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Abstract. The structure group and the involutive differential system that character-
ize the pseudo-group of contact transformations on a jet space are determined.

1. Introduction.

The canonical form on the coframe bundle over a smooth manifold originally arose
as the natural generalization of the canonical form on the cotangent bundle, which plays
an essential role in Hamiltonian mechanics, [19; §III.7]. The coframe bundle F∗M → M
forms a principal GL(m) bundle over the m-dimensional manifold M . The canonical
form on the coframe bundle serves to characterize the diffeomorphism pseudo-group of the
manifold, or, more correctly, its lift to the coframe bundle. Indeed, the invariance of the
canonical form forms an involutive differential system, whose general solution, guaranteed
by the Cartan–Kähler Theorem, is the lifted diffeomorphism pseudo-group. Kobayashi,
[11], introduces a vector-valued canonical form on the higher order frame bundles over
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the manifold. He demonstrates that the components of the canonical form constitute an
involutive differential system that characterizes the higher order lifts of the diffeomorphism
group.

The geometrical study of differential equations relies on the jet space first introduced
by Ehresmann, [6]. In the jet bundle framework, the pseudo-group of contact transforma-
tions, [13, 16], assumes the role of the diffeomorphism pseudo-group. Contact transforma-
tions are characterized by the fact that they preserve the contact ideal generated by the
contact forms on the jet bundle. Thus, the characterization of the contact pseudo-group by
an involutive differential system should rely on a “canonical contact form” constructed on
a suitable principal bundle lying over the jet bundle. This canonical contact form should
play the same basic role in the study of the geometry of jet bundles and differential equa-
tions that the canonical form over the coframe bundle plays in the ordinary differential
geometry of manifolds and submanifolds. In [21], Yamaguchi uses the theory of exterior
differential systems to conduct a detailed investigation of the contact geometry of higher
order jet space, but does not provide a general construction of the required principal bun-
dle or canonical form. This is more complicated than the frame bundle construction, since
the definition of a contact transformation via the contact ideal does not directly yield an
involutive differential system; see [4, 16]. One must apply the Cartan procedure of ab-
sorption and normalization of torsion in order to reduce the original structure group to
the appropriate involutive version, and this in turn will yield the “minimal, involutive”
version of the canonical contact form.

A crucial theorem, due to Bäcklund, [2], demonstrates that every contact transfor-
mation is either a prolonged point transformation, or, in the case of a single dependent
variable, a prolonged first order contact transformation; see also [16, 20]. This allows us
to restrict the structure group associated with the contact pseudo-group to one of block
upper triangular form, but this still is not enough to produce an involutive differential
system, and further normalizations must be imposed. In this paper, we find the complete
system of normalizations, thereby constructing an involutive differential system on a cer-
tain principal bundle over the jet bundle that characterizes the contact pseudo-group. The
structure equations are explicitly found, and the Cartan characters computed.

A significant source of applications of this construction can be found in a variety of
equivalence problems defined on the jet bundle, including differential equations, variational
problems, and others. In such situations, one needs to incorporate the contact structure
into the problem via the contact forms. The canonical contact form will provide the
minimal lift that can be imposed on the contact form component of the lifted coframe, and
thus help avoid normalizations that are universally valid for all contact transformations.
typical examples include equivalence problems for differential equations, for differential
operators, and for variational problems. See [10, 16] for typical problems and applications.
Additional applications to the method of moving frames developed by Mark Fels and the
author, [8, 9, 17], will appear elsewhere.

2. Contact Forms on Jet Bundles.

We will work with the smooth category of manifolds and maps throughout this paper.
Let E → X be a smooth vector bundle over a p-dimensional base manifold X, with
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q-dimensional fibers. We use x = (x1, . . . , xp) to denote local coordinates on X, and
u = (u1, . . . , uq) to denote the fiber coordinates, so that sections of E are prescribed by
smooth functions u = f(x). Let Jn = JnE denote the nth jet bundle of E, with associated
local coordinates z(n) = (x, u(n)) = ( . . . xi . . . uα

J . . . ), where the derivative coordinates
uα

J are indexed by unordered multi-indices J = (j1, . . . , jk), with 1 ≤ jκ ≤ p, of orders
0 ≤ k = #J ≤ n. Given a (local) section f :X → E, we let jnf :X → Jn denote its n-jet,
which forms a section of the nth order jet bundle.

Definition 2.1. A differential form θ on the jet space Jn is called a contact form if
it is annihilated by all jets: (jnf)∗ θ = 0.

