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Allen Robert Tannenbaum (January 25, 1953 - December 28, 2023) was an American applied mathematician who was a Distinguished
Professor of Computer Science and Applied Mathematics & Statistics at the State University of New York at Stony Brook. He was also
Visiting Investigator of Medical Physics at Memorial Sloan Kettering Cancer Center in New York City. He had held a number of other
positions in the United States, Israel, and Canada including the Bunn Professorship of Electrical and Computer Engineering and Interim
Chair, and Senior Scientist at the Comprehensive Cancer Center at the University of Alabama, Birmingham. He received his B.A. from
Columbia University in 1973 and Ph.D. with thesis advisor Heisuke Hironaka at the Harvard University in 1976.[112]

Tannenbaum had done research in numerous areas including robust control, computer vision, and biomedical imaging, having almost
500 publications. He pioneered the field of robust control with the solution of the gain margin and phase margin problems using
techniques from Nevanlinna—Pick interpolation theory, which was the first H-infinity type control problem solved. Tannenbaum used
techniques from elliptic curves to show that the reachability does not imply pole assignability for systems defined over polynomial rings in
two or more variables over an arbitrary field. He pioneered the use of partial differential equations in computer vision and biomedical
imaging co-inventing with Guillermo Sapiro an affine-invariant heat equation for image enhancement. Tannenbaum further formulated a
new approach to optimal mass transport (Monge-Kantorovich) theory in joint work with Steven Haker and Sigurd Angenent. In recent
work, he had developed techniques using graph curvature ideas for analyzing the robustness of complex networks.

His work had won several awards including IEEE Fellow®! in 2008, O. Hugo Schuck Award!“! of the American Automatic Control Council
in 2007 (shared with S. Dambreville and Y. Rathi), and the George Taylor Award for Distinguished Research!®! from the University of
Minnesota in 1997. He has given numerous plenary talks at major conferences including the Society for Industrial and Applied
Mathematics (SIAM) Conference on Control in 1998, IEEE Conference on Decision and Control of the IEEE Control Systems Society in
2000, and the International Symposium on the Mathematical Theory of Networks and Systems (MTNS)[®l in 2012. He is also well known
as one of the authors of the textbook Feedback Control Theory (with John Doyle and Bruce Francis), which is currently a standard
introduction to robust control at the graduate level.

His wife Rina Tannenbaum is a chemist and his son Emmanuel David Tannenbaum was a biophysicist and applied mathematician.
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Mathematics Genealogy Project

Home Allen Robert Tannenbaum
Search MathSciNet
Extrema
Ph.D. Harvard University 1976
About MGP =S
Links Dissertation: Deformations of I-Cycles and the Chow Scheme
FAQs Advisor 1: Heisuke Hironaka
e Students:
Submit Data Click here to see the students listed in chronological order.
Contact Name School Year Descendants
Donate Cockburn, Juan University of Minnesota - Twin Cities 1994
Curry, Cecilia Georgia Institute of Technology 2002
Elgersma, Michael University of Minnesota - Twin Cities 1988
Fer, Huseyin University of Minnesota - Twin Cities 1997
Gholami, Behnood Georgia Institute of Technology 2010
Haker, Steven University of Minnesota - Twin Cities 1999
Montminy, : p ; A
Mathiow University of Minnesota - Twin Cities 2001
- Technion-Israel Institute of
Nakhmani, Arie Technology 2011 3
Ozbay, Hitay University of Minnesota - Twin Cities 1989
Sandhu, Romeil  Georgia Institute of Technology 2010 1
. ] Technion-Israel Institute of
Sapiro, Guillermo Technology 1993 12
Stein, Joseph Weizmann Institute of Science 1980
Yezzi, Jr., Anthony University of Minnesota - Twin Cities 1997 2

According to our current on-line database, Allen Tannenbaum has 13 students
and 33 descendants.
We welcome any additional information.

