CORRECTIONS TO SECOND PRINTING OF
Olver, P.J., *Equivalence, Invariants, and Symmetry*,

Last modified: November 16, 2015

*** On back cover, line 17–18, change
prospective geometry
to
projective geometry

*** page xv, add to acknowledgements
Joe Benson, Jeongoo Cheh, Faruk Güngör, Joseph Malkoun, Oleg Morozov, Juha Pohjanpelto, Jessica Senou, Francis Valiquette

*** page 22, Theorem 1.28, line 3, change
... all \(t, s \in \mathbb{R} \) where the equation is defined.
to
... all \(t, s \in V \) where \(V \subset \mathbb{R}^2 \) is a connected open subset of the \((t, s)\) plane containing \((0,0)\) consisting of points where the equation is defined.

*** page 32, line 12-13, change
an (necessarily unique)
to
a (necessarily unique)

*** page 32, line before Definition 2.1, change
structure
to
structure

*** page 36, line before Example 2.9, change
\(\text{GL}(2) \)
to
\(\text{GL}(2, \mathbb{C}) \).

*** page 39, Example 2.13, change the first two occurrences of
\(\text{PSL}(n, \mathbb{R}) \)
to
\(\text{PGL}(n, \mathbb{R}) \).
Also append to the last sentence

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[C^k_{ij} = -C^k_{ij} \]
to
\[C^k_{ji} = -C^k_{ij} \]

\[v(HF) = 0 \]
to
\[v(H) = 0. \]

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[v(HF) = 0 \]
to
\[v(H) = 0. \]

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[v(HF) = 0 \]
to
\[v(H) = 0. \]

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[v(HF) = 0 \]
to
\[v(H) = 0. \]

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[v(HF) = 0 \]
to
\[v(H) = 0. \]

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[v(HF) = 0 \]
to
\[v(H) = 0. \]

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{\pm 1\} \] is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

\[v(HF) = 0 \]
to
\[v(H) = 0. \]
\[v_- = a_1 \frac{\partial}{\partial a_0} + 2a_2 \frac{\partial}{\partial a_1} + \cdots + (n-1)a_{n-1} \frac{\partial}{\partial a_{n-2}} + na_n \frac{\partial}{\partial a_{n-1}}, \]
\[v_0 = -na_0 \frac{\partial}{\partial a_0} - (n-2)a_1 \frac{\partial}{\partial a_1} + \cdots + (n-2)a_{n-1} \frac{\partial}{\partial a_{n-2}} + na_n \frac{\partial}{\partial a_n}, \]
\[v_+ = na_0 \frac{\partial}{\partial a_1} + (n-1)a_1 \frac{\partial}{\partial a_2} + \cdots + 2a_{n-2} \frac{\partial}{\partial a_{n-1}} + a_{n-1} \frac{\partial}{\partial a_n}. \]

page 96, equation (3.30), change

\[v_- = na_1 \frac{\partial}{\partial a_0} + (n-1)a_2 \frac{\partial}{\partial a_1} + \cdots + 2a_{n-1} \frac{\partial}{\partial a_{n-2}} + a_n \frac{\partial}{\partial a_{n-1}}, \]
\[v_0 = na_0 \frac{\partial}{\partial a_0} + (n-2)a_1 \frac{\partial}{\partial a_1} + \cdots + (2-n)a_{n-1} \frac{\partial}{\partial a_{n-1}} - na_n \frac{\partial}{\partial a_n}, \]
\[v_+ = a_0 \frac{\partial}{\partial a_1} + 2a_1 \frac{\partial}{\partial a_2} + \cdots + (n-1)a_{n-2} \frac{\partial}{\partial a_{n-1}} + na_{n-1} \frac{\partial}{\partial a_n}. \]

page 110, Theorem 4.6, line 2, change

\(r \)-dimensional orbits

page 119, equation (4.31), change

\[\sum_{\# J \geq 0} \]

page 119, equation (4.32), change

\[D_i \]

page 119, equation (4.32), change

\[D_i^{(n)} \]

and add the following sentence:

where \(D_i^{(n)} \) denotes the order \(n \) truncation of the \(i \)th total derivative, i.e., the summation in (4.18) is just over \(0 \leq \# J \leq n \).
*** page 120, second line after equation (4.35), change

The Lie algebra (4.14)
to
The Lie algebra (4.35)