The space of contact forms on Jn forms differential ideal I(n), called the contact ideal ,
over Jn.

Theorem 2.2. In local coordinates, every contact one-form on Jn can be written as

a linear combination of the basic contact forms

θα
J = duα

J −

p∑

i=1

uα
J,i dx

i, α = 1, . . . , q, 0 ≤ #J < n. (2.1)

These one-forms constitute a basis for the contact ideal I (n).

For instance, in the case of one independent and one dependent variable, the basic
contact forms are

θ0 = du− ux dx, θ1 = dux − uxx dx, θ2 = duxx − uxxx dx, . . . (2.2)

In (2.1), we call #J the order of the contact form θα
J . The reader should note that

the contact forms on Jn have orders at most n− 1.

Lemma 2.3. A section F :X → Jn locally coincides with the n-jet of a section

f :X → E, meaning F = jnf on an open subset of X, if and only if F annihilates all the

contact forms on Jn:

F∗θα
J = 0, α = 1, . . . , q, 0 ≤ #J < n. (2.3)

Definition 2.4. A local diffeomorphism Ψ: Jn → Jn defines a contact transformation

of order n if it preserves the contact ideal, meaning that if θ is any contact form on Jn,
then Ψ∗θ is also a contact form.

Definition 2.5. The (n+k)th order prolongation of the contact transformation Ψ(n)

is the unique contact transformation Ψ(n+k): Jn+k → Jn+k satisfying πn+k
n

◦Ψ(n+k) =
Ψ(n) ◦πn+k

n , where πn+k
n : Jn+k → Jn is the usual projection.

In local coordinates, a local diffeomorphism Ψ defines a contact transformation if and
only if

Ψ∗θα
J =

∑

β,K

Aα,K
J,β θβ

K , (2.4)

for suitable coefficient functions Aα,K
J,β : Jn → R. There are nontrivial constraints on these

coefficients resulting from Bäcklund’s Theorem, [2].
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Theorem 2.6. If the number of dependent variables is greater than one, q > 1, then

every contact transformation is the prolongation of a point transformation ψ:E → E. If

q = 1, then every nth order contact transformation is the prolongation of a first order

contact transformation ψ: J1 → J1.

Remark : Interestingly, if one restricts to a submanifold of the jet space defined by
system of differential equations, additional “internal” higher order contact transformations
can exist; see [1] for a Bäcklund-style classification of these transformations.

3. The Prolonged General Linear Group.

There are two fundamental transformation groups that lie at the foundation of the
geometric characterization of contact transformations. The first is the standard prolon-
gation of the general linear group, [12; p. 139], [14]. Let GL(p) denote the general linear
group on R

p consisting of all real, invertible, p×p matrices. Let D0(p) denote the space of
all diffeomorphisms ϕ: Rp → R

p preserving the origin, so ϕ(0) = 0. We let jnϕ(0) denote
the n-jet (or nth order Taylor expansion) of the diffeomorphism at the origin.

Definition 3.1. The nth prolongation of the general linear group GL(p) is the group

GL(n)(p) = { jnϕ(0) | ϕ ∈ D0(p) } (3.1)

The group multiplication is given by composition of diffeomorphisms, so that if S = jnϕ(0),
T = jnψ(0), then S · T = jn(ϕ ◦ψ)(0).

Note that the one-jet of a diffeomorphism ϕ at 0 is uniquely determined by its Jacobian
matrix Dϕ(0), which can be viewed as an invertible matrix in GL(p), and, in this way, we

identify GL(p) = GL(1)(p).

The most convenient method of representing the elements of GL(n)(p) is via formal
Taylor polynomials. We introduce coordinates t = (t1, . . . , tp) in a neighborhood of 0 ∈M .

We then identify a group element S ∈ GL(n)(p) with the vector-valued Taylor polynomial†

S(t) =
(
S1(t), . . . , Sp(t)

)T
of any smooth diffeomorphism ϕ(x) that represents it, so

Si(t) =
∑

1≤#J≤n

Si
J

tJ

J !
, where Si

J =
∂#Jϕi

∂xJ
(0), i = 1, . . . , p. (3.2)

Note that there is no constant (order 0) term in the Taylor polynomial (3.2) since we
are assuming that ϕ(0) = 0; moreover the first order Taylor coefficients

(
Si

j

)
form an

invertible p× p matrix, whereas the higher order coefficients can be arbitrary. Therefore,
GL(n)(p) forms a Lie group of dimension

p(n) = p

[(
p+ n

n

)
− 1

]
. (3.3)

† We use a formal variable t here instead of x for later clarity.
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The group multiplication is then given by formal composition of polynomials, so that
U = R · S if and only if the corresponding polynomials satisfy

U(t) = R(S(t)) modn, (3.4)

where modn means that we truncate the resulting polynomial to order n. The explicit for-
mulae can be identified with the Faà di Bruno formula, [7; p. 222], [14], for the derivatives
of the composition of two functions.

