
Introduction to Partial Differential Equations

by Peter J. Olver

Corrections to First Printing (2014)

Last updated: July 4, 2022

⋆ ⋆ ⋆ Page ix ⋆ ⋆ ⋆

Line 7: change “In order the make progress . . . ” to “In order to make progress . . . ”

Line -3: change “. . . no knowledge of measure theory or Lebesgue integration . . . ” to
“. . . knowledge of measure theory and Lebesgue integration . . . ”

⋆ ⋆ ⋆ Page xv ⋆ ⋆ ⋆

Line 29: correct spelling of “especially”

⋆ ⋆ ⋆ Page xvii ⋆ ⋆ ⋆

Line 16: change “. . . discover(s) . . .” to “. . . discoverer(s) . . . ”

⋆ ⋆ ⋆ Page 6 ⋆ ⋆ ⋆

line 2: change D = { t > 0} ⊂ R
2 to D = { (t, x) | t > 0 } ⊂ R

2

⋆ ⋆ ⋆ Page 8 ⋆ ⋆ ⋆

Exercise 1.10(a): change 4 t2 − x2 to 4 t2 + x2.

Exercise 1.16: change the final term in the displayed formula

∂2u

∂x∂y
(0, 0) = 1 6= −1 =

∂2u

∂y∂x
(0, 0).

⋆ ⋆ ⋆ Page 18 ⋆ ⋆ ⋆

Exercise 2.1.9: correct the formula for Da = D ∩ { (t, a) | t ∈ R }

⋆ ⋆ ⋆ Page 23 ⋆ ⋆ ⋆

Exercise 2.2.11: reword part (c) as follows:

On the other hand, if the initial data is negative somewhere, so f(x) < 0 at some x ∈ R,
then the solution blows up in finite time: lim

t→ τ−

u(t, y) = −∞ for some τ > 0 and some
y ∈ R.

⋆ ⋆ ⋆ Page 31 ⋆ ⋆ ⋆

Exercise 2.2.31(b): insert = 0 in equation: ut + yux − xuy = 0.
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⋆ ⋆ ⋆ Page 32 ⋆ ⋆ ⋆

Line before Example 2.6: change “ther” to “the”

⋆ ⋆ ⋆ Page 33 ⋆ ⋆ ⋆

Second row of Figure 2.11: change t = 5 to t = 4.9

⋆ ⋆ ⋆ Page 57 ⋆ ⋆ ⋆

In the last two displayed formulas, the first term on the right hand side of the equals
sign is missing a minus sign:

∂v

∂ξ
(ξ, η) = − 1

2c

∂u

∂t

(
η − ξ

2 c
,
η + ξ

2

)
+

1

2

∂u

∂x

(
η − ξ

2 c
,
η + ξ

2

)
,

and so, in particular,

∂v

∂ξ
(ξ, ξ) = − 1

2c

∂u

∂t
(0, ξ) +

1

2

∂u

∂x
(0, ξ) = 0,

⋆ ⋆ ⋆ Page 59 ⋆ ⋆ ⋆

Last displayed equation: add in movie symbol
⊎

⋆ ⋆ ⋆ Page 82 ⋆ ⋆ ⋆

Exercise 3.2.14: insert after first sentence:

(See (3.81) for the definition of the function signx.)

⋆ ⋆ ⋆ Page 87 ⋆ ⋆ ⋆

In Example 3.16: the Fourier coefficient a0 = 4/π, so

ak =
2

π

∫ π

0

sinx cos kx dx =





4

(1− k2)π
, k even,

0, k odd.

⋆ ⋆ ⋆ Page 88 ⋆ ⋆ ⋆

Exercise 3.2.47: add final sentence “If not, explain why.”

⋆ ⋆ ⋆ Page 97 ⋆ ⋆ ⋆

In caption to Figure 3.10: delete “3” in “extension”

⋆ ⋆ ⋆ Page 98 ⋆ ⋆ ⋆

Lines -6 and -4: change v⋆ to v
⋆
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⋆ ⋆ ⋆ Page 101 ⋆ ⋆ ⋆

Reword Proposition 3.28 for clarity:

Suppose the series
∞∑

k=1

uk(x) = f(x) converges pointwise. If the differentiated series
∞∑

k=1

u′
k(x) = g(x) is uniformly convergent, then the original series is also uniformly

convergent, and, moreover, f ′(x) = g(x).