If you have additional information or corrections regarding this mathematician, please use the
update form. To submit students of this mathematician, please use the new data form, noting this
mathematician's MGP ID of 19358 for the advisor ID.
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* Harvard University, 1973 - 1976.

* Weizmann Institute of Science, 1976 - 1978, 1980 - 1983.
* Institut des Hautes Etudes Scientifiques, 1978.

e E.T.H., Zurich, 1978 - 1980.

* University of Florida, 1982 - 1984.

* Ben-Gurion University, 1984 - 1986.

* McGill University, 1985 - 1986.

* University of Minnesota, 1986 - 2002.

* Technion, 1989 - 1992, 2005 - 2010.

* Georgia Tech, 1999 - 2011.

* University of Alabama, 2012 - 2013.

* Stony Brook University, 2013 — 2023.

* Memorial Sloan Kettering Cancer Center, 2015 - 2023
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Faculty
In Memoriam - Distinguished Professor
Graduate Students
It is with great sadness that the Department of Computer Science reports the loss of Dr.
Allen Tannenbaum, Professor Emeritus of Computer Science. Staff
Bye, my friend. Awards

Allen Tannenbaum

INTERESTS

Computational computer vision, image processing, medical imaging, computer graphics, control, mathematical
systems theory, control of semiconductor fabrication processes, robotics, operator theory, functional analysis,
algebraic geometry, dillerential geometry, invariant theory, and partial differential equations.

BIOGRAPHY

Allen Tannenbaum was affiliated with the Department of Applied Mathematics & Statistics. He obtained his Ph.D. from

Harvard University.
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Allen Tannenbaum
and Comjouter Vision



Basic Issues in

Computer Vision

multi-scale resolution
denoising/smoothing
image enhancement
edge detection
segmentation

geometric attributes
lengths, areas, volumes,

relative positions, etc.
object recognition
invariant signatures

occlusion



Medical Image Processing
Applications

ultrasound

magnetic resonance 1maging

CT scans

x-ray tomography

breast tumors
heart
brain
fetus

etc., etc., etc.



Evolutionary Smoothing

Multi-scale resolution provided by evolu-
tionary partial differential equation

®, = F(x,®, VP, VD, ...
¢(x,0) = I(x)
X = spatial position
t = scale parameter
= degree of smoothing
I(x) = raw gray-scale image

¢ (x,t) = smoothed image



Gaussian Smoothing
—> Simplest model

Heat equation = Gaussian convolution
¢, = Ad
¢(x,0) = I(x).
¢(x,t) = G(x,t) * I(x)

Problems:

e Smooths out both noise and relevant
features indiscriminantly

e Isotropic process

—> Need an anisotropic (nonlinear)
diffusion process which eliminates
noise but retains edges and other
features.



Figure 11.1. Smoothing a gray scale image.



Level Set Evolution
Idea:
Use geometric diffusion to smooth

Evolve individual level sets

Theorem. The level sets

Cp(t) ={ (@, 9) | ®(2,y,t) =k}
evolve according to the normal flow
C,=—-aN

if and only if ® satisfies the evolution

equation
O, =V

Osher—Sethian

N — outward normal to level set



®, = a(®, VP, V)|V

e Smoothing of level sets only

e Level sets move independently of each
other

e Can continue after crossing/ separa-
tion/singularities

e Readily implementable in both 2D and
3D

—> C(Concentrate on 2D images from now
on.



Curve Evolution

C(q,t) — parametrized family of (closed)
curves in R?

T — unit tangent
N — unit (outward) normal

(General curve evolution

dC
— =aN T
- alN+ 5

By reparametrizing, can assume

g=0
No tangential component:

dC
Y AN
a @
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Mathematically ...

Symmetny wmmy Group “[heory



Next to the concept of a function, which

18 the most important concept pervading

the whole of mathematics, the concept of

a group 1s of the greatest significance in the
various branches of mathematics and ts

applications.

— P.S. Alexandroff




Geometric transformation groups

Translations

—



Geometric transformation groups

Rotations

—



Noncommutativity of 3D rotations — order matters!