Example 3.2. In the one-dimensional situation, p = 1, the Taylor polynomial of a
diffeomorphism ϕ→ R → R that fixes 0 = ϕ(0) takes the form

S(t) = s1t+ 1
2s2t

2 + 1
3!s3t

3 + 1
4!s4t

4 + · · · , (3.5)

with the coefficients s1, s2, . . . representing the derivatives sk = ϕ(k)(0) of our diffeomor-
phism ϕ: R → R fixing 0 = ϕ(0). The composition formula (3.4) gives the explicit rules

u1 = r1s1, u2 = r1s2 + r2s
2
1 u3 = r1s3 + 3r2s1s2 + r3s

3
1

u4 = r1s4 + r2(4s1s3 + 3s22) + 6r3s
2
1s2 + r4s

4
1,

and so on. As in [5; §3.4], the one-dimensional Faà di Bruno formula is

uk =

k∑

m=1

rmBm
k (s1, . . . , sk), where Bm

k (s1, . . . , sk) =
∑

Σ I=k

si1
si2

· · · sim

I! (#I)!
(3.6)

is a Bell polynomial, [3], [18; §2.8]. The sum in (3.6) is over all unordered multi-indices
I = (i1, . . . , im) with 1 ≤ iν ≤ k,

∑
I = i1 + · · ·+ im = k, and where J = #I denotes the

“repetition” multi-index of I, so that jr = #{ iν = r} indicates the number of times that
the integer r appears in the multi-index I.

We can explicitly realize GL(n)(p) as a matrix Lie group, namely a subgroup of
GL(p(n)), as follows. The space of vector-valued Taylor polynomials x(t) of degree at most

n without constant term, x(0) = 0, can be identified with R
p(n)

. Given S ∈ GL(n)(p), we
define ρ(S) ∈ GL(p(n)) by

ρ(S)x(t) = x(S(t)), (3.7)

where S(t) is the Taylor polynomial (3.2) corresponding to S. The explicit formulae for
the Faà di Bruno injection ρ can be found in [14; p. 503].

Example 3.3. In the one-dimensional situation described in Example 3.2, we iden-
tify a fourth order Taylor polynomial (3.5) with its coefficient vector ( s1, s2, s3, s4 ). The
corresponding matrix is

ρ(S) =




s1 s2 s3 s4
0 s21 3s1s2 4s1s3 + 3s22
0 0 s31 6s21s2
0 0 0 s41


.

The reader may enjoy verifying that this forms a subgroup of GL(4). The kth order
version has ρ(S) the upper triangular matrix with entries given by the Bell polynomials
Bi

j(s1, . . . , sj) for i ≤ j.
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We next determine the left and right-invariant Maurer–Cartan forms on the prolonged
general linear group. These will be found by adapting the usual formulae

µL = A−1 · dA, µR = dA ·A−1, (3.8)

valid for matrix Lie groups G ⊂ GL(n), [16]. In our case, the Maurer–Cartan forms will
appear as the coefficients of a formal “Taylor” polynomial

σ(t) =
∑

1≤#J≤n

tJ

J !
σJ , (3.9)

where each σJ is a p vector of one-forms defined on the group GL(n)(p). Using (3.8) and the
multiplication rule (3.4) for the group, we deduce that the right-invariant Maurer–Cartan
form polynomial is given by

σ̃(t) = dS
[
S−1(t)

]
modn, (3.10)

obtained by composing the formal inverse series (or inverse Taylor polynomial) S−1(t) and
the formal series of basis one-forms

dS(t) =
∑

1≤#J≤n

tJ

J !
dSJ , (3.11)

on the group. On the other hand, the left-invariant Maurer–Cartan form polynomial can
be found by first computing the differential of the composition

d
[
T(S(t))

]
= DT(S(t)) · dS(t), (3.12)

of the two power series with respect to the coefficients of S. Here DT(t) = (∂Ti/∂tj)
denotes the Jacobian matrix series associated with T(t). Replacing T in (3.12) by the
inverse of S(t) and truncating produces the left-invariant Maurer–Cartan form polynomial:

σ(t) = DS−1(S(t)) · dS(t) modn = DS(t)−1 · dS(t) modn, (3.13)

where DS(t)−1 is the inverse of the Jacobian matrix of S(t).