*** page 124, first displayed equation, add subscript i to Q in first summation

$$\omega = \sum_{i=1}^{p} Q_i(x, u^{(n)}) \, dx^i + \sum_{\alpha=1}^{q} \sum_{\#J \leq n} P_{\alpha}^{J}(x, u^{(n)}) \, du_j^i$$

*** page 144, line 10, change

$a_{\mu}^{\nu} \xi^{i}_{\nu}$
to
$A_{\mu}^{\nu} \xi^{i}_{\nu}$

*** page 148, equation (5.15), change

$$v_0 = x \frac{\partial}{\partial x} - \frac{n}{2} u \frac{\partial}{\partial u}, \quad v_+ = x^2 \frac{\partial}{\partial x} - nxu \frac{\partial}{\partial u}.$$
to
$$v_0 = x \frac{\partial}{\partial x} + \frac{n}{2} u \frac{\partial}{\partial u}, \quad v_+ = x^2 \frac{\partial}{\partial x} + nxu \frac{\partial}{\partial u}.$$

*** page 159, lines 5, 15 & 18, change

$d_{n+1}K_{1} \wedge \cdots \wedge d_{n+1}K_{r}$
to
$d_{n+1}[DK_{1}] \wedge \cdots \wedge d_{n+1}[DK_{r}]$

*** page 171, lines 20 & -8, change

$n + 2$
to
$n + 1$

*** page 171, line -7 to -3, delete sentence

Moreover, if the stable . . . have order at most $n + 1$.

*** page 173, Example 5.52, line 2, after “. . . via the standard representation”, add

$(x, y, u) \mapsto (\alpha x + \beta y, \gamma x + \delta y, u)$, where $\alpha \delta - \beta \gamma = 1$

*** page 188, line -2, change

$$\log x = h(u/x)$$
to
$$\log x = h(u/x^m)$$
*** page 190, line 9, change

\[G_H/G \]
to

\[G_H/H \]

*** page 190, line 18, change

\[\eta \partial_y + \zeta \partial_u + \zeta^y \partial_{vy} \]
to

\[\eta \partial_y + \zeta \partial_v + \zeta^y \partial_{vy} \]

*** page 190, line 22, change

\[v = \partial_y \]
to

\[v = \partial_v \]

*** page 192, formula (6.32), change

\[(1 + u_x)^{3/2} \]
to

\[(1 + u_x^2)^{3/2} \]

*** page 192, displayed formula after (6.32), change

\[(1 + \theta_r^2) \]
to

\[(1 + r^2 \theta_r^2)^{3/2} \]

*** page 195, line -4, change

Alternatively, \(x = w_{uu}/w_u \), where \(w \) is an arbitrary solution . . .
to

Alternatively, \(w = x_{uu}/x_u \) is an arbitrary solution . . .

*** page 198, equation (6.56), change

\[y \]
to

\[w \]
page 201, equation (6.61), change

\[
\begin{vmatrix}
\xi_1 & \varphi_1 & \varphi^1_1 & \cdots & \varphi^{r-1}_1 \\
\xi_2 & \varphi_2 & \varphi^1_2 & \cdots & \varphi^{r-1}_2 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\xi_r & \varphi_r & \varphi^1_r & \cdots & \varphi^{r-1}_r
\end{vmatrix}
\]

\[\det = 0.\]

to

\[
\begin{vmatrix}
\xi_1 & \varphi_1 & \varphi^1_1 & \cdots & \varphi^{r-2}_1 \\
\xi_2 & \varphi_2 & \varphi^1_2 & \cdots & \varphi^{r-2}_2 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\xi_r & \varphi_r & \varphi^1_r & \cdots & \varphi^{r-2}_r
\end{vmatrix}
\]

\[\det = 0.\]

page 213, equation (6.84), change all \(p\)'s to \(f\)'s:

\[\eta(x) = \left| f^n(x) \right|^{(1-n)/(2n)} \exp \left\{ \int \frac{f^{n-1}(y)}{n f^n(y)} dy \right\}. \quad (6.84)\]

page 218, line -2, change

\[f^k(x) = W^k(x)\]

to

\[f^k(x) = (-1)^k W^k(x)\]

page 226, line 6, change

\[P(t, x, u^{(2n)})\]

to

\[R(t, x, u^{(2n)})\]

page 231, lines -4 & -1, change

\[E(L)\]

to

\[\overline{E(L)}\]

page 238, Exercise 7.26, delete the sentence

Determine the conservation laws associated with the point symmetries found in Exercise 6.16.

since the precise connection between symmetries and conservation laws has not been discussed in this book. (See, however, [186].)
However, I do not know ... I. Anderson, [7].

