Introduction to Partial Differential Equations

by Peter J. Olver

Corrections to Second Printing (2016)

Last updated: July 4, 2022
$\star \star \star$ Page $8 \star \star \star$
Exercise 1.10(a): change $4 t^{2}-x^{2}$ to $4 t^{2}+x^{2}$.
$\star \star \star$ Page 31 ***
Exercise 2.2.31(b): insert $=0$ in equation: $u_{t}+y u_{x}-x u_{y}=0$.
*** Page 57 ***
In the last two displayed formulas, the first term on the right hand side of the equals sign is missing a minus sign:

$$
\frac{\partial v}{\partial \xi}(\xi, \eta)=-\frac{1}{2 c} \frac{\partial u}{\partial t}\left(\frac{\eta-\xi}{2 c}, \frac{\eta+\xi}{2}\right)+\frac{1}{2} \frac{\partial u}{\partial x}\left(\frac{\eta-\xi}{2 c}, \frac{\eta+\xi}{2}\right)
$$

and so, in particular,

$$
\frac{\partial v}{\partial \xi}(\xi, \xi)=-\frac{1}{2 c} \frac{\partial u}{\partial t}(0, \xi)+\frac{1}{2} \frac{\partial u}{\partial x}(0, \xi)=0
$$

$\star \star \star$ Page 82 **
Exercise 3.2.14: insert after first sentence:
(See (3.81) for the definition of the function $\operatorname{sign} x$.)
*** Page 105 **
Line -4: change "second derivative" to "first derivative"
$\star \star \star$ Page 108 **
Line 2 before (3.106): remove square root from "... equal to $\frac{1}{2 \pi} \int_{a}^{b}|\varphi(x)|^{2} d x$."
$\star \star \star$ Page $131 \star \star \star$
In (4.37), change final + to - :

$$
\begin{equation*}
u(t, x) \approx \frac{1}{2} a_{0}+e^{-t}\left(a_{1} \cos x+b_{1} \sin x\right)=\frac{1}{2} a_{0}+r_{1} e^{-t} \cos \left(x-\delta_{1}\right) \tag{4.37}
\end{equation*}
$$

$\star \star \star$ Page 152 * $\star \star$
Line -6: change "... appear the context of boundary value problems." to "... appear in the context of boundary value problems."
$\star \star \star$ Page 153 **
Line 5 after (4.86): change "heat flux out of a plate" to "heat flux into a plate"
$\star \star \star$ Page 163 **
Last line of table: change $x^{4}-4 x^{2} y^{2}+y^{4}$ to $x^{4}-6 x^{2} y^{2}+y^{4}$
$\star \star \star$ Page 170 * $\star \star$
Exercise 4.3.25(b): change $x^{2}+y^{2}=1 ;$ to $x^{2}+y^{2}=2 ;$
$\star \star \star$ Page 175 **
Exercise 4.4.12(a): switch t and x in the function: $u_{n}(t, x)=\frac{\cosh n \pi t \sin n \pi x}{n}$.
*** Page 187 ***
Line 2 before (5.14): change
"... heat equation (5.14) ..." to "... heat equation (5.7) ...".
$\star \star \star$ Page 188 **
Example 5.4: change rest of sentence after displayed formula to
"... used earlier in Example 4.1, along with homogeneous Dirichlet boundary conditions, so $u(t, 0)=u(t, 1)=0$."
$\star \star \star$ Page 190
Equation (5.28): change $\mathrm{O}\left((\Delta t)^{2}\right)$ to $\mathrm{O}(\Delta t)$:

$$
\begin{equation*}
\frac{\partial u}{\partial t}\left(t_{j}, x_{m}\right) \approx \frac{u\left(t_{j}, x_{m}\right)-u\left(t_{j-1}, x_{m}\right)}{\Delta t}+\mathrm{O}(\Delta t) \tag{5.28}
\end{equation*}
$$