Example 3.4. For the one-dimensional situation considered above we have

S(t) = s1t+ 1
2s2t

2 + 1
3!s3t

3 + 1
4!s4t

4 + · · · ,

dS(t) = t ds1 + 1
2 t

2 ds2 + 1
3! t

3 ds3 + 1
4! t

4 ds4 + · · · ,

S−1(t) =
1

s1
t−

s2
2s31

t2 −
s1s3 − 3s22

6s51
t3 −

s21s4 − 10s1s2s3 + 12s32
24s71

t4 + · · · .

Therefore, the right-invariant Maurer–Cartan forms on GL(n)(1) are obtained as the coef-
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ficients of the “Maurer–Cartan polynomials”

σ̃(t) = dS

(
1

S(t)

)
= σ̃1t+ 1

2 σ̃2t
2 + 1

3! σ̃3t
3 + 1

4! σ̃4t
4 + · · ·

=
ds1
s1

t+
s1 ds2 − s2 ds1

2s31
t2 −

s21 ds3 − 3s1s2 ds2 − (s1s3 − 3s22) ds1
6s51

t3 +

+
s31 ds4 − 6s21s2 ds3 − (4s21s3 − 15s1s

2
2) ds2 − (s21s4 − 10s1s2s3 + 15s32) ds1

24s71
t4 + · · · .

The left–invariant Maurer–Cartan form polynomial (3.10) for GL(n)(1) is

σ(t) =
dS(t)

S′(t)
= σ1t+ 1

2σ2t
2 + 1

3!σ3t
3 + 1

4!σ4t
4 + · · ·

=
ds1
s1

t+
s1 ds2 − 2s2 ds1

2s21
t2 +

s21 ds3 − 3s1s2 ds2 − 3(s1s3 − 2s22) ds1
6s31

t3 +

+
s31 ds4 − 4s21s2 ds3 − 6s1(s1s3 − 2s22) ds2 − 4(s21s4 − 6s1s2s3 + 6s32) ds1

24s41
t4 + · · · .

Let ρ(σ) = ρ(S)−1dρ(S) denote the corresponding left Maurer–Cartan matrix, (3.8).
In view of (3.7), (3.13), it acts on the column vector x according to the power series
formulation

[ρ(σ)x ](t) = ρ(S)−1 d[ρ(S)x ](t) = ρ(S)−1 d[x(S(t)) ]

= ρ(S)−1

(
p∑

i=1

∂x

∂ti
[S(t) ] dS(t)

)
=

p∑

i=1

∂x

∂ti
(t) dSi[S−1(t) ] =

p∑

i=1

∂x

∂ti
(t) σi(t).

Example 3.5. For the one-dimensional version, we have

x(t) = x1t+ 1
2x2t

2 + 1
3!x3t

3 + 1
4!x4t

4 + · · · , x′(t) = x1 + x2t+ 1
2!x3t

2 + 1
3!x4t

3 + · · · .

Therefore,

ρ(σ)x(t)= x′(t)σ(t) = (σ1x1)t+ 1
2 (σ2x1 + 2σ1x2)t

2 + 1
3! (σ3x1 + 3σ2x2 + 3σ1x3)t

3 +

+ 1
4! (σ4x1 + 4σ3x2 + 6σ2x3 + 4σ1x4)t

4 + · · · ,

and hence the Maurer–Cartan form matrix for GL(n)(1) is

ρ(σ) =




σ1 σ2 σ3 σ4 . . .
0 2σ1 3σ2 4σ3 . . .
0 0 3σ1 6σ2 . . .
0 0 0 4σ1 . . .
...

...
...

...
. . .



. (3.14)

The (i, j) entry of the full n× n matrix is

ρ(S)i
j =





(
j

i− 1

)
σi−j+1, i ≤ j,

0, i > j.

(3.15)
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4. The Leibniz Group.

Besides the prolonged general linear group that provides the structure group for jets
of diffeomorphisms, we also require a structure group related to the multiplication of jets.

Definition 4.1. The Leibniz group L(n)(p, q) is the Lie group consisting of all n-jets
of smooth maps Ψ: Rp → GL(q) at the point 0, so

L(n)(p, q) = { jnΨ(0) | Ψ: Rp → GL(q) } . (4.1)

The group law is induced by matrix multiplication Φ(x) · Ψ(x) of the smooth maps.