⋆ ⋆ ⋆ Page 103 ⋆ ⋆ ⋆

Exercise 3.5.1: change v⋆ to v
⋆ (twice)

⋆ ⋆ ⋆ Page 104 ⋆ ⋆ ⋆

Exercise 3.5.18: change v⋆ to v
⋆

⋆ ⋆ ⋆ Page 105 ⋆ ⋆ ⋆

Line -4: change “second derivative” to “first derivative”

⋆ ⋆ ⋆ Page 108 ⋆ ⋆ ⋆

Line 2 before (3.106): remove square root from “. . . equal to
1

2π

∫ b

a

|ϕ(x) |2 dx .”

⋆ ⋆ ⋆ Page 116 ⋆ ⋆ ⋆

Change the displayed equation after (3.129) and the following line to:

sn(x) =
1

2π

∫ π

−π

f(y)
sin
(
n+ 1

2

)
(x− y)

sin 1
2 (x− y)

dy

=
1

2π

∫ π−x

−π−x

f(x+ ŷ )
sin
(
n+ 1

2

)
ŷ

sin 1
2 ŷ

d ŷ =
1

2π

∫ π

−π

f(x+ y)
sin
(
n+ 1

2

)
y

sin 1
2 y

dy.

The second equality is the result of changing the integration variable to ŷ = y − x and
canceling the minus signs in the resulting trigonometric fraction;

⋆ ⋆ ⋆ Page 119 ⋆ ⋆ ⋆

Exercises 3.5.41 and 3.5.42: change v⋆ to v
⋆

⋆ ⋆ ⋆ Page 127 ⋆ ⋆ ⋆

Correct the formula for b1 in equation (4.28):

u(t, x) ≈ b1 exp

(
− γ π2

ℓ2
t

)
sin

πx

ℓ
, where b1 =

2

ℓ

∫ ℓ

0

f(x) sin
πx

ℓ
dx. (4.28)

⋆ ⋆ ⋆ Page 128 ⋆ ⋆ ⋆

Line 10: change “According to the discussion at the end of Section 3.3, . . . ” to
“According to Corollary 3.32, . . .”
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⋆ ⋆ ⋆ Page 130 ⋆ ⋆ ⋆

Equation (4.34): add in movie symbol
⊎

⋆ ⋆ ⋆ Page 131 ⋆ ⋆ ⋆

In (4.37), change final + to −:

u(t, x) ≈ 1
2 a0 + e−t (a1 cosx+ b1 sinx) =

1
2 a0 + r1 e

−t cos(x− δ1), (4.37)

⋆ ⋆ ⋆ Page 152 ⋆ ⋆ ⋆

Line -6: change “. . . appear the context of boundary value problems.” to
“. . . appear in the context of boundary value problems.”

⋆ ⋆ ⋆ Page 153 ⋆ ⋆ ⋆

Line 5 after (4.86): change “heat flux out of a plate” to “heat flux into a plate”

⋆ ⋆ ⋆ Page 163 ⋆ ⋆ ⋆

Last line of table: change x4 − 4x2y2 + y4 to x4 − 6x2y2 + y4

⋆ ⋆ ⋆ Pages 167–8 ⋆ ⋆ ⋆

There is a subtle logical flaw in the argument leading from Theorem 4.8 to the Unique-
ness Theorem 4.10 via the Maximum Principle 4.9. The proof of Theorem 4.8 relies on
the Poisson integral formula (4.126) leading to formula (4.130). However, it is not a priori
guaranteed that every solution to the Poisson boundary value problem on the unit disk
is given by the Poisson formula; indeed, this follows from uniqueness, but this leads to
a circular argument. A fully rigorous approach is to rely instead on the following direct
proof of Theorem 4.8. Once this is established without recourse to the Poisson solution
formula, the Maximum Principle and the Uniqueness Theorem follow as in the text.

Thanks to Christopher Grant for pointing this out.

Direct Proof of Theorem 4.8 : Given the harmonic function u(x, y), consider the scalar
function

g(a) =
1

2π

∫ π

−π

u(x0 + a cos θ, y0 + a sin θ) dθ,

which is well defined for a > 0 sufficiently small. Since u ∈ C2, we can calculate the
derivative of g as follows:

g′(a) =
1

2π

∫ π

−π

[
cos θ

∂u

∂x
(x0+a cos θ, y0+a sin θ) + sin θ

∂u

∂y
(x0+a cos θ, y0+a sin θ)

]
dθ

=
1

2πa

∮

C

∂u

∂n
ds,

where n = (cos θ, sin θ) defines the unit normal to C at the point (x0 + a cos θ, y0+ a sin θ)
and ds = a dθ is the arc length element. Letting D = {(x− x0)