*** Page 195 ***
Change sentence after equation (5.40): "We use step sizes $\Delta t=\Delta x=.005$, set $\ell=1$, and try four different values of the wave speed."
$\star \star \star$ Page $198 \star \star \star$
Equation (5.45): change denominator to $2 \Delta x$:

$$
\begin{equation*}
\frac{\partial u}{\partial x}\left(t_{j}, x_{m}\right) \approx \frac{u_{j, m+1}-u_{j, m-1}}{2 \Delta x}+\mathrm{O}\left((\Delta x)^{2}\right) \tag{5.45}
\end{equation*}
$$

$\star \star \star$ Page 200 ***
Line 4 after (5.50): reverse the inequality: $\Delta x / \Delta t \geq\left|c_{j, m}\right|$
$\star \star \star$ Page 210 **
Correct last displayed equation by switching indices on the $u_{i, j}$:

$$
\begin{array}{lll}
u_{1,1}=.1831, & u_{2,1}=.2589, & u_{3,1}=.1831, \\
u_{1,2}=.3643, & u_{2,2}=.5152, & u_{3,2}=.3643, \\
u_{1,3}=.5409, & u_{2,3}=.7649, & u_{3,3}=.5409,
\end{array}
$$

$\star \star \star$ Page 211 * $\star \star$
Equation (5.78): the sub- and super-diagonal matrix elements should be -1 , not $-\rho^{2}$:

$$
B_{\rho}=\left(\begin{array}{cccccccc}
2\left(1+\rho^{2}\right) & -1 & & & & & & \tag{5.78}\\
-1 & 2\left(1+\rho^{2}\right) & -1 & & & & & \\
& -1 & 2\left(1+\rho^{2}\right) & \begin{array}{c}
-1 \\
-1
\end{array} & 2\left(1+\rho^{2}\right) & & -1 & \\
& & & \ddots & & \ddots & & \ddots \\
& & & & -1 & 2\left(1+\rho^{2}\right) & \\
& & & & & & -1 & \\
& & & & & & 2\left(1+\rho^{2}\right)
\end{array}\right)
$$

$\star \star \star$ Page 212 **
Equation (5.82): replace $\mathbf{w}^{(n-1)}$ by $U_{n-1} \mathbf{w}^{(n-1)}$ and U_{j} by U_{k} :

$$
\begin{array}{lll}
\mathbf{z}^{(1)}=\widehat{\mathbf{f}}^{(1)}, & \mathbf{z}^{(j+1)}=\widehat{\mathbf{f}}^{(j+1)}-L_{j} \mathbf{z}^{(j)}, & j=1,2, \ldots, n-2, \\
U_{n-1} \mathbf{w}^{(n-1)}=\mathbf{z}^{(n-1)}, & U_{k} \mathbf{w}^{(k)}=\mathbf{z}^{(k)}-\rho^{2} \mathbf{w}^{(k+1)}, & k=n-2, n-3, \ldots, 1 \tag{5.82}
\end{array}
$$

Equation (5.83): replace L_{j} by L_{k} :

$$
\begin{equation*}
\mathbf{w}^{(k)}=L_{k}\left(\mathbf{w}^{(k+1)}-\rho^{-2} \mathbf{z}^{(k)}\right), \quad k=n-2, n-3, \ldots, 1 . \tag{5.83}
\end{equation*}
$$

$\star \star \star$ Page 229 * $\star \star$
Equation (6.40): delete initial fraction:

$$
\begin{equation*}
\int_{-\pi}^{\pi} s_{n}(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) x}{\sin \frac{1}{2} x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{k=-n}^{n} e^{\mathrm{i} k x} d x=1 \tag{6.40}
\end{equation*}
$$

$\star \star \star$ Page $238 \star \star \star$
In the first integral in the displayed equation after (6.65) change $\sinh \omega y$ to $\sinh \omega \xi$:

$$
u(x)=\int_{0}^{x} \frac{\sinh \omega(1-x) \sinh \omega \xi}{\omega \sinh \omega} d \xi+\int_{x}^{1} \frac{\sinh \omega x \sinh \omega(1-\xi)}{\omega \sinh \omega} d \xi
$$

$\star \star \star$ Page 250 ***
Displayed formula after Theorem 6.17: change \mathbb{R}^{2} to Ω :

$$
u(x, y)=-\iint_{\Omega} G_{0}(x, y ; \xi, \eta) \Delta u(\xi, \eta) d \xi d \eta
$$