Given a vector bundle E → X over a p-dimensional base with q-dimensional fiber,
there is an induced representation

τ(L(n)) · z(n) = jn[Ψ(x) · f(x) ] whenever L(n) = jnΨ(x), z(n) = jnf(x) (4.2)

of L(n)(p, q) on the jet fiber JnE. As with the prolonged general linear group, we identify
the elements of the Leibniz group with their Taylor series. Thus, the group element
L(n) = jnΨ(0) is identified with the nth order truncation of the power series

L(t) =
∑

1≤#J≤n

tJ

J !
LJ , (4.3)

where LJ is a q×q matrix. The entries (LJ)α
β can be identified with the Taylor coefficients

∂kΨα
β/∂x

J(0) for the corresponding matrix entry of Ψ(x). Identifying a point z(n) ∈ Jn

with the corresponding nth order Taylor polynomial z(t), the action of the Leibniz group
is given by

[τ(L(n)) z ](t) = L(t) · z(t) modn. (4.4)

Example 4.2. In the one-dimensional version, GL(1) ' R
∗ is just the set of nonzero

reals, and so the maps Ψ: R → GL(1) are scalar-valued. The Leibniz group is induced by
multiplication of Taylor series, and so the product of

L(t) = l0 + l1t+ 1
2 l2t

2 + 1
3! l3t

3 + · · · , M(t) = m0 +m1t+ 1
2m2t

2 + 1
3!m3t

3 + · · · ,

is given by truncating the product series

L(t) · M(t) = l0m0 + (l0m1 + l1m0)t+ 1
2 (l0m2 + 2l1m1 + l2m0)t

2 +

+ 1
3! (l0m3 + 3l1m2 + 3l2m1 + l3m0)t

3 + · · · ,

at order n. The action (4.4) on a series

z(t) = z0 + z1t+ 1
2z2t

2 + 1
3!z3t

3 + · · · (4.5)

is the same — just replace the m’s by z’s. Therefore, the matrix representation (4.2) of
an element of L(4)(1, 1) is

τ(L(4)) =




l0 l1 l2 l3 l4
0 l0 2l1 3l2 4l3
0 0 l0 3l1 6l2
0 0 0 l0 4l1
0 0 0 0 l0


 .
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The matrix of Maurer–Cartan forms on the Leibniz group are found using the usual
formula (3.8), which becomes

λ =
∑

J

tJ

J !
λJ , (4.6)

where each λJ is a q × q matrix of one-forms. We have

λ(t) = τ(L)−1 dL(t) = L(t)−1 dL(t) = d log L(t). (4.7)

Let τ(λ) = τ(L)−1dτ(L) denote the corresponding Maurer–Cartan matrix. In view of
(4.4), it acts on the column vector z according to the power series formulation

[τ(λ)z ](t) = τ(L)−1d[τ(L)z ](t) = τ(L)−1d[L(t) ] · z(t) = λ(t) · z(t). (4.8)

Example 4.3. For the one-dimensional version, we have

L(t) = l0 + l1t+ 1
2 l2t

2 + 1
3! l3t

3 + · · · ,

dL(t) = dl0 + t dl1 + 1
2 t

2 dl2 + 1
3! t

3 dl3 + · · · ,

L(t)−1 =
1

l0
−
l1
l20
t−

l0l2 − 2l21
2l30

t2 −
l20l3 − 6l0l1l2 + 6l31

6l40
t3 + · · · .

Therefore, the Maurer–Cartan form series for L(n)(1, 1) is

λ(t) = d log L(t) = λ0 + λ1t+ 1
2λ2t

2 + 1
3!λ3t

3 + · · · ,

=
dl0
l0

+
l0 dl1 − l1 dl0

l20
t+

l20 dl2 − 2l0l1 dl1 − (l0l2 − 2l21) dl0
2l30

t2 +

+
l30 dl3 − 3l20l1 dl2 − 3(l20l2 − 2l0l

2
1) dl1 − (l20l3 − 6l0l1l2 + 6l31) dl0

6l40
t3 + · · · .

Given z(t) as in (4.5), equation (4.8) implies that

τ(λ) z(t)= λ(t) z(t) = λ0z0 + (λ1z0 + λ0z1)t+ 1
2 (λ2z0 + 2λ1z1 + λ0z2)t

2 +

+ 1
3! (λ3z0 + 3λ2z1 + 3λ1z2 + λ0z3)t

3 + · · · .

Thus, the Maurer–Cartan form matrix for L(n)(1, 1) is

τ(λ) =




λ0 λ1 λ2 λ3 λ4 . . .
0 λ0 2λ1 3λ2 4λ3 . . .
0 0 λ0 3λ1 6λ2 . . .
0 0 0 λ0 4λ1 . . .
0 0 0 0 λ0 . . .
...