2 + (y − y0)
2 ≤ a2 } denote
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the disk of radius a, so C = ∂D is its boundary, the divergence identity (6.89) (an easy
consequence of Green’s Theorem) implies that the latter integral equals

∮

C

∂u

∂n
ds =

∫ ∫

D

∆u dx dy = 0

because u is harmonic. Thus, g′(a) = 0 for all a > 0 sufficiently small, which implies g(a) =
c is constant. But g(a) represents the average of u(x, y) on the circle C of radius a centered
at (x0, y0) and hence g(a) → u(x0, y0) as a → 0. We conclude that g(a) = u(x0, y0) for all
a > 0 such that u(x, y) is harmonic in the disk of radius a, which establishes (4.131) for
all such harmonic functions. Q.E.D.

⋆ ⋆ ⋆ Page 170 ⋆ ⋆ ⋆

Exercise 4.3.25(b): change x2 + y2 = 1; to x2 + y2 = 2;

⋆ ⋆ ⋆ Page 175 ⋆ ⋆ ⋆

Exercise 4.4.12(a): switch t and x in the function: un(t, x) =
coshnπ t sinnπx

n .

⋆ ⋆ ⋆ Page 187 ⋆ ⋆ ⋆

Line 2 before (5.14): change
“. . . heat equation (5.14) . . . ” to “. . . heat equation (5.7) . . . ”.

⋆ ⋆ ⋆ Page 188 ⋆ ⋆ ⋆

Example 5.4: change rest of sentence after displayed formula to

“. . .used earlier in Example 4.1, along with homogeneous Dirichlet boundary conditions,
so u(t, 0) = u(t, 1) = 0.”

⋆ ⋆ ⋆ Page 190 ⋆ ⋆ ⋆

Equation (5.28): change O
(
(∆t)2

)
to O(∆t):

∂u

∂t
(tj , xm) ≈

u(tj , xm)− u(tj−1, xm)

∆t
+ O(∆t). (5.28)

⋆ ⋆ ⋆ Page 191 ⋆ ⋆ ⋆

Example 5.5, line 4: change t = .2, .4, .6 to t = .02, .04, .06

⋆ ⋆ ⋆ Page 193 ⋆ ⋆ ⋆

Exercise 5.2.1(b): change “. . . one value of ∆x in the allowed . . . ” to
“. . . one value of ∆t in the allowed . . . ”

⋆ ⋆ ⋆ Page 194 ⋆ ⋆ ⋆

Exercise 5.2.8(a): correct spelling of “approximation”

Exercise 5.2.9(a): correct spelling of “approximations”
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⋆ ⋆ ⋆ Page 195 ⋆ ⋆ ⋆

Change sentence after equation (5.40): “We use step sizes ∆t = ∆x = .005, set ℓ = 1,
and try four different values of the wave speed.”

⋆ ⋆ ⋆ Page 196 ⋆ ⋆ ⋆

Figure 5.5 is missing the last column of plots. The corrected page can be found at

http://www.math.umn.edu/∼olver/book /p196.pdf

Line -5: change “The are two ways . . . ” to “There are two ways . . . ”

⋆ ⋆ ⋆ Page 198 ⋆ ⋆ ⋆

Equation (5.45): change denominator to 2∆x:

∂u

∂x
(tj, xm) ≈

uj,m+1 − uj,m−1

2∆x
+O

(
(∆x)2

)
. (5.45)

⋆ ⋆ ⋆ Page 200 ⋆ ⋆ ⋆

Line 4 after (5.50): reverse the inequality: ∆x/∆t ≥ | cj,m |

⋆ ⋆ ⋆ Page 210 ⋆ ⋆ ⋆

Correct last displayed equation by switching indices on the ui,j :

u1,1 = .1831, u2,1 = .2589, u3,1 = .1831,

u1,2 = .3643, u2,2 = .5152, u3,2 = .3643,

u1,3 = .5409, u2,3 = .7649, u3,3 = .5409,

⋆ ⋆ ⋆ Page 211 ⋆ ⋆ ⋆

Equation (5.78): the sub- and super-diagonal matrix elements should be −1, not −ρ2:

Bρ =




2(1 + ρ2) −1
−1 2(1 + ρ2) −1

−1 2(1 + ρ2) −1
−1 2(1 + ρ2) −1

. . .
. . .

. . .