Equation (6.108): change \mathbb{R}^{2} to Ω twice:

$$
\begin{equation*}
\iint_{\Omega} \delta(x-\xi) \delta(y-\eta) u(\xi, \eta) d \xi d \eta=\iint_{\Omega}-\Delta G_{0}(x, y ; \xi, \eta) u(\xi, \eta) d \xi d \eta \tag{6.108}
\end{equation*}
$$

*** Page 258 ***
Equation (6.135): correct left hand side:

$$
\begin{equation*}
\frac{\partial G}{\partial \rho}(r, \theta ; 1, \phi)=-\frac{1}{2 \pi} \frac{1-r^{2}}{1+r^{2}-2 r \cos (\theta-\phi)} \tag{6.135}
\end{equation*}
$$

$\star \star \star$ Pages 276-7 $\star \star \star$
The proof of Proposition 7.10 is flawed. Since $k \delta(k) \equiv 0$, dividing equation (7.47) by i k could also introduce a multiple of the delta function, and it seems difficult to dismiss this term. A better proof uses the Convolution Theorem 7.13, as follows.

The first step is to note that we can write the integral of $f(x)$ as a convolution with the step function:

$$
g(x)=\int_{-\infty}^{x} f(\xi) d \xi=\int_{-\infty}^{\infty} \sigma(x-\xi) f(\xi) d \xi
$$

Thus, according to the convolution formula (7.55),

$$
\widehat{g}(k)=\sqrt{2 \pi} \widehat{\sigma}(k) \widehat{f}(k)
$$

Consulting our Table of Fourier transforms, we find
$\widehat{g}(k)=\sqrt{2 \pi}\left(\sqrt{\frac{\pi}{2}} \delta(k)-\frac{\mathrm{i}}{\sqrt{2 \pi} k}\right) \widehat{f}(k)=-\frac{\mathrm{i}}{k} \widehat{f}(k)+\pi \widehat{f}(k) \delta(k)=-\frac{\mathrm{i}}{k} \widehat{f}(k)+\pi \widehat{f}(0) \delta(k)$,
which establishes the desired formula.
$\star \star$ Thanks to William Young for alerting me to this issue and for sharing the above convolution-based proof.

* ** Page 277 * $\star \star$

In the displayed equation immediately above the Exercises, delete one factor of $1 / k$ in the first term after the equals sign:

$$
\widehat{f}(k)=\left(-\frac{\mathrm{i}}{k} \sqrt{\frac{\pi}{2}} e^{-|k|}+\frac{\pi^{3 / 2}}{\sqrt{2}} \delta(k)\right)-\frac{\pi^{3 / 2}}{\sqrt{2}} \delta(k)=-\mathrm{i} \sqrt{\frac{\pi}{2}} \frac{e^{-|k|}}{k} .
$$

$\star \star \star$ Page 278 **
Exercise 7.2.12. insert factor of $\sqrt{2 \pi}$ in formula $\widehat{f}(k)=\sqrt{2 \pi} \sum_{n=-\infty}^{\infty} c_{n} \delta(k-n)$. $\star \star \star$ Page 310 ***

Second displayed formula after equation (8.63): insert missing factor of $\frac{1}{2}$:

$$
u(t, x)=c_{1}+c_{2} \operatorname{erf}\left(\frac{x}{2 \sqrt{t}}\right)
$$

$\star \star \star$ Page 363 **
Insert parenthetical comment at end of page:
(The case $q(x) \equiv 0$ can also be positive definite, when subject to suitable boundary conditions, but is treated differently, in accordance with the weighted inner product construction appearing in Example 9.23.)
$\star \star \star$ Page 389 * $\star \star$
Change (9.131-132) to the following:

$$
\begin{align*}
u(t, x) & =\sum_{k=1}^{\infty}\left[c_{k} u_{k}(t, x)+d_{k} \widetilde{u}_{k}(t, x)\right] \tag{9.131}\\
& =\sum_{k=1}^{\infty}\left[c_{k} \cos \left(\omega_{k} t\right)+d_{k} \sin \left(\omega_{k} t\right)\right] v_{k}(x)=\sum_{k=1}^{\infty} r_{k} \cos \left(\omega_{k} t-\delta_{k}\right) v_{k}
\end{align*}
$$

where $\left(r_{k}, \delta_{k}\right)$ are the polar coordinates of $\left(c_{k}, d_{k}\right)$:

$$
\begin{equation*}
c_{k}=r_{k} \cos \delta_{k}, \quad d_{k}=r_{k} \sin \delta_{k} \tag{9.132}
\end{equation*}
$$