Physics e
y N ‘ » '
i (2) Rotated 90 (3) Rotated about
V- X degrees about x. X, then y.

(1) The book in its ‘
original orientation. %‘j‘/ >
|

(4) Rotated 90
degrees about y.

L

(5) Rotated about
y, then x.

Physics




Geometric transformation groups

Reflections




Geometric transformation groups

Scaling (similarity)

T —



Geometric transformation groups

Projective and Equiaffine Transformations

—



Geometric transformation groups

Projective Transformation

- — ?




Geometric transformation groups

Projective Transformation

-
=



Projective transformations in art and photography

Albrecht Durer — 1500



Symmetry Groups

Euclidean Length—preserving
Translations
Rotations
Reflections

Similarity Preserves length ratios

Fuclidean 4+ Scaling




Symmetry Groups

Equi-affine Area—preserving
Translations

Unimodular linear: det A =1

Affine Preserves volume ratios
Ax+ Db
Equiaffine 4+ Scaling

Projective Preserves cross-ratios
(am—l—by—l—c d:v—l—ey+f>
gr +hy+j gr+ hy+j




Invariant Curve Flows

Assume C'is a graph: y = u(x, t)

Grassfire flow (Hamilton-Jacobi)
C,=—-N

u, = —y/1 4+ u?

3, = |V = /02 + 32

e Simplest Euclidean invariant flow

e Formation of caustics



Euclidean Curve Shortening
C,=—-xkN
uCEiE
u, = —
t 1+ u?
2 2
o — ¢, 0, —20,9, 0, + 070
! d2 + 2
Vo
Ve

e Fuclidean invariant flow

= ||V®|| div

e Shortens Euclidean perimeter as rapidly
as possible

e V® — characteristic
e Nonconvex curves convexify

e (Convex curves shrink to round points

Grayson—Gage—Hamilton



Equi-affine Curve Shortening kappa w'7w

C,=—xN
Ut:m

Y 2 1/3
o, = ((I)yq)m — 2<I>x<I>yCI>xy + (I);I;(I)yy)

e Simplest equi-affine invariant flow

e Equi-affine grassfire flow,
in direction of affine normal

e Shortens equi-affine arc length
as rapidly as possible

e Nonconvex curves shrink to points
e Convex curves shrink to elliptical points

Angenent—Sapiro—Tannenbaum



Projective Curve Flow

3

uﬂ?il?

(9u2_u —45u, u,. U + 40u3

T " XXXLX 19 19 VIR VI V0 VR A A A Txrax

Uy =

)2/3

Simplest projective invariant flow
In direction of projective normal

Shortens projective arc length as
rapidly as possible
Curves can become singular

Involves higher order derivatives;
existence /uniqueness???



Figure 5: Examples of the afline invariant image flow for image denoising and simplification.
The original image is presented on the top row. Two different noise levels are given on the
left at the second and last row, and the corresponding results of the afline invariant flow on
the right.



COMPUTATIONAL IMAGING AND VISION

Diffusior

Olver, P.J.,
Sapiro, 6.,
Tannenbaum, A.

Differential
Invariant
signatures and
flows in computer
vision: a symmetry
group approach



Edge-detection and Segmentation

FEarlier detectors:

Search for:

e Max. of |VI||?
—> needs smoothing

e Zeros of A(I x Gaussian)?
—> smoothing blurs!



Snakes — Active Contours

Idea:

Use a geometric curve flow to “capture”
the edge

Modify curve shortening so that the
“snake” is trapped by features of
interest — instead of disappearing
to a point

—> Kass, Witkin, Terzopolous



Euclidean Snakes

Observation:
Fuclidean curve shortening flow
C,=—-rkN

is the gradient flow for the
Fuclidean length functional

L[C] = /C ds = /C Jdz? + dy?

In other words, the flow decreases the
length of the curve as rapidly as possible.