...
...

...
...

. . .



. (4.9)

The (i, j) entry of the full n× n matrix is

τ(L)i
j =





(
j

i

)
λi−j , i ≤ j,

0, i > j.

(4.10)
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Note the remarkable similarity between the Maurer–Cartan form matrices for the prolonged
general linear group, (3.14), and for the Leibniz group, (4.9)! The Leibniz version forms a
“Pascal upper triangular matrix”, whereas the prolonged version is obtained by throwing
away the main diagonal of the Pascal matrix.

5. The Contact Group.

We are now in a position to describe the structure group for the pseudo-group of
contact transformations on the jet bundle Jn.

Definition 5.1. The nth order contact group is the semidirect product group

C(n)(p, q) = GL(n−1)(p) n L(n−1)(p, q). (5.1)

The group acts on series z(t) according to

ψ(S,L) · z(t) = L(t) · z(S−1(t)), (5.2)

and then truncating to order n. Therefore, the group multiplication in C(n)(p, q) is given,
in series form, by

(
S(t),L(t)

)
·
(
T(t),M(t)

)
=
(
S(T(t)),L(t) · M(S−1(t))

)
. (5.3)

The Maurer–Cartan form matrix for the contact structure group is given by the “dif-
ference” between the two Maurer–Cartan form matrices, so ψ(σ,λ) = ρ(σ)− τ(λ) . Thus,
we find

[ψ(σ, λ)z ](t) = λ(t) · z(t) −

p∑

i=1

∂z

∂ti
(t) σi(t).

Note that the prolonged general linear group acts trivially on the zeroth order coefficient
in the power series for z. In the one-dimensional version, we have

ψ(λ,σ) =




λ0 λ1 λ2 λ3 λ4 . . .
0 λ0 − σ1 2λ1 − σ2 3λ2 − σ3 4λ3 − σ4 . . .
0 0 λ0 − 2σ1 3λ1 − 3σ1 6λ2 − 4σ1 . . .
0 0 0 λ0 − 3σ1 4λ1 − 6σ2 . . .
0 0 0 0 λ0 − 4σ1 . . .
...

...
...

...
...

. . .



. (5.4)

We now introduce the infinite power series of basis contact forms

θα(t) =
∑

0≤#J

tJ

J !
θα

J , α = 1, . . . , q, (5.5)

in the variable uα, and let θ(t) = (θ1(t), . . . ,θq(t))T be the associated column vector-valued
series of contact forms. Note that the contact forms on Jn are obtained by truncating the
series θ(t) at order n− 1 and not at n.

We are now able to introduce the goal of our investigations.
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Definition 5.2. The canonical contact form is the vector-valued series of one-forms
on the principal bundle

ϑ(t) = ψ(L,S)θ(t) = L(t) · θ(S−1(t)), (5.6)

where L(t) and S(t) are the associated group series.

Example 5.3. In the one-dimensional situation, the canonical contact form is com-
posed of the following linear combinations of contact forms:

ϑ0 = l0θ0,

ϑ1 =
l0
s1
θ1 + l1θ0,

ϑ2 =
l0
s21
θ2 +

2s21l1 − s2l0
s31

θ1 + l2θ0,

ϑ3 =
l0
s31
θ3 +

3s21l1 − 3s2l0
s41

θ2 +
3s41l2 − 3s21s2l1 − (s1s3 − 3s22)l0

s51
θ1 + l3θ0.

(5.7)

Remark : We can compute ϑk by repeatedly applying the (formal) differential operator
D = (1/s1)Dx to ϑ0, using the identifications D(lj) = lj+1, D(sj) = sj+1/s1. A proof of
this observation is left to the reader.

Theorem 5.4. The canonical contact form of order n defines an involutive differen-

tial system on the principal bundle P (n). The equivalence maps preserving the canonical

contact form are the lifts of contact transformations on Jn.

The structure equations are found as follows. The structure equations

dθα
I =

p∑

i=1

θα
I,i ∧ dx

i,

can be rewritten in series form

dθ(t) = θ′(t) ∧ dx =

p∑

i=1

∂θ

∂ti
∧ dxi, α = 1, . . . , q. (5.8)

Here θ′(t) =
(
∂θα/∂ti

)
is the formal q × p Jacobian matrix of θ(t) with respect to t.

