while the first, with frequency η, represents the response ...
$\star \star \star$ Page $523 \quad \star \star \star$ Exercise 10.1.41:
Change x_{0}, x_{1}, \ldots to $u^{(0)}, u^{(1)}, \ldots$
$\star \star \star$ Page 526 $\star \star \star$ Line 4:
Change $-\frac{2}{3}$ to $\frac{2}{3}: \quad \mathbf{u}^{(k)} \approx c_{1}\left(\frac{2}{3}\right)^{k} \mathbf{v}_{1}$
*** Page 526 *** Line 5:
Change $\lambda_{1}=-\frac{2}{3}$ to $\lambda_{1}=\frac{2}{3}$:
$\star \star \star$ Page 526 $\star \star \star$ Line 8:
Change "... the first ten iterates are" to "... iterates $\mathbf{u}^{(11)}, \ldots, \mathbf{u}^{(20)}$ are"
$\star \star \star$ Page 564 *** Lines 15-17:

Change

the parameter t_{1} so that the corresponding residual vector

$$
\begin{equation*}
\mathbf{r}_{1}=\mathbf{f}-K \mathbf{u}_{1}=\mathbf{r}_{0}-t_{1} K \mathbf{v}_{1} \tag{10.91}
\end{equation*}
$$

is as close to $\mathbf{0}$ (in the Euclidean norm) as possible. This occurs when \mathbf{r}_{1} is orthogonal to \mathbf{r}_{0} (why?), and so we require

$$
\begin{equation*}
0=\mathbf{r}_{0}^{T} \mathbf{r}_{1}=\left\|\mathbf{r}_{0}\right\|^{2}-t_{1} \mathbf{r}_{0}^{T} K \mathbf{v}_{1}=\left\|\mathbf{r}_{0}\right\|^{2}-t_{1}\left\langle\left\langle\mathbf{r}_{0}, \mathbf{v}_{1}\right\rangle\right\rangle=\left\|\mathbf{r}_{0}\right\|^{2}-t_{1}\left\langle\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle\right\rangle . \tag{10.92}
\end{equation*}
$$

to
the parameter t_{1} that minimizes

$$
\begin{equation*}
p\left(\mathbf{u}_{1}\right)=p\left(t_{1} \mathbf{v}_{1}\right)=\frac{1}{2} t_{1}^{2} \mathbf{v}_{1}^{T} K \mathbf{v}_{1}-t_{1} \mathbf{v}_{1}^{T} \mathbf{f}=\frac{1}{2} t_{1}^{2}\left\langle\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle\right\rangle-t_{1}\left\|\mathbf{r}_{1}\right\|^{2} \tag{10.91}
\end{equation*}
$$

$\star \star \star$ Page $564 \star \star \star$ Line 7 from bottom:
Correct second and third terms in displayed formula:

$$
0=\left\langle\left\langle\mathbf{v}_{2}, \mathbf{v}_{1}\right\rangle\right\rangle=\left\langle\left\langle\mathbf{r}_{1}+s_{1} \mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle\right\rangle=\left\langle\left\langle\mathbf{r}_{1}, \mathbf{v}_{1}\right\rangle\right\rangle+s_{1}\left\langle\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle\right\rangle
$$

$\star \star \star$ Page 565 $\star \star \star$ Line 7:
Delete "as small as possible, which is accomplished by requiring it to"
$\star \star \star$ Page 565 *** Line -16:
Delete "as small as possible, by requiring it be"
$\star \star \star$ Page $572 \star \star \star$ change final sentence::
For each eigenvalue, the computation of the corresponding eigenvector can be most efficiently accomplished by applying the shifted inverse power method of Exercise 10.6.7 with parameter μ chosen near the computed eigenvalue.
$\star \star \star$ Page $607 \quad \star \star \star$ Equation (11.59):
The middle expression is missing a c in the denominator:

$$
G(x, y)=\frac{(1-y) x-\rho(x-y)}{c}= \begin{cases}x(1-y) / c, & x \leq y \tag{11.59}\\ y(1-x) / c, & x \geq y\end{cases}
$$

$\star \star \star$ Page 660 *** Solution 2.5.5 (b):

$$
\mathbf{x}^{\star}=(1,-1,0)^{T}, \quad \mathbf{z}=z\left(-\frac{2}{7},-\frac{1}{7}, 1\right)^{T}
$$

$\star \star \star$ Page 683 $\star \star \star$ Solution 8.5.1 (a):
$\sqrt{3 \pm \sqrt{5}}$
$\star \star \star$ Page 685 *** Solution 9.1.28 (g):
Change $\dot{u}=\left(\begin{array}{rrr}0 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right) \mathbf{u} \quad$ to $\quad \dot{\mathbf{u}}=\left(\begin{array}{rrr}0 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right) \mathbf{u}$.
$\star \star \star$ Page $691 \quad \star \star \star$ Solution 10.3.24 (e):
Change $-2.69805 \pm .806289$ to $-2.69805 \pm .806289$ i.