\((x, v_y, v_{yy}, \ldots)\)
to
\((y, v_y, v_{yy}, \ldots)\)

\(a_4 = 0\)
to
\(a_4 = a_5 = 0\)

\(\bar{a}_6 \omega^3 = a_6 \omega^3\)
to
\(\bar{a}_6 \omega^3 = a_6 \omega^3\)

\(\tilde{\alpha}^{\kappa} = \sum_k z_j^{\kappa}(x) \theta^j\)
to
\(\tilde{\alpha}^{\kappa} = \sum_j z_j^{\kappa}(x) \theta^j\)

\(\sum_{k=1}^{r} z_j^{\kappa} \theta^j\)
to
\(\sum_{j=1}^{m} z_j^{\kappa} \theta^j\)

\(\sum_{i=1}^{p} z_i^{\kappa} \theta^i\)
to
\(\sum_{i=1}^{m} z_i^{\kappa} \theta^i\)
*** page 339, line 6, delete first
arc length

*** page 341, line -3, change

\[I_4 \]
to
\[I_5 \]

*** page 349, line -12, change
\[\alpha^1 - T_{12}^1 \theta^1 \land \theta^2 - T_{13}^1 \theta^1 \land \theta^3 \]
to
\[\alpha^1 - T_{12}^1 \theta^2 - T_{13}^1 \theta^3 \]

*** page 367, line 10, change

manifolds \(M \)
to
manifolds \(M \) and \(\overline{M} \)

*** page 372, lines 13–16, change

However, I do not know any naturally occurring examples exhibiting this phenomenon, and, moreover, the prolongation procedure to be discussed below will handle this (remote) possibility as well.

to

However, the prolongation procedure to be discussed below will handle this possibility as well; an example is the equivalence problem for a parabolic evolution equation analyzed in [69].

*** page 375, line 5, change

(12.3)
to
(12.1)

*** page 394, lines 16 & 21, change

(11.6)
to
(11.7)

*** page 394, line 22, change

vector \(S \)
to
matrix \(S \)
page 395, equation (12.52), change
\[\varpi = \alpha + S\theta, \quad \text{or explicitly,} \quad \varpi^i = \alpha^i + \sum_{j=1}^{m} S^i_j \theta^j \]
to
\[\varpi = \alpha - S\theta, \quad \text{or explicitly,} \quad \varpi^i = \alpha^i - \sum_{j=1}^{m} S^i_j \theta^j \]

page 406, equation (12.73), change
\[Q_p \hat{D}_x Q_{pp} 6 Q_{uu} \]
to
\[Q_p \hat{D}_x Q_{pp} + 6 Q_{uu} \]

page 411, lines 12–13, change
\[c(x, y, \varphi(x, y)) \frac{\partial \varphi}{\partial x} = a(x, y, \varphi(x, y)), \]
\[c(x, y, \varphi(x, y)) \frac{\partial \varphi}{\partial y} = b(x, y, \varphi(x, y)). \]
to
\[c(x, y, \varphi(x, y)) \frac{\partial \varphi}{\partial x} = -a(x, y, \varphi(x, y)), \]
\[c(x, y, \varphi(x, y)) \frac{\partial \varphi}{\partial y} = -b(x, y, \varphi(x, y)). \]

page 423, equation (14.4), change
\[\Phi(t, w) \]
to
\[\Phi(t, s) \]

page 437, line -9, change
... the rank zero case in Theorem 4.24.
to
... the rank zero case in Theorem 4.18.

page 442, Figure 5, change
\[L \]
to
\[M \]

page 446, line 5, change
... restrictions of \(\theta \) to \(U \) and \(V \), so that
to
... restrictions of \(\theta \) to \(U \) and \(\widetilde{U} \), so that
page 475, Table 6, Case 6.2, column 5, change

1.1

to

1.2

pages 477, 484 & 487, update the following references:

page 479, ref [30], change

to

page 483, reference [128], change

dx/dy

to

dy/dx

page 504, change two entries

affine-invariant arc length, 339

to

affine-invariant arc length, 241, 339