Idea:

Modify the Euclidean length functional by
a conformal factor

L[C] =/C d§=/(ja(:c,y)\/da:2+dy2

0 < o — Stopping term
lo| < 1 near features of interest




Idea:

Modify the Euclidean length functional by
a conformal factor

L[C] =/C d§=/(ja(:c,y)\/da:2+dy2

0 < o — Stopping term
lo| < 1 near features of interest

Edge = Curve of large ||VI(x)]|
o=1+|VI|I*)™

—> Replace I by smoothed version I*
obtained by Gaussian, FEuclidean or
affine smoothing.

—> (Can use color, texture, or other
stopping terms

Kichenassamy—-Kumar-PJO-Tannenbaum—Yezzi



Conformal Snakes
Minimize
L[C] = dz2 + dy?
C] = [ o(@.y)/de + dy
Curve evolution:
C,=—-0xN-—-Vo

Level set formulation:
¢, = o||VP| div <E> +Vo-Vo
Ve
Last term:
e Difficult to guess a prior:
e Points towards contour

e Captures fine features
[confirmed by comp.]

Analysis: Viscosity solutions.






Inflating Snakes = Balloons

C,=—-—0rN-—-Vo
Add Inflation:
C,=—-0-(k+v)N—-Vo
e v > (0 — inflation constant

e quick start up

e speeds up capture of edges

Level set formulation:

Vo
¢, =c||VD| (div
t IVe|

‘|‘V>—|-VO'°VCI)
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Signature Curves

Definition. Given an (ordinary) planar action of a Lie group
G, the signature curve > C R? of a plane curve C C R? is
parametrized by the two lowest order differential invariants

x: C — :{<m,dﬁ>}CR2
ds

= C(Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C and C are (locally) equivalent:

C=g-C

if and only if their signature curves are identical:

—> regular: (kg,k,,) # 0.



Euclidean Curvature
IS a measure of “bendiness”.

bendy

|

flat -~



Curvature = reciprocal of radius of osculating circle



bendy

flat i

What everyday device can measure curvature?







left




Can you reconstruct the racetrack?

left

/\V/\ J\ = time

|

right



Can you reconstruct the racetrack?

left

/\V/\J\ P —

odometer

right



Can you reconstruct the racetrack?

K is (Euclidean) curvature

S is (Euclidean) arclength

K

/\/\J\/\

S




Racetrack comparison problem



Racetrack comparison problem




Racetrack comparison problem

21
4

dk/ds
= rate of change

(derivative)
of curvature



The Invariant Signature

The of a planar curve is the set
traced out by curvature and the rate of change of
curvature (its arclength derivative).

dk/ds

original curve iInvariant signature



Theorem

Two regular curves are related by a group transformation
If and only if they have the same invariant signatures.

(Calabi, Haker, Olver, Shakiban, Tannenbaum 1998)




Theorem

Two regular curves are related by a group transformation
If and only if they have the same invariant signatures.

Proof idea

Theorem (Elie Cartan 1908)

Shapes are related if and only if they have the same
relationships among their differential invariants.




K
Signatures W\F

Classical Signature

S

kg

Original curve %—\\
K

X

Differential invariant signature



Occlusions /\

\/\

Classical Signature

S

kg

Original curve /
(DN

Differential invariant signature



3D Differential Invariant Signatures

Euclidean space curves: C C R?

Z:{(’ivmwT)} c R’

e 1 — curvature, 7 — torsion

Euclidean surfaces: S C R3 (generic)

v={(H,K,H,,H,, K, ,K,)} C R

oo v ={(H,H, ,Hy,Hy;)} C R

e H — mean curvature, K — Gauss curvature



Symmetry—Preserving Numerical Methods

e Invariant numerical approximations to differential
invariants.

e Invariantization of numerical integration methods.