−1 2(1 + ρ2) −1
−1 2(1 + ρ2)




(5.78)

⋆ ⋆ ⋆ Page 212 ⋆ ⋆ ⋆

Equation (5.82): replace w
(n−1) by Un−1w

(n−1) and Uj by Uk:

z
(1) = f̂

(1), z
(j+1) = f̂

(j+1) − Ljz
(j), j = 1, 2, . . . , n− 2,

Un−1w
(n−1) = z

(n−1), Ukw
(k) = z

(k) − ρ2w(k+1), k = n− 2, n− 3, . . . , 1,
(5.82)
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Equation (5.83): replace Lj by Lk:

w
(k) = Lk

(
w

(k+1) − ρ−2
z
(k)
)
, k = n− 2, n− 3, . . . , 1. (5.83)

⋆ ⋆ ⋆ Page 229 ⋆ ⋆ ⋆

Equation (6.40): delete initial fraction:

∫ π

−π

sn(x) dx =
1

2π

∫ π

−π

sin
(
n+ 1

2

)
x

sin 1
2 x

dx =
1

2π

∫ π

−π

n∑

k=−n

e i kx dx = 1, (6.40)

⋆ ⋆ ⋆ Page 231 ⋆ ⋆ ⋆

Add the following footnote:

Definition 6.5 only requires continuity of the test functions, whereas in (6.44) they need
to be C1, and so the notion of weak convergence here is slightly more refined. One often
restricts further to allow only C∞ test functions.

Also, delete the Remark at bottom of the page, which is not correct. (Indeed, if valid,
it would imply that 0 is always a point of convergence of a Fourier series of any continuous
function, which, by translation, would imply that such Fourier series converge everywhere,
in contradiction to known examples of continuous functions whose Fourier series does not
converge everywhere.)

⋆ ⋆ Thanks to Joost Hulshof for pointing this out.

⋆ ⋆ ⋆ Page 238 ⋆ ⋆ ⋆

In the first integral in the displayed equation after (6.65) change sinhωy to sinhωξ:

u(x) =

∫ x

0

sinhω (1− x) sinhωξ

ω sinhω
dξ +

∫ 1

x

sinhωx sinhω (1− ξ)

ω sinhω
dξ

⋆ ⋆ ⋆ Page 250 ⋆ ⋆ ⋆

Displayed formula after Theorem 6.17: change R
2 to Ω:

u(x, y) = −
∫ ∫

Ω

G0(x, y; ξ, η)∆u(ξ, η)dξ dη.

Equation (6.108): change R
2 to Ω twice:

∫ ∫

Ω

δ(x− ξ) δ(y − η) u(ξ, η)dξ dη =

∫ ∫

Ω

−∆G0(x, y; ξ, η) u(ξ, η)dξ dη. (6.108)

⋆ ⋆ ⋆ Page 255 ⋆ ⋆ ⋆

Exercise 6.3.5: replace β > 0 by β 6= 0
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⋆ ⋆ ⋆ Page 258 ⋆ ⋆ ⋆

Equation (6.135): correct left hand side:

∂G

∂ρ
(r, θ; 1, φ) = − 1

2π

1− r2

1 + r2 − 2 r cos(θ − φ)
, (6.135)

⋆ ⋆ ⋆ Page 260 ⋆ ⋆ ⋆

Exercise 6.3.21: change uxx − uyy = f(x, y) to −uxx − uyy = f(x, y)

Exercise 6.3.28: change “. . . of the point (a, 0).” to “. . . of the point (0, a).”

⋆ ⋆ ⋆ Page 270 ⋆ ⋆ ⋆

Equation (7.33): delete 2 in numerator of fraction:

lim
a→ 0

√
2

π

a

k2 + a2
=

{
0, k 6= 0,

∞, k = 0.
(7.33)

⋆ ⋆ ⋆ Page 272 ⋆ ⋆ ⋆

The Table entry for the Fourier transform of tan−1 x is not correct. The correct
Fourier transform

− i

√
π

2

e− | k |

k

can be found in Example 7.11 on page 277. Thanks to Ulrich Gerlach for noticing this.

⋆ ⋆ ⋆ Page 273 ⋆ ⋆ ⋆

First displayed equation and line immediately after: change x− 1
2 i k to x+ 1

2 i k:

ĝ(k) =
1√
2π

∫ ∞

−∞

e−x2− i kx dx =
1√
2π

∫ ∞

−∞

e−(x+ i k/2)2−k2/4 dx

=
e−k2/4

√
2π

∫ ∞

−∞

e−y2

dy =
e−k2/4

√
2

.

The next-to-last equality employed the change of variables† y = x + 1
2
i k, while the final

step used formula (2.100).