$\star \star \star$ Page 391 ***
Change (9.145) to the following:
$0=\left\langle h-2 a \omega_{k} v_{k}, v_{k}\right\rangle=\left\langle h, v_{k}\right\rangle-2 a \omega_{k}\left\|v_{k}\right\|^{2}, \quad$ and hence $\quad a=\frac{\left\langle h, v_{k}\right\rangle}{2 \omega_{k}\left\|v_{k}\right\|^{2}}$,
$\star \star \star$ Page 392 ***
Correct sign errors in (9.149):

$$
\begin{equation*}
v_{\star}(x)=\frac{\sin k \pi x}{k^{2} \pi^{2} c^{2}-\omega^{2}}, \quad \text { so that } \quad u_{\star}(t, x)=\frac{\cos \omega t \sin k \pi x}{k^{2} \pi^{2} c^{2}-\omega^{2}} \tag{9.149}
\end{equation*}
$$

and in the last displayed equation:

$$
z(0, x)=f(x)-\frac{\sin k \pi x}{k^{2} \pi^{2} c^{2}-\omega^{2}}, \quad \frac{\partial z}{\partial t}(0, x)=g(x)
$$

$\star \star \star$ Page $411 \star \star \star$
Line 9 in paragraph beginning "The first ...": change "vertexvertices" to "vertices".
$\star \star \star$ Page 413 ***
Last equation in (10.32): change y_{k} to y_{l} :

$$
\begin{align*}
\omega_{l}^{\nu}\left(x_{i}, y_{i}\right) & =\alpha_{l}^{\nu}+\beta_{l}^{\nu} x_{i}+\gamma_{l}^{\nu} y_{i}=0 \\
\omega_{l}^{\nu}\left(x_{j}, y_{j}\right) & =\alpha_{l}^{\nu}+\beta_{l}^{\nu} x_{j}+\gamma_{l}^{\nu} y_{j}=0 \tag{10.32}\\
\omega_{l}^{\nu}\left(x_{l}, y_{l}\right) & =\alpha_{l}^{\nu}+\beta_{l}^{\nu} x_{l}+\gamma_{l}^{\nu} y_{l}=1
\end{align*}
$$

$\star \star \star$ Page 416
The first term in the integral in (10.38) is the Euclidean norm of a vector:

$$
\begin{align*}
Q[w]=Q\left[\sum_{i=1}^{n} c_{i} \varphi_{i}\right] & =\iint_{\Omega}\left[\left\|\sum_{i=1}^{n} c_{i} \nabla \varphi_{i}\right\|^{2}-f(x, y)\left(\sum_{i=1}^{n} c_{i} \varphi_{i}\right)\right] d x d y \tag{10.38}\\
& =\frac{1}{2} \sum_{i, j=1}^{n} k_{i j} c_{i} c_{j}-\sum_{i=1}^{n} b_{i} c_{i}=\frac{1}{2} \mathbf{c}^{T} K \mathbf{c}-\mathbf{b}^{T} \mathbf{c}
\end{align*}
$$

$\star \star \star$ Page 417 ***
Correct last line in (10.45):

$$
\begin{align*}
k_{i j}^{\nu} & =\frac{1}{2} \frac{\left(y_{j}-y_{l}\right)\left(y_{l}-y_{i}\right)+\left(x_{l}-x_{j}\right)\left(x_{i}-x_{l}\right)}{\left(\Delta_{\nu}\right)^{2}}\left|\Delta_{\nu}\right|=-\frac{\left(\mathbf{x}_{i}-\mathbf{x}_{l}\right) \cdot\left(\mathbf{x}_{j}-\mathbf{x}_{l}\right)}{2\left|\Delta_{\nu}\right|}, i \neq j \\
k_{i i}^{\nu} & =\frac{1}{2} \frac{\left(y_{j}-y_{l}\right)^{2}+\left(x_{l}-x_{j}\right)^{2}}{\left(\Delta_{\nu}\right)^{2}}\left|\Delta_{\nu}\right|=\frac{\left\|\mathbf{x}_{j}-\mathbf{x}_{l}\right\|^{2}}{2\left|\Delta_{\nu}\right|} \tag{10.45}\\
& =\frac{\left(\mathbf{x}_{i}-\mathbf{x}_{l}\right) \cdot\left(\mathbf{x}_{j}-\mathbf{x}_{l}\right)+\left(\mathbf{x}_{l}-\mathbf{x}_{j}\right) \cdot\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)}{2 \Delta_{\nu}}=-k_{i j}^{\nu}-k_{i l}^{\nu}
\end{align*}
$$

$\star \star \star$ Pages 418-9 $\quad \star \star \star$
Change first sentence in Example 10.7 to
A metal plate has the shape of an oval running track, consisting of a square, with side lengths 2 m , and two semi-circular disks glued onto opposite sides, as sketched in Figure 10.9 .

$\star \star \star$ Page 426 ***

Exercise 10.3.16: change $n=2$ in part (b) to $n=3$, and change $n=3$ in part (c) to $n=4$.
*** Page 434 ***
Exercise 10.4.3(c): change ". . . wave equation." to ". . . transport equation."
*** Page 450 ***
Exercise 11.2.12: correct boundary conditions:

$$
u(t, 0, y)=u(t, \pi, y)=0=u(t, x, 0), \quad u(t, x, \pi)=f(x), \quad 0<x, y<\pi, \quad t>0
$$

*** Pages 464-5 ***
In equation (11.91) and the subsequent displayed formula, change all s, t, r to a, b, c :

$$
\begin{equation*}
a_{0} r(r-1)+b_{0} r+c_{0}=0, \tag{11.91}
\end{equation*}
$$

where, referring back to (11.71),

$$
a_{0}=a\left(x_{0}\right), \quad b_{0}=b\left(x_{0}\right), \quad c_{0}=c\left(x_{0}\right),
$$

*** Page 465 ***

Case (iii): change $r_{2}=r_{1}+k$ to $r_{1}=r_{2}+k$; change "smaller" to "larger", and change $x^{r_{2}}$ to $\left(x-x_{0}\right)^{r_{2}}$ in equation (11.93):
(iii) Finally, if $r_{1}=r_{2}+k$, where $k>0$ is a positive integer, then there is a nonzero solution $\widehat{u}(x)$ with a convergent Frobenius expansion corresponding to the larger index r_{1}. One can construct a second independent solution of the form

$$
\begin{equation*}
\widetilde{u}(x)=c \log \left(x-x_{0}\right) \widehat{u}(x)+v(x), \quad \text { where } \quad v(x)=\left(x-x_{0}\right)^{r_{2}}+\sum_{n=1}^{\infty} v_{n}\left(x-x_{0}\right)^{n+r_{2}} \tag{11.93}
\end{equation*}
$$

is a convergent Frobenius series, and c is a constant, which may be 0 , in which case the second solution $\widetilde{u}(x)$ is also of Frobenius form.

*** Page 466

Correct formulas after equation (11.96) as follows:

$$
\begin{aligned}
u^{\prime \prime}+\left(\frac{1}{x}+\frac{x}{2}\right) u^{\prime}+u & =v\left[\widehat{u}^{\prime \prime}+\left(\frac{1}{x}+\frac{x}{2}\right) \widehat{u}^{\prime}+\widehat{u}\right]+v^{\prime}\left[2 \widehat{u}^{\prime}+\left(\frac{1}{x}+\frac{x}{2}\right) \widehat{u}\right]+v^{\prime \prime} \widehat{u} \\
& =e^{-x^{2} / 4}\left[v^{\prime \prime}+\left(\frac{1}{x}-\frac{x}{2}\right) v^{\prime}\right] .
\end{aligned}
$$