—> Structure-preserving algorithms



Numerical approximation to curvature

Heron’s formula

r(4,B,C) = 4A — 4 \/S(S —a)(s—b)(s—c)

abc e

_atbhe

2 —  semi-perimeter

S



Higher order invariants

_dx
S ds

Invariant finite difference approximation:

K

~ ’N{(Pz'—l?PzWPi 1) _'%(Pz'—Zapz'—l’Pz')
Ro(Fioy Bi_1, Py Prq) = dJr(P‘7P. D)

Unbiased centered difference:

~ /?;(PZ.,PZ- 17Pi 2)_’%(Pz'—27pi—1vpi)
Ro(Fioy Bi_1, B, P, Piyo) = + d&g‘ﬂjp‘ )

Better approximation (M. Boutin):

'T{(Pz'—h P;, Pi+1) - R<Pi—27 P, 4, Pi)
d, ,+2d;, ;+2d;+ di—i—l

d; =d(F;, P;yy)

Rs(Pi—27 Pi—l? Pz‘a Pi+1) =3




The Index

index = 3 = # symmetries



The polar curve r = 3 + 1—10 cos 30

The Original Curve  Euclidean Signature  Numerical Signature



The Curve x = cost + %COSQ t, y=-sint+ % sin® ¢

The Original Curve  Euclidean Signature  Equi-affine Signature



The Curve = = cost + %COSQt, Yy = %x+sint+ 1—1()sin2t

The Original Curve  Euclidean Signature  Equi-affine Signature



Canine Left Ventricle Signature

Original Canine Heart

MRI Tmage Boundary of Left Ventricle



Smoothed Ventricle Signature
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Object Recognition
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Figure 8: The Maple Leaf and its Signature Curve Figure 9: The Buckthorn Leaf and its Signature Curve

Figure 10: Correlation Matrix for Maple versus Buckthorn

Ryan Lloyd, Cheri Shakiban (2004)



@iagnosing breast tumors

Benign — cyst Malignant — cancerous

Anna Grim, Cheri Shakiban (2017)



A BENIGN TUMOR

Contour Signature Curve

% /A\\.A\‘\




A MALIGNANT TUMOR

Contour Signature Curve

V=" {i\\ﬁ\\

= | ==/




Reassemﬁfy 0
Broken OBJ’ects




Apictorial jigsaw puzzle reassembly

S ]
9 > C

Step 0. Digitally photograph and smooth the puzzle pieces.

Step 1. Numerically compute invariant signatures of (parts of) pieces.
Step 2. Compare signatures to find potential fits.
Step 3. Put them together, if they fit, as closely as possible.

Repeat steps 1-3 until puzzle is assembled....
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—  Anna Grim, Ryan Slechta, Tim O’Connor, Rob Thompson, Cheri Shakiban, PJO



A broken ostrich egg




A synthetic 3d jigsaw puzzle







All the king’s horses and men



Katrina Yezzi-Woodley, Martha Tappen, Reed Coil, Gilbert Tostevin, Annie Melton,
Jeff Calder, Peter Olver, Cheri Shakiban, Riley O’Neill

and many undergrad researchers.....



Breaﬁing ‘Bones

Carnivore Hominin Geological

3

Hammerstone only
Crocuta crocuta =

hyena Hammerstone and

anvil 112




Worﬁing ‘J—[yyotﬁesis

The geometry of the bone fragments,
their identity (taxon and element),
and how they are reassembled
will tell us the actor of breakage



ﬂntﬁroyofagica[
Clmjo (ications

Meat eater vs. vegetarian
Brain development
Scavenging vs. hunting
Food sharing

Social structures
Cooperative behavior
Home bases/central places
Carcass transport
Butchering behavior




(a) Bone fragment (b) Face segmentation (c) Edge tracing

FIGURE 1: Results of preliminary experiments with face segmentation and edge tracing. 116



Refitting bone fragments

117



10

Refitting bone fragments

118



Refitting bone fragments:
Gradient descent on SE(3)
using an objective function based on
segmented break edges and surface normals

7 ¢

Riley O'Neill



Thank you for your attention!