⋆ ⋆ ⋆ Pages 276–7 ⋆ ⋆ ⋆

The proof of Proposition 7.10 is flawed. Since k δ(k) ≡ 0, dividing equation (7.47) by
i k could also introduce a multiple of the delta function, and it seems difficult to dismiss
this term. A better proof uses the Convolution Theorem 7.13, as follows.

The first step is to note that we can write the integral of f(x) as a convolution with
the step function:

g(x) =

∫ x

−∞

f(ξ)dξ =

∫ ∞

−∞

σ(x− ξ) f(ξ)dξ,
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Thus, according to the convolution formula (7.55),

ĝ(k) =
√
2π σ̂(k) f̂(k).

Consulting our Table of Fourier transforms, we find

ĝ(k) =
√
2π

(√
π

2
δ(k)− i√

2π k

)
f̂(k) = − i

k
f̂(k)+πf̂(k) δ(k) = − i

k
f̂(k)+πf̂(0) δ(k),

which establishes the desired formula.

⋆ ⋆ Thanks to William Young for alerting me to this issue and for sharing the above
convolution-based proof.

⋆ ⋆ ⋆ Page 277 ⋆ ⋆ ⋆

In the displayed equation immediately above the Exercises, delete one factor of 1/k
in the first term after the equals sign:

f̂(k) =

(
− i

k

√
π

2
e− | k | +

π3/2

√
2

δ(k)

)
− π3/2

√
2

δ(k) = − i

√
π

2

e− | k |

k
.

⋆ ⋆ ⋆ Page 278 ⋆ ⋆ ⋆

Exercise 7.2.12: insert factor of
√
2π in formula f̂(k) =

√
2π

∞∑

n=−∞

cn δ(k − n).

⋆ ⋆ ⋆ Page 279 ⋆ ⋆ ⋆

Line before (7.51): change “. . . table of Fourier transform,” to “. . . table of Fourier
transforms,”

⋆ ⋆ ⋆ Page 287 ⋆ ⋆ ⋆

Line after (7.67): change “. . . is the variance, that is, the statistical deviation . . . ” to
“. . . which is the probability density’s variance, is the statistical deviation . . . ”

⋆ ⋆ ⋆ Page 308 ⋆ ⋆ ⋆

Line 3: delete “symmetryscaling”

⋆ ⋆ ⋆ Page 310 ⋆ ⋆ ⋆

Second displayed formula after equation (8.63): insert missing factor of 1
2 :

u(t, x) = c1 + c2 erf

(
x

2
√
t

)
.

⋆ ⋆ ⋆ Page 314 ⋆ ⋆ ⋆

Exercise 8.3.2: correct spelling of “interpretation”

⋆ ⋆ ⋆ Page 337 ⋆ ⋆ ⋆

Exercise 8.5.16: correct spelling of “speeds”
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⋆ ⋆ ⋆ Page 351 ⋆ ⋆ ⋆

Fifth displayed formula: change second equation v2 − 2v3 = b2 to v2 − 2v3 = 0

⋆ ⋆ ⋆ Page 353 ⋆ ⋆ ⋆

Exercise 9.1.21: change boundary conditions to u′(1) = u′(2) = 0.

Line -5: change “equal their own transpose,” to “equal to their own transpose,”

⋆ ⋆ ⋆ Page 363 ⋆ ⋆ ⋆

Insert parenthetical comment at end of page:

(The case q(x) ≡ 0 can also be positive definite, when subject to suitable boundary condi-
tions, but is treated differently, in accordance with the weighted inner product construction
appearing in Example 9.23.)

⋆ ⋆ ⋆ Page 371 ⋆ ⋆ ⋆

Line 4: change “. . . heat and s.” to “. . . heat and wave equations.”

Line 8: change “. . . the self-adjointn of . . . ” to “. . . the self-adjointness of . . . ”

⋆ ⋆ ⋆ Page 389 ⋆ ⋆ ⋆

Change (9.131–132) to the following:

u(t, x) =

∞∑

k=1

[
ckuk(t, x) + dkũk(t, x)

]

=

∞∑

k=1

[
ck cos(ωk t) + dk sin(ωk t)

]
vk(x) =

∞∑

k=1

rk cos(ωk t− δk) vk,

(9.131)

where (rk, δk) are the polar coordinates of (ck, dk):

ck = rk cos δk, dk = rk sin δk. (9.132)

⋆ ⋆ ⋆ Page 391 ⋆ ⋆ ⋆

Change (9.145) to the following:

0 = 〈 h− 2aωkvk , vk 〉 = 〈 h , vk 〉−2aωk ‖ vk ‖2, and hence a =
〈 h , vk 〉

2ωk ‖ vk ‖2
, (9.145)

⋆ ⋆ ⋆ Page 392 ⋆ ⋆ ⋆

Correct sign errors in (9.149):

v⋆(x) =
sin kπx

k2π2 c2 − ω2
, so that u⋆(t, x) =

cosω t sin kπx

k2π2 c2 − ω2
, (9.149)

and in the last displayed equation:
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z(0, x) = f(x) − sin kπx

k2π2 c2 − ω2
,

∂z

∂t
(0, x) = g(x),

⋆ ⋆ ⋆ Page 397 ⋆ ⋆ ⋆

Exercise 9.5.30: change “. . . you may wish return here . . . ” to
“. . . you may wish to return here . . . ”

⋆ ⋆ ⋆ Page 402 ⋆ ⋆ ⋆

Line 7: change “ndTwo . . . ” to “Two . . . ”

⋆ ⋆ ⋆ Page 411 ⋆ ⋆ ⋆

Line 9 in paragraph beginning “The first . . . ”: change “vertexvertices” to “vertices”.

⋆ ⋆ ⋆ Page 413 ⋆ ⋆ ⋆

Last equation in (10.32): change yk to yl:

ων
l (xi, yi) = αν

l + βν
l xi + γν

l yi = 0,

ων
l (xj, yj) = αν

l + βν
l xj + γν

l yj= 0,

ων
l (xl, yl) = αν

l + βν
l xl + γν

l yl = 1.

(10.32)

⋆ ⋆ ⋆ Page 416 ⋆ ⋆ ⋆

The first term in the integral in (10.38) is the Euclidean norm of a vector:

Q[w ] = Q

[
n∑

i=1

ci ϕi

]
=

∫ ∫

Ω

[∥∥∥∥∥

n∑

i=1

ci ∇ϕi

∥∥∥∥∥

2

− f(x, y)

(
n∑

i=1

ci ϕi

)]
dx dy

=
1

2

n∑

i,j=1

kij ci cj −
n∑

i=1

bi ci =
1
2
c
TK c− b

T
c.

(10.38)

⋆ ⋆ ⋆ Page 417 ⋆ ⋆ ⋆

Correct last line in (10.45):

kνij =
1

2

(yj − yl)(yl − yi) + (xl − xj)(xi − xl)

(∆ν)
2

|∆ν | = −
(xi − xl) · (xj − xl)

2 |∆ν |
, i 6= j,

kνii =
1

2

(yj − yl)
2 + (xl − xj)

2

(∆ν)
2

|∆ν | =
‖xj − xl ‖2
2 |∆ν |

(10.45)

=
(xi − xl) · (xj − xl) + (xl − xj) · (xi − xj)

2∆ν

= −kνij − kνil .
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⋆ ⋆ ⋆ Pages 418–9 ⋆ ⋆ ⋆

Change first sentence in Example 10.7 to

A metal plate has the shape of an oval running track, consisting of a square, with side
lengths 2m, and two semi-circular disks glued onto opposite sides, as sketched in Figure
10.9.

⋆ ⋆ ⋆ Page 426 ⋆ ⋆ ⋆

Exercise 10.3.16: change n = 2 in part (b) to n = 3 and change n = 3 in part (c) to
n = 4.

⋆ ⋆ ⋆ Page 430 ⋆ ⋆ ⋆

Line before (10.68): change “. . . atrictly positive . . . ” to “. . . strictly positive . . . ”

⋆ ⋆ ⋆ Page 434 ⋆ ⋆ ⋆

Exercise 10.4.3(c): change “. . . wave equation.” to “. . . transport equation.”

⋆ ⋆ ⋆ Page 448 ⋆ ⋆ ⋆

Figure 11.2: add in movie symbol
⊎

Line -3: correct spelling of “discontinuities”

⋆ ⋆ ⋆ Page 450 ⋆ ⋆ ⋆

Exercise 11.2.11: change “. . . circular ends at held . . . ” to
“. . . circular ends are held . . .”

⋆ ⋆ ⋆ Page 450 ⋆ ⋆ ⋆

Exercise 11.2.12: correct boundary conditions:

u(t, 0, y) = u(t, π, y) = 0 = u(t, x, 0), u(t, x, π) = f(x), 0 < x, y < π, t > 0.