Therefore, using (5.8), we can compute

dϑ(t) = λ(t) ∧ ϑ(t) + ϑ′(t) ∧ σ(t) + L(t) dθ(S−1(t))

= λ(t) ∧ ϑ(t) + ϑ′(t) ∧ σ(t) + L(t)θ′(S−1(t)) ∧ dx.
(5.9)

In the language of the Cartan equivalence method, cf. [10, 16], the first two terms in (5.9)
form the group components of the structure equations, while the third term is the torsion.

On the other hand, using the definition (5.6), we can compute

∂

∂t
ϑ(t) = L′(t) · θ(S−1(t)) + L(t) · θ′(S−1(t)) ·

∂

∂t
[S−1(t) ]

= L′(t) · L(t)−1 · ϑ(t) + L(t) · ϑ′(S−1(t)) ·
[
S′(S−1(t))

]−1
,

11



the last equality following from the chain rule. Therefore,

dϑ(t) = λ(t) ∧ ϑ(t) + ϑ′(t) ∧ σ(t) +
[
ϑ′(t) − L′(t) · L(t)−1 · ϑ(t)

]
∧ S′(S−1(t)) dx.

(5.10)
Most of the torsion terms can therefore be absorbed by suitably modifying the Maurer–
Cartan forms λ(t) and σ(t); the only exceptions are the constant terms multiplying ϑ′(t);
this is because σ(t) does not contain any constant terms, i.e., σ(0) = 0. If we define the
modified Maurer–Cartan forms to be

λ̃(t) = λ(t) + L′(t) · L(t)−1 · S′(S−1(t)) dx,

σ̃(t) = σ(t) +
[
S′(S−1(t)) − S′(0)

]
dx,

(5.11)

we can rewrite the structure equations (5.10) in the “semi-absorbed form”

dϑ(t) = λ̃(t) ∧ ϑ(t) + ϑ′(t) ∧ σ̃(t) + ϑ′(t) ∧ S′(0) dx. (5.12)

We now complete the canonical contact form to a coframe on Jn by including the
additional p one-forms

ξ = S′(0)dx + aϑ(0) + Bϑ′(0) = S′(0) dx. (5.13)

Here a = (ai
α) is a p × q matrix and B = (bikα ) a p × p × q tensor of parameters. In

components, (5.13) reads

ξi =

q∑

α=1

ai
αϑ

α +

q∑

α=1

p∑

k=1

bikα ϑ
α
k , where ϑα = ϑα(0), ϑα

k =
∂ϑα

∂tk
(0),

are the lifted zeroth and first order contact forms, which can be written as linear combi-
nations of the ordinary zeroth and first order contact forms θα, θα

k via (5.6). Bäcklund’s
Theorem implies that the x coordinates depend only on x, u, and, if q = 1, first order
derivatives of u. This implies that the first order contact form coefficients in (5.13) must
vanish, B = 0, when q > 1. (Alternatively, one can use a particular unabsorbable tor-
sion term to justify this normalization.) We therefore use (5.13) to rewrite the structure
equations (5.12) in the fully absorbed form

dϑ(t) = λ̂(t) ∧ ϑ(t) + ϑ′(t) ∧ σ̂(t) + ϑ′(t) ∧ ξ, (5.14)

where the modified Maurer–Cartan forms are now

λ̂(t) = λ̃(t) − a · ϑ′(t), σ̂(t) = σ̃(t) + a · [ϑ(t) − ϑ(0) ] + B · [ϑ′(t) − ϑ′(0) ]. (5.15)

(Again, note that σ̂(0) = σ(0) = 0, so that this modification is allowed.) The only term
in (5.12) which remains unaccounted for is

ϑ′(t) ∧ B · ϑ′(t),

but this vanishes because either q = 1, in which case the wedge product of the two scalar
one-forms ϑ′(t) is zero, or q > 1, in which case, by Bäcklund’s Theorem, B = 0. In fact,
this is the essential torsion component that provides the equivalence method proof of this
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part of Bäcklund’s Theorem, cf. [16]. Equation (5.14) provides the main constituent of
the structure equations for the contact pseudo-group.