If u is to be a solution, v^{\prime} must satisfy a linear first-order ordinary differential equation:

$$
v^{\prime \prime}+\left(\frac{1}{x}-\frac{x}{2}\right) v^{\prime}=0, \quad \text { and hence } \quad v^{\prime}=\frac{c}{x} e^{x^{2} / 4}, \quad v=c \int \frac{e^{x^{2} / 4}}{x}+d,
$$

where c, d are arbitrary constants. We conclude that the general solution to the original differential equation is

$$
\begin{equation*}
\widetilde{u}(x)=v(x) \widehat{u}(x)=\left(c \int \frac{e^{x^{2} / 4}}{x}+d\right) e^{-x^{2} / 4} \tag{11.97}
\end{equation*}
$$

$\star \star$ Thanks to Manuel Mañas for alerting me to this error.
$\star \star \star$ Page $471 \star \star \star$
In Figure 11.5, the graphs of $Y_{1}(x), Y_{2}(x), Y_{3}(x)$ are poorly reproduced:

$$
Y_{0}(x)
$$

$Y_{2}(x)$

$Y_{1}(x)$

Figure 11.5. Bessel functions of the second kind.

$\star \star \star$ Page 489 **

Add movie symbol \biguplus to Figure 11.10.

*** Page 499 **

Example 11.15: correct equation 2 lines from the end: $\zeta_{0,1} / \zeta_{0,2} \approx .43565$
*** Page 500 **
Exercise 11.6.41: switch indices on $\omega_{i, j}$:
(a) $\omega_{0,4}$,
(b) $\omega_{2,4}$,
(c) $\omega_{4,2}$,
(d) $\omega_{3,3}$,
(e) $\omega_{5,1}$.
*** Page 532 ***
Line -3 : change comma to semicolon in $v(\mathbf{x} ; \boldsymbol{\xi})$
$\star \star \star$ Page $548 \star \star \star$
Equation (12.131): add t dependence to $u_{0,0, n}$ and $\widehat{u}_{0,0, n}$, and correct denominators in final expressions:

$$
\begin{aligned}
& u_{0,0, n}(t, r, \varphi, \theta)=\cos (c n \pi t) S_{0}(n \pi r)=\frac{\cos c n \pi t \sin n \pi r}{n \pi r}, \quad n=1,2,3, \ldots \\
& \widehat{u}_{0,0, n}(t, r, \varphi, \theta)=\sin (c n \pi t) S_{0}(n \pi r)=\frac{\sin c n \pi t \sin n \pi r}{n \pi r}
\end{aligned}
$$

*** Page 553 大夫
In equation (12.145) and the displayed equation immediately after, the limit should be as $t \rightarrow 0$:

$$
\begin{gather*}
\lim _{t \rightarrow 0} \mathrm{M}_{c t}[f]=\mathrm{M}_{0}[f]=f(\mathbf{0}) \tag{12.145}\\
\lim _{t \rightarrow 0}\langle u(t, \cdot), f\rangle=\langle u(0, \cdot), f\rangle=0 \quad \text { for all functions } \quad f,
\end{gather*}
$$

$\star \star \star$ Page 555 **
Replace the period in equation (12.151) by a comma, and replace the following sentence by
where $\mathrm{M}_{c t}^{\mathbf{x}}[g]$ denotes the average of the initial velocity function g over the sphere $S_{c t}^{\mathbf{x}}=$ $\{\|\boldsymbol{\xi}-\mathbf{x}\|=c t\}$ of radius $c t$ centered at the point \mathbf{x}. Thus, the value of our solution at position \mathbf{x} and time $t>0$ only depends upon the initial data a distance $c t$ away from the point \mathbf{x}.
$\star \star \star$ Page 579 ***
At the end of the statement of Theorem B.15, add "; for the triangle equality, the scalar multiples must be nonnegative."

Acknowledgements: Many thanks to Lawrence Baker, Henry Boateng, Dario Valdebenito, Joseph Feneuil, Adam Kay, Manuel Mañas, Dani Rozenbroek, Mikhail Safonov, Radu Slobodeanu, and William Young for their comments and corrections.