⋆ ⋆ ⋆ Pages 464–5 ⋆ ⋆ ⋆

In equation (11.91) and the subsequent displayed formula, change all s, t, r to a, b, c:

a0 r (r − 1) + b0 r + c0 = 0, (11.91)

where, referring back to (11.71),

a0 = a(x0), b0 = b(x0), c0 = c(x0),
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⋆ ⋆ ⋆ Page 465 ⋆ ⋆ ⋆

Case (iii): change r2 = r1+k to r1 = r2+k; change “smaller” to “larger”, and change
xr2 to (x− x0)

r2 in equation (11.93):

(iii) Finally, if r1 = r2 + k, where k > 0 is a positive integer, then there is a nonzero
solution û(x) with a convergent Frobenius expansion corresponding to the larger
index r1. One can construct a second independent solution of the form

ũ(x) = c log(x−x0) û(x)+v(x), where v(x) = (x−x0)
r2+

∞∑

n=1

vn(x−x0)
n+r2 (11.93)

is a convergent Frobenius series, and c is a constant, which may be 0, in which case
the second solution ũ(x) is also of Frobenius form.

⋆ ⋆ ⋆ Page 466 ⋆ ⋆ ⋆

Correct formulas after equation (11.96) as follows:

u′′ +

(
1

x
+

x

2

)
u′ + u = v

[
û ′′ +

(
1

x
+

x

2

)
û ′ + û

]
+ v′

[
2 û ′ +

(
1

x
+

x

2

)
û

]
+ v′′ û

= e−x2/4

[
v′′ +

(
1

x
− x

2

)
v′
]
.

If u is to be a solution, v′ must satisfy a linear first-order ordinary differential equation:

v′′ +

(
1

x
− x

2

)
v′ = 0, and hence v′ =

c
x
ex

2/4, v = c

∫
ex

2/4

x
+ d,

where c, d are arbitrary constants. We conclude that the general solution to the original
differential equation is

ũ(x) = v(x) û(x) =

(
c

∫
ex

2/4

x
+ d

)
e−x2/4. (11.97)

⋆ ⋆ Thanks to Manuel Mañas for alerting me to this error.

⋆ ⋆ ⋆ Page 481 ⋆ ⋆ ⋆

First line of Section 11.5: change “As we learned in Section 4.1, . . . ” to
“As we learned in Section 8.1, . . . ”

⋆ ⋆ ⋆ Page 482 ⋆ ⋆ ⋆

Line after (11.133): Change “. . . both function (11.132) . . . ” to
“. . . both functions (11.132) . . . ”

⋆ ⋆ ⋆ Page 483 ⋆ ⋆ ⋆

In Theorem 11.13, first displayed formula: change u(t, x, y) to u(0, x, y):

ut = γ∆u, u(0, x, y) = f(x, y), (x, y) ∈ R
2,
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⋆ ⋆ ⋆ Page 485 ⋆ ⋆ ⋆

Exercise 11.5.9: replace β > 0 by β 6= 0

⋆ ⋆ ⋆ Page 489 ⋆ ⋆ ⋆

Add movie symbol
⊎

to Figure 11.10.

⋆ ⋆ ⋆ Page 499 ⋆ ⋆ ⋆

Example 11.15: correct equation 2 lines from the end: ζ0,1/ζ0,2 ≈ .43565

⋆ ⋆ ⋆ Page 500 ⋆ ⋆ ⋆

Exercise 11.6.41: switch indices on ωi,j :

(a) ω0,4, (b) ω2,4, (c) ω4,2, (d) ω3,3, (e) ω5,1.

⋆ ⋆ ⋆ Page 507 ⋆ ⋆ ⋆

Exercise 12.1.11(b): change

∫ ∫ ∫

Ω

|‖∇u ‖|2 dx dy dz to

∫ ∫ ∫

Ω

‖∇u ‖2 dx dy dz

⋆ ⋆ ⋆ Page 511 ⋆ ⋆ ⋆

After equation (12.29): add “with corresponding eigenvalue parameter µ = n(n+1).”

⋆ ⋆ ⋆ Page 513 ⋆ ⋆ ⋆

After equation (12.31): add
“The eigenvalue parameter for Pm

n (t) is also µ = n(n+ 1).”

⋆ ⋆ ⋆ Page 521 ⋆ ⋆ ⋆

A direct proof of Theorem 12.4 that does not rely on the solution formula (12.51) can
be constructed along the same lines of the proof of Theorem 4.8 given above. As noted
there, this is preferable for logical consistency in establishing the Maximum Principle of
Theorem 12.5 and the consequential Uniqueness Theorem.