We also need to compute the remaining structure equations for the one-forms (5.13).
We find

dξ = σ′(0) ∧ ξ + α ∧ ϑ(0) + β ∧ ϑ′(0) + a · dϑ(0) + B dϑ′(0), (5.16)

where α,β are the Maurer–Cartan forms corresponding to the additional group parameters
a,B. Note that α,β do not depend on t. Differentiating (5.14) with respect to t, and
recalling σ(0) = 0, we find

dϑ(0) = λ̂(0) ∧ ϑ(0) + ϑ′(0) ∧ ξ,

dϑ′(0) = λ̂′(0) ∧ ϑ(0) + λ̂(0) ∧ ϑ′(0) + ϑ′(0) ∧ σ̂′(0) + ϑ′′(0) ∧ ξ.
(5.17)

Moreover, according to (5.11), (5.15), for any constant (column) vector z ∈ R
p,

σ̂′(0) · z = σ̃′(0) · z +
[
a · ϑ′(0) + B · ϑ′′(0)

]
· z

= σ′(0) + S′′(0)
(
S′(0)−1 · z, x

)
+ [a · ϑ′(0) + B · ϑ′′(0) ] · z.

Wedging the result with ξ, and using (5.13), (5.17) and, we find

σ̂′(0) ∧ ξ = σ′(0) ∧ ξ + π ∧ ϑ(0) + ϑ′(0) ∧ $ + B · ϑ′′(0) ∧ ξ, (5.18)

for certain one-forms π, $, whose precise form is not hard to find, but which is unimpor-
tant. Note that we used the fact that the extra term

S′′(0)
(
S′(0)−1 · ξ,S′(0)−1 · ξ

)
= 0

vanishes by symmetry of second order derivatives. Finally, substituting (5.18), (5.17) into
(5.16), we conclude that

dξ = σ̂′(0) ∧ ξ + α̂ ∧ ϑ(0) + β̂ ∧ ϑ′(0), (5.19)

where σ̂′(0) are the order 1 terms of our earlier modified Maurer–Cartan forms (5.15),

while α̂, β̂ are suitably modified one-forms corresponding to the additional structure group
parameters a, B. Note particularly that (5.19) contains no essential torsion. Equations
(5.14) and (5.19) form the complete structure equations for the contact pseudo-group on
the infinite jet bundle.

There is one final item to deal with when working on a finite jet bundle Jn. Since the
contact forms which are well-defined on Jn have orders at most n − 1, we must include
q
(
p+n−1

n

)
additional one-forms to complete the coframe on Jn. These will clearly be the

basis forms duα
J , #J = n, which must be lifted appropriately. (See [15] for more details.)

However, we can most simply accomplish this as follows: First, truncate the canonical
contact form series ϑ(t) at order n. The resulting lifted contact form will depend on
(n + 1)st order derivatives of u. These can be eliminated, while retaining the proper lift,
by adding in a suitable multiple of the base forms dxi. Thus, the lifted coframe on Jn

consists of the one-forms (5.13) along with the modified canonical contact form

ϑ̂(t) = ϑ(t) + e(tn) · ξ modn, (5.20)
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where e = (eα
I ) is a q×

(
p+n−1

n

)
matrix of additional group parameters. The corresponding

truncated structure equations are now

dϑ̂(t) = λ̂(t) ∧ ϑ̂(t) + ϑ̂′(t) ∧ σ̂(t) + ε(tn) ∧ ξ + ϑ̂′(t) ∧ ξ modn. (5.21)

This completes our proof.

Example 5.5. The structure equations for the one-dimensional situation are as
follows:

dϑ0 = λ0 ∧ ϑ0 + ξ ∧ ϑ1,

dϑ1 = λ1 ∧ ϑ0 + (λ0 − σ1) ∧ ϑ1 + ξ ∧ ϑ2,

dϑ2 = λ2 ∧ ϑ0 + (2λ1 − σ2) ∧ ϑ1 + (λ0 − 2σ1) ∧ ϑ2 + ξ ∧ ϑ3,

dϑ3 = λ3 ∧ ϑ0 + (3λ2 − σ3) ∧ ϑ1 + (3λ1 − 3σ2) ∧ ϑ2 + (λ0 − 3σ1) ∧ ϑ3 + ξ ∧ ϑ4,

...
...

dϑn−1 =

n−1∑

i=0

[(
n− 1

i

)
λn−1−i −

(
n− 1

i− 1

)
σn−i

]
∧ ϑi + ξ ∧ ϑ̃n,

dϑ̃n =

n∑

i=0

[(
n

i

)
λn−i −

(
n

i− 1

)
σn+1−i

]
∧ ϑi + ε ∧ ξ,

dξ = σ1 ∧ ξ + ϕ ∧ ϑ0 + ψ ∧ ϑ1.

(5.22)

Here λ0, . . . , λn are the Leibniz Maurer–Cartan forms, σ1, . . . , σn the prolonged general
linear group Maurer–Cartan forms, and ε, ϕ, ψ the three additional Maurer–Cartan forms,
corresponding to the truncated or non-canonical part of the lifted coframe.
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