Homework Assignment \# 2

Exercises: Strauss pp 36-37 1, 7 (replacing odd with even), 9, p 40, 2, 3, 5, p 641

1. (a) Explain how to solve the Neumann initial-boundary value problem

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad \frac{\partial u}{\partial x}(t, 0)=0=\frac{\partial u}{\partial x}(t, 1), \quad u(0, x)=f(x), \quad \frac{\partial u}{\partial t}(0, x)=g(x)
$$

on the interval $0 \leq x \leq 1$. (b) Sketch the graph of the solution at a few representative times when $f(x)=\left\{\begin{array}{ll}x-\frac{1}{4}, & \frac{1}{4} \leq x \leq \frac{1}{2}, \\ \frac{3}{4}-x, & \frac{1}{2} \leq x \leq \frac{3}{4} \\ 0, & \text { otherwise, }\end{array}\right.$ and $g(x)=0$, and discuss what is happening. Is the solution periodic in time? If so what is the period? (c) Do the same when $f(x)=0$ and $g(x)=x$.

Due: Thursday, September 30

Text: Walter A. Strauss, Partial Differential Equations: an Introduction, John Wiley \& Sons, New York, 1992.