Proof of Theorem 12.4 : Let us denote the average of u over the sphere of radius a by

g(a) =
1

4πa2

∫ ∫

Sa

u dS

=
1

4π

∫ π

−π

∫ π

0

u(x0 + a sinϕ cos θ, y0 + a sinϕ sin θ, z0 + a cosϕ) sinϕdϕdθ.

By continuity, as the radius a → 0, the average of u on the sphere Sa tends to its value at
the center: g(a) → u(x0). On the other hand, since u ∈ C2 and harmonic in Ba ⊂ Ω, the
derivative

g′(a) =
1

4π

∫ π

−π

∫ π

0

(
sinϕ cos θ

∂u

∂x
+ sinϕ sin θ

∂u

∂y
+ cosϕ

∂u

∂z

)
sinϕdϕdθ

=
1

4πa2

∫ ∫

Sa

∂u

∂n
dS =

1

4πa2

∫ ∫ ∫

Ba

∆u dx dy dz = 0,
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where n denotes the unit outwards normal to Sa = ∂Ba, and we used the divergence
identity in Exercise 12.1.11(a). We conclude that g(a) is constant, and hence g(a) = u(x0)
for any a > 0 provided Ba ⊂ Ω. Q.E.D.

⋆ ⋆ ⋆ Page 532 ⋆ ⋆ ⋆

Line -3: change comma to semicolon in v(x; ξ)

⋆ ⋆ ⋆ Page 533 ⋆ ⋆ ⋆

Theorem 12.11: change “. . . the homogeneous Dirichlet boundary value problem” to
“. . . the Dirichlet boundary value problem” to avoid possible confusion. (The boundary
conditions are homogeneous, but the Poisson equation is not.)

⋆ ⋆ ⋆ Page 541 ⋆ ⋆ ⋆

The entries in the fourth column, corresponding to m = 3 of the table of spherical
Bessel roots is missing. The corrected table is below. Thanks to Ted Kroon for pointing
this out.

Spherical Bessel Roots σm,n

n

∖
m 0 1 2 3 4 5 6 7 8

1 3.1416 4.4934 5.7635 6.9879 8.1826 9.3558 10.5128 11.6570 12.7908 . . .

2 6.2832 7.7253 9.0950 10.4171 11.7049 12.9665
...

...
...

3 9.4248 10.9041 12.3229
...

...
...

4 12.5664
...

...

...
...

⋆ ⋆ ⋆ Page 548 ⋆ ⋆ ⋆

Equation (12.131): add t dependence to u0,0,n and û0,0,n, and correct denominators
in final expressions:

u0,0,n(t, r, ϕ, θ) = cos(c nπ t) S0(nπr) =
cos c nπ t sinnπr

nπ r
,

û0,0,n(t, r, ϕ, θ) = sin(c nπ t) S0(nπr) =
sin c nπ t sinnπr

nπ r
,

n = 1, 2, 3, . . . . (12.131)
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⋆ ⋆ ⋆ Page 553 ⋆ ⋆ ⋆

In equation (12.145) and the displayed equation immediately after, the limit should
be as t → 0:

lim
t→ 0

Mct [ f ] = M0 [ f ] = f(0). (12.145)

lim
t→ 0

〈 u(t, ·) , f 〉 = 〈 u(0, ·) , f 〉 = 0 for all functions f ,

⋆ ⋆ ⋆ Page 555 ⋆ ⋆ ⋆

Replace the period in equation (12.151) by a comma, and replace the following sen-
tence by

where Mx

ct [ g ] denotes the average of the initial velocity function g over the sphere S x

ct =

{‖ ξ − x ‖ = c t} of radius c t centered at the point x. Thus, the value of our solution at
position x and time t > 0 only depends upon the initial data a distance ct away from the
point x.

⋆ ⋆ ⋆ Page 564 ⋆ ⋆ ⋆

Section 12.7, second line: change “. . . owing to it relatively tiny size,” to
“. . . owing to its relatively tiny size,”

⋆ ⋆ ⋆ Page 579 ⋆ ⋆ ⋆

At the end of the statement of Theorem B.15, add “; for the triangle equality, the
scalar multiples must be nonnegative.”

⋆ ⋆ ⋆ Page 584 ⋆ ⋆ ⋆

In equation (B.38) and the line before: change v⋆ to v
⋆ (4 times)

⋆ ⋆ ⋆ Page 585 ⋆ ⋆ ⋆

lines 2, 4, 5: change v⋆ to v
⋆ (6 times)

⋆ ⋆ ⋆ Page 599 ⋆ ⋆ ⋆

Line 12: change N to N (the symbol for natural numbers)
